
Using Adobe Type 1 Multiple Master Fonts with TEX

Michel Goossens
CN Division, CERN

CH­1211 Geneva 23

Switzerland

Email: m.goossens@cern.ch

Sebastian Rahtz
Elsevier Science Ltd

The Boulevard, Langford Lane

Kidlington, Oxford OX5 1GB

UK

Email: s.rahtz@elsevier.co.uk

Robin Fairbairns
University of Cambridge Computer Laboratory

Pembroke St, Cambridge CB2 3QG

UK

Email: rf@cl.cam.ac.uk

Abstract

Adobe’s Multiple Master font format has some of the properties thatMETAFONT pioneered

toexpressmanyfontsofthesamefamilyfrom thesame(set of) sources. Theadvent ofmultiple

master fonts could offer a significantlybetter choiceof fonts to users ofTEX;however, thereare

problems integratingthem with TEX, and thepaper presents a first solution to thoseproblems.

Thepaper isderived(byRobinFairbairns) fromanarticlewrittenbyMichelGoossensand

Sebastian Rahtzfor theUKTUGmagazineBaskervillevolume5,number 3. Asademonstration

of the effectiveness of the techniques described, it is being typeset using Adobe Minion and

Myriad multiple master fonts.

Introduction

Themultiplemaster font format isan extension oftheType1

font format, which allows the generation ofa wide varietyof

typeface styles from a single font program. This capability

allows users and applications control over the typographic

parameters of fonts used in their documents, in a manner

reminiscent ofKnuth’sground­breakingMETAFONT. This

article describes the multiple master system in some detail,

and describes theproceduresneeded tomakeinstances, and

create the appropriate font metrics for use with TEX.

Multiple Master overview

Amultiplemaster fontprogramcontainstwoor moreoutline

typefaces called master designs, which describe one or more

design axes. Themaster designs that constitutea design axis

represent a dynamic range of one typographic parameter,

such as the weight or width. This range of styles is defined

in a multiple master font program byspecifyingone master

design to represent each end of an axis, such as a light and

extra­bold weight, as wellas any intermediatemasterdesigns

that are required. The maximum number of master designs

allowed is sixteen.

A font instance consists of a font dictionary derived

from the multiple master font program (or from another

font instance). It contains a WeightVector array with k

values that sum to 1.0and which determine the relativecon­

tributionsofeach master design to theresultinginterpolated

design.

Allderived font instancessharetheCharStringsdic­

tionary and Subrs array of the main multiple master font

program, making it relatively economical to generate a va­

riety of font instances. Multiple master fonts can be made

compatible with the installed base of PostScript language

interpreters byincludingseveral PostScript languageproce­

duresand anewset of OtherSubrs routines in thefont pro­

gram. Theprocedures include thenewmakeblendedfont

operator, the interpolation procedure $Blend and a new

definition of thefindfont operator.

TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting 253

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

Multiple MasterDesign Space It ispossible to thinkofthe

master designsasbeingarrangedina1,2,3,or 4dimensional

space with various font instances correspondingto different

locations in that space. Theentries in theFontInfodictio­

naryspecifywhat this space is and where themaster designs

arelocated in it. Thisinformation isnecessaryfor interactive

programs that allow users to create newfont instances, and

should beincluded in thefont’sAdobeMultipleFont Metrics

(AMFM) file.

Figure 1 illustrates an example of the design space of a

threeaxis multiplemaster font. In this example, theaxes are

weight, width, and opticalsize. It is recommended that a font

program be organized to have the lightest weight, narrowest

width, and smallest design size mapped to the origin of the

blend space.

Multiple master coordinates are of two types: those

which represent the design space and those which represent

theblend space. Design coordinatesareintegerswhoserange

for a particular typeface is chosen by the designer. Theyare

used in font names and in the user interface for software

which creates and manipulates multiple master font pro­

grams. The theoretical range for a weight or width axis is

from 1 to 999 design units; however a typical typeface, with

styles ranging from light to black, might have a dynamic

range of from 200 (for light) to 800units (for black).

Another type of optional axis would be for optical size,

in which the character design changes with the point size.

The design coordinates for the optical size axis might have

a dynamic range of from 6­ to 72­point, which represents

the practical extremes of sizes for typefaces designed for

publishing purposes.

Blendcoordinatesarenormalizedvalues, in therangeof

0to1, which correspond to theminimum and maximum de­

signspacecoordinates. TheyareusedbytheType1rasterizer

because they are more convenient for mathematical manip­

ulations. The linear space of blend coordinates is related to

the (potentially) non­linear space of the design coordinates

by theBlendDesignMapentry in the font dictionary.

Afour axisdesignmightalsobeconsidered;anexample

of a fourth axis would be having an axis for a typographic

style(serif/sansserif)or contrast (high/low: theratioofthick

to thin stem widths). If four axes are defined,sixteen master

designs are required. Also, since sixteen is the maximum

number of designs allowed, there can be no intermediate

designs with four axes.

Multiple Master Font Programs

Multiple master typefaces may contain from two to sixteen

master designs, organized as havingfrom one to four design

axes. Sincethemaximum number ofmaster designsallowed

in a multiple master font is 16, the number x of intermediate

masters is subject to the restriction 2n + x ≤ 16, where n is

the number of design axes.

The values used for calculating the weighted aver­

age are stored in the font dictionary in an array named

WeightVector. The multiple master font program, as

shipped by the font vendor, can have a default setting for

the WeightVector; it is recommended that it is set so the

default font instance will be the normal roman design for

that typeface.

Multiple Master Keywords BlendAxisTypes is a (re­
quired) arrayof n PostScript language strings where n is the
dimension ofthedesign spaceand hencethenumber ofaxes.
Each stringspecifiesthecorrespondingaxis type. In thecase
of the Minion 3­axis example, this value would be:

/BlendAxisTypes [/Weight /Width /OpticalSize]

BlendDesignPositions is a (required) array of k

arrays giving the locations of the k master designs in the

design space. Each location subarray has n numbers giving

the location of the design in the n dimensions of the blend

space, with a minimum value of zero and a maximum value

of one. Table 1 with eight master designs is based on the

example shown in Figure 1. It corresponds to the blend

space of a 3­axis multiple master font like Minion.

For theMinionMMfont,theBlendDesignPositions

arraybecomes:

/BlendDesignPositions

[[0 0 0][1 0 0][0 1 0][1 1 0]

[0 0 1][1 0 1][0 1 1][1 1 1]] def

BlendDesignMap is a required entryconsisting of an

arrayofnarrayswheren isthedimensionofthedesignspace.

Each arraycontains m subarrays that describe the mapping

of design coordinates into normalized coordinates for that

designaxis. Theminimumvalueallowedfor m istwo,andthe

maximum is twelve. Theorder ofthesubarrayscorresponds

to theorder ofdesign axesinBlendAxisTypes. In thecase

of the Minion font this array is three dimensional (n = 3)
and has the following form:

/BlendDesignMap [

[[345 0] [620 1]] [[450 0] [600 1]]

[[6 0] [8 0.35] [11 0.5] [18 0.75] [72 1]]]

The first number in an individual subarray is in design co­

ordinates with a minimum value of 1 and a maximum value

of 999. The second number in the subarray is in normalized

coordinates, that is, in the range of 0 to 1. In the above

example, the weight ranges from 345to 620, while the width

ranges from 450to 600in design space. The third axis, opti­

calsize, ranges from 6to72(correspondingto thepoint sizes

for which thetypefacecan beadjusted for optimallegibility).

The makeblendedfontOperator

blendedfontdict weightvector makeblendedfont blendedfontdict

This operator creates a font dictionary with blended

entries. The blendedfontdict argument is a font dictionary

of an existing multiple master font; it can be from either

254 TUGboat, Volume 16(1995), No. 3— Proceedings of the 1995 Annual Meeting

Using Adobe Type 1 Multiple Master Fonts with TEX

Black
Expanded
Large
1,1,1

Black
Condensed
Large
1,0,1

Light
Expanded
Large
0,1,1

Black
Condensed
Small
1,0,0

Black
Expanded
Small
1,1,0

Light
Expanded

Small
0,1,0

Light
Condensed

Small
0,0,0

Light
Condensed
Large
0,0,1

design axis 1: weight

desi
gn a

xi
s

3: s
iz

e

d
e

s
ig

n
 a

x
is

 2
:

w
id

th

Figure 1: Multiple master typeface blend space

arrangement

Design label Blend space

coordinates

design 1: light condensed small 0 0 0

design 2: black condensed small 1 0 0

design 3: light expanded small 0 1 0

design 4: black expanded small 1 1 0

design 5: light condensed large 0 0 1

design 6: black condensed large 1 0 1

design 7: light expanded large 0 1 1

design 8: black expanded large 1 1 1

Table 1: Design labels and blend space values for

the Minion 3­axis multiple master font

the original multiple master font itself, or from an interpo­

lated font instance since any Blend dictionary contains all

elements needed to derive additional font instances.

Theweightvectorargument isanarrayofnumberssum­

mingto1.0tobeused astheweightsfor creatingthenewfont

instance. The value of WeightVector in blendedfontdict

is set to the values in the arrayweightvector. Blended values

are calculated for entries in the Private and FontInfo

dictionaries. The result is a font dictionary that can be

used as an argument to definefont. The resulting dic­

tionary and its contents are still read­write, so the caller

of makeblendedfont can make further modifications if

necessary.

The Blend dictionary data structures provide the in­

formationneededbythemakeblendedfontoperator,with­

out needing to have the specific list of entries to be blended

built into the procedure. This allows a single copy of the

procedure to be used even if the set of entries to be blended

varies in future fonts.

Multiple Masterfindfont Procedure Multiplemaster font

programs from Adobe include a procedure which redefines

the findfont operator in systemdict. This is necessary

because of the need to generate font instances on­the­fly to

satisfy multiple master font references in a PostScript lan­

guage document. The procedure creates all necessary font

instances before calling the standard findfontprocedure.

Two procedures, NormalizeDesignVector and

ConvertDesignVector, which are referenced in

findfont, must be configured for the number of axes and

master designs in the font program in which they are used.

The NormalizeDesignVectorprocedure must calculate

the normalized equivalent of the design coordinates in the

FontName, using the values in the BlendDesignMap ar­

ray. These normalized coordinates must be left on the

stack for the ConvertDesignVector procedure. This

procedureshould take thenormalized coordinates, generate

WeightVectorvalues, and leave them on the stack for the

makeblendfontoperator.

Using Multiple master fonts with TEX

Multiple master fonts come with a set of multiple mas­

ter AFM files, which are called “AMFM” (Adobe Master

Font Metrics) files. This file contains information about

the number of master designs, the number of axes, the

BlendDesignPositionsand BlendDesignMaparrays,

as well as the names, and weightvector for the master

designs, from which all font instances are derived.

To get the actual metric information for the characters

in a font instance, one has to combine the metric informa­

tion of the master designs (eight, in the case of Minion).

To do this one needs to calculate the weightvector for

the given instance. Starting from design­coordinate space

one can use the NormalizeDesignVector operator to

transform to the normalized coordinate space, and from

there with the ConvertDesignVector operator one ob­

tains the weightvector. These two operators are particular

to a font (since they depend on the master designs), and

are present in the multiple master font dictionary. One can

decode the PostScript code for calculating the weightvector

and translate it into another computer language, and then

use the procedure to combine the values in the AFM files

for the master designs to calculate the values needed for the

font instance. For instance, in the case of the MinionMM

font, thePostScript codedefines theeight components ofthe

weightvector as follows:

w1 = xyz w2 = (1− x)yz
w3 = x(1− y)z w4 = (1− x)(1− y)z
w5 = xy(1− z) w6 = (1− x)y(1− z)

w7 = x(1− y)(1− z) w8 = 1−
∑7
n=1
wn

where x is the normalized weight, y the normalized width,

and z the normalized optical size.

These eight numbers wi allow the calculation of all

needed parameters in an AFM file for a font instance. One

TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting 255

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

/y 140 def

300 100 700 % outer loop on width>>>>>>>>>>>>+

{ /x 25 def % reset x v

/y y 25 sub def % calculate y v

/Wi exch def % width from for loop<<+

220 100 820 % inner loop on weight>>>>>>>>>>>+

{ x y moveto % go to new coordinate v

/We exch def % weight from for loop<<+

/MM /MyriadMM findfont dup begin [

We Wi NormalizeDesignVector ConvertDesignVector

] end makeblendedfont definefont 20 scalefont setfont

(Hxkp) show

/x x 55 add def % recalculate x

} for

} for

Figure 2: PostScript code for generatinga a two­dimensional matrix showing instances of the multiple master font Myriad

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Figure 3: Two dimensional grid showing various instances of the two axes multiple master Myriad sans serif font.

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Figure 4: The three axes multiple master Minion serif font. The top line shows various optical sizes (6pt, 8pt, 11pt,

18pt, 40pt, and 72pt) normalized to 20pt. The bottom matrix shows various weights (increasing from left to right) and widths

(increasing from top to bottom).

256 TUGboat, Volume 16(1995), No. 3— Proceedings of the 1995 Annual Meeting

Using Adobe Type 1 Multiple Master Fonts with TEX

readseach parameter valuein turn in theeight master design

AFMfiles, applies the relevant weight, and the weighted sum

thus obtained is the desired interpolated value of the given

parameter for the font instance.

Myriad is a sans serifcompanion font to Minion. It has

two design axes and four master designs. The weights for

derivingfont­instanceparameters in normalized coordinate

space in function of the four master designs are given by:

w1 = (1− x)(1− y) w2 = (1− x)y
w3 = x(1− y) w4 = xy

where x is the normalized weight and y the normalized

width. The corresponding mapping parameters between

design space and normalized coordinates are:

BlendDesignPositions [[0 0] [1 0] [0 1] [1 1]]

BlendDesignMap [[[215 0][830 1]][[300 0][700 1]]]

BlendAxisTypes [/Weight /Width]

Nowone can extract anyof the boundingbox and kern

entries for a given font instance by getting the element in

question from the eight (or four, in the case of Myriad)

master files and calculating the interpolated value. To make

matters simpler an explicit example will be given for the

Myriad font, since it involves only four numbers in each

case. Figure 5 shows some parts of the four master­design

AFMfiles

When theinstanceAFMfilehasbeen created, a suitable

metric for TEX can be built with afm2tfm or the fontinst

package.

In practice

Wehave instantiated the ideas outlined above bydeveloping

Unix shell scripts, and adapting an AFM­parsing program

distributed by Adobe. The main script takes the following

actions:

1. create a small PostScript file to invoke multiple master

operators with values passed to the script;

2. run GhostScript on this file to derive normalized

weights, and write them to a temporary file; note that

thismustbeversion3.33or later ofAladdinGhostScript

— earlier versionsoftheprogram did not havethecode

to realize multiple master fonts;

3. run our “mmafm” program to read master AFM files,

write a new instance AFM file, and create a TEX met­

ric (our initial setup uses afm2tfm to create 8r base­

encoded metrics, and EC­encoded virtual fonts for ac­

tual use);

4. write a dvips map entry and header file to tell the

driver about the newfont.

Thus a call to our scripts consists of the parameters

MinionMM zmnl8ac6 360 460 6

Thiscreatesametricfilecalledzmnl8ac6,usingKarlBerry’s

scheme to name “Minion, light weight, 8a­encoded, con­

densed, at 6pt design size”. The entry in the map file reads

zmnl8rc6 zmnl8ac6 "TeXBase1Encoding \

ReEncodeFont" <8r.enc <MinionMM.pfb \

<zmnl8ac6.pro

where the prologue file zmnl8ac6.pro contains instruc­

tions to the PostScript interpreter as to how the given font

instance should be generated from the multiple master font

codeinMinionMM.pfb: zmnl8ac6.procontainsthecode:

/zmnl8ac6 /MinionMM findfont

dup begin [

360 460 6 NormalizeDesignVector

ConvertDesignVector

] end makeblendedfont definefont

Note the presence of the NormalizeDesignVector,

ConvertDesignVectorandmakeblendfontPostScript

operators described earlier.

In addition,wehand­wrote“fd”files to tellLATEXhowto

match up the various weight and width instances we created

to its notions of series and shape. The only complication

herewas that theMinion font has an optical sizeaxis, and we

built four instances which wewanted LATEXto useat different

user sizes:

\DeclareFontShape{T1}{zmn}{lc}{n}{%

<-7>zmnl8tc6 %

<7-10>zmnl8tc8 %

<10-15>zmnl8tc11 %

<15->zmnl8tc18}

{}

The effect of the optical sizes is demonstrated by Figure 6

which shows the 6pt and 18pt instances scaled to the same

size. The differences in design are as apparent as the corre­

sponding examples from Computer Modern would be.

The tools we developed served to test the ideas, and

build a set of metrics; they are available from us on request,

but users should beware that they are neither intuitive in

use, nor necessarily robust. It is to be hoped that a more

functional, portable, solution willbedeveloped in time. The

keen TEXie may be interested in developing a MakeTeXTFM

script for Unixweb2c systems to apply the programs on the

flyfrom within TEX.

TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting 257

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

FontName MyriadMM-LightCn

FamilyName Myriad MM

Weight Light

ItalicAngle 0

IsFixedPitch false

FontBBox -52 -250 970 818

...

StartKernPairs 974

KPX A z 10

KPX A y -31

KPX A x 4

KPX A w -36

KPX A v -42

KPX A u -9

KPX A t -17

KPX A s 0

KPX A r -4

KPX A quoteright -90

KPX A quotedblright -90

KPX A q -9

KPX A p -4

KPX A o -12

...

EndKernPairs

FontName MyriadMM-BlackCn

FamilyName Myriad MM

Weight Black

ItalicAngle 0

IsFixedPitch false

FontBBox -64 -250 970 843

...

StartKernPairs 974

KPX A z 10

KPX A y -10

KPX A x 0

KPX A w -10

KPX A v -10

KPX A u 0

KPX A t 0

KPX A s 10

KPX A r 0

KPX A quoteright -20

KPX A quotedblright -20

KPX A q 0

KPX A p 0

KPX A o 0

...

EndKernPairs

FontName MyriadMM-LightSemiEx

FamilyName Myriad MM

Weight Light

ItalicAngle 0

IsFixedPitch false

FontBBox -58 -250 1100 825

...

StartKernPairs 974

KPX A z 25

KPX A y -10

KPX A x 0

KPX A w -10

KPX A v -25

KPX A u -10

KPX A t 0

KPX A s -10

KPX A r 0

KPX A quoteright -30

KPX A quotedblright -30

KPX A q -10

KPX A p 0

KPX A o -10

...

EndKernPairs

FontName MyriadMM-BlackSemiEx

FamilyName Myriad MM

Weight Black

ItalicAngle 0

IsFixedPitch false

FontBBox -48 -250 1432 867

...

StartKernPairs 974

KPX A z 7

KPX A y -44

KPX A x -6

KPX A w -47

KPX A v -62

KPX A u -22

KPX A t -32

KPX A s -6

KPX A r -10

KPX A quoteright -90

KPX A quotedblright -90

KPX A q -18

KPX A p -10

KPX A o -18

...

EndKernPairs

Figure 5: The four AFM files for the Myriad master designs

Figure 6: Minion instances from opposite ends of the optical size axis set at the same size (exaggerated)

258 TUGboat, Volume 16(1995), No. 3— Proceedings of the 1995 Annual Meeting

