Using Adobe Type 1 Multiple Master Fonts with TEX

Michel Goossens
CN Division, CERN
CH-1211 Geneva 23
Switzerland

Email: m.goossens@cern.ch

Sebastian Rahtz

Elsevier Science Ltd

The Boulevard, Langford Lane
Kidlington, Oxford OX5 1GB
UK

Email: s.rahtz@elsevier.co.uk

Robin Fairbairns

University of Cambridge Computer Laboratory
Pembroke St, Cambridge CB2 3QG

UK

Email: rf@cl.cam.ac.uk

Abstract

Adobe’s Multiple Master font format has some of the properties that METAFONT pioneered
to express many fonts of the same family from the same (set of) sources. The advent of multiple
master fonts could offer a significantly better choice of fonts to users of TEX; however, there are
problems integrating them with TEX, and the paper presents a first solution to those problems.

The paper isderived (by Robin Fairbairns) from an article written by Michel Goossens and
Sebastian Rahtz for the UKTUG magazine Baskerville volume 5, number 3. Asademonstration
of the effectiveness of the techniques described, it is being typeset using Adobe Minion and

Myriad multiple master fonts.

Introduction

The multiple master font format is an extension of the Type 1
font format, which allows the generation of a wide variety of
typeface styles from a single font program. This capability
allows users and applications control over the typographic
parameters of fonts used in their documents, in a manner
reminiscent of Knuth’s ground-breakingMETAFONT. This
article describes the multiple master system in some detail,
and describes the procedures needed to make instances, and
create the appropriate font metrics for use with TgX.

Multiple Master overview

Amultiplemaster font program contains two or more outline
typefaces called master designs, which describe one or more
design axes. The master designs that constitute a design axis
represent a dynamic range of one typographic parameter,
such as the weight or width. This range of styles is defined
in a multiple master font program by specifying one master
design to represent each end of an axis, such as a light and

extra-bold weight, as well as any intermediate master designs
that are required. The maximum number of master designs
allowed is sixteen.

A font instance consists of a font dictionary derived
from the multiple master font program (or from another
font instance). It contains a WeightVector array with k
values that sum to 1.0 and which determine the relative con-
tributions of each master design to the resultinginterpolated
design.

Allderived font instances share the CharStrings dic-
tionary and Subrs array of the main multiple master font
program, making it relatively economical to generate a va-
riety of font instances. Multiple master fonts can be made
compatible with the installed base of PostScript language
interpreters by including several PostScript language proce-
dures and anewset of 0therSubrs routines in the font pro-
gram. The procedures include thenewmakeblendedfont
operator, the interpolation procedure $Blend and a new
definition of the findfont operator.

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting 253

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

Multiple Master Design Space It is possible to think of the
master designsasbeingarrangedinal,2,3, or 4dimensional
space with various font instances corresponding to different
locations in that space. The entries in the Font Inf o dictio-
nary specify what this space is and where the master designs
arelocated in it. Thisinformation isnecessary for interactive
programs that allow users to create new font instances, and
should be included in the font’s Adobe Multiple Font Metrics
(AMFM) file.

Figure 1 illustrates an example of the design space of a
three axis multiple master font. In this example, the axes are
weight, width, and optical size. It isrecommended that a font
program be organized to have the lightest weight, narrowest
width, and smallest design size mapped to the origin of the
blend space.

Multiple master coordinates are of two types: those
which represent the design space and those which represent
theblend space. Design coordinates are integers whoserange
for a particular typeface is chosen by the designer. They are
used in font names and in the user interface for software
which creates and manipulates multiple master font pro-
grams. The theoretical range for a weight or width axis is
from 1 to 999 design units; however a typical typeface, with
styles ranging from light to black, might have a dynamic
range of from 200 (for light) to 800 units (for black).

Another type of optional axis would be for optical size,
in which the character design changes with the point size.
The design coordinates for the optical size axis might have
a dynamic range of from 6- to 72-point, which represents
the practical extremes of sizes for typefaces designed for
publishing purposes.

Blend coordinatesarenormalized values, in therange of
0to 1, which correspond to the minimum and maximum de-
sign spacecoordinates. Theyareused bythe Type 1 rasterizer
because they are more convenient for mathematical manip-
ulations. The linear space of blend coordinates is related to
the (potentially) non-linear space of the design coordinates
by the BlendDesignMap entry in the font dictionary.

Afour axisdesign might also be considered; an example
of a fourth axis would be having an axis for a typographic
style(serif/sansserif) or contrast (high/low: theratioofthick
to thin stem widths). If four axes are defined, sixteen master
designs are required. Also, since sixteen is the maximum
number of designs allowed, there can be no intermediate
designs with four axes.

Multiple Master Font Programs

Multiple master typefaces may contain from two to sixteen
master designs, organized as having from one to four design
axes. Since the maximum number of master designs allowed
in a multiple master font is 16, the number x of intermediate
masters is subject to the restriction 2" 4+ x < 16, wheren is
the number of design axes.

The values used for calculating the weighted aver-
age are stored in the font dictionary in an array named
WeightVector. The multiple master font program, as
shipped by the font vendor, can have a default setting for
the WeightVector;it is recommended that it is set so the
default font instance will be the normal roman design for
that typeface.

Multiple Master Keywords BlendAxisTypes is a (re-
quired) array of n PostScript language strings where n is the
dimension of the design space and hence the number of axes.
Each string specifies the corresponding axis type. In the case
of the Minion 3-axis example, this value would be:

/BlendAxisTypes [/Weight /Width /OpticalSize]

BlendDesignPositions is a (required) array of k
arrays giving the locations of the k master designs in the
design space. Each location subarray has » numbers giving
the location of the design in the » dimensions of the blend
space, with a minimum value of zero and a maximum value
of one. Table 1 with eight master designs is based on the
example shown in Figure 1. It corresponds to the blend
space of a 3-axis multiple master font like Minion.

FortheMinionMMfont, theBlendDesignPositions
array becomes:

/BlendDesignPositions
[[0 0 0I[1 00I[010][110]
[0 0111 0 11[0 1 11[1 1 11] def

BlendDesignMapis arequired entry consisting of an
arrayofn arrays wheren isthedimension of the design space.
Each array contains m subarrays that describe the mapping
of design coordinates into normalized coordinates for that
design axis. Theminimum valueallowed for m istwo, and the
maximum is twelve. The order of the subarrays corresponds
totheorder of design axesinBlendAxisTypes. Inthecase
of the Minion font this array is three dimensional (n = 3)
and has the following form:

/BlendDesignMap [
[[345 0] [620 111 [[450 0] [600 11]
[[6 0] [8 0.35] [11 0.5] [18 0.75] [72 1]]]

The first number in an individual subarray is in design co-
ordinates with a minimum value of 1 and a maximum value
0f 999. The second number in the subarray is in normalized
coordinates, that is, in the range of 0 to 1. In the above
example, the weight ranges from 345 to 620, while the width
ranges from 450 to 600in design space. The third axis, opti-
cal size, ranges from 6 to 72 (corresponding to the point sizes
for which the typeface can be adjusted for optimal legibility).

The makeblendedfont Operator
blendedfontdict weightvector makeblendedfont blendedfontdict ‘
This operator creates a font dictionary with blended
entries. The blendedfontdict argument is a font dictionary
of an existing multiple master font; it can be from either

254 TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting

Light
Expanded

Large
011 Black
Expanded
Large
1,11
Light Black
Expagﬁzﬁ Expanded
oo |= Light Small
s Condensed [1:1:0
& Large Black
.g 0,0,1 Condensed
e Large
% e 1,01
8
2
S
&
[ETITY A — - Black
Condensed design axis 1: weight Condensed
Small Small
0,0,0 1,0,0

Figure 1: Multiple master typeface blend space
arrangement

the original multiple master font itself, or from an interpo-
lated font instance since any Blend dictionary contains all
elements needed to derive additional font instances.

The weightvectorargament is an array of numbers sum-
mingto 1.0tobeused as the weights for creating the new font
instance. The value of WeightVector in blendedfontdict
is set to the values in the array weightvector. Blended values
are calculated for entries in the Private and FontInfo
dictionaries. The result is a font dictionary that can be
used as an argument to definefont. The resulting dic-
tionary and its contents are still read-write, so the caller
of makeblendedfont can make further modifications if
necessary.

The Blend dictionary data structures provide the in-
formation needed bythemakeblendedf ont operator, with-
out needing to have the specific list of entries to be blended
built into the procedure. This allows a single copy of the
procedure to be used even if the set of entries to be blended
varies in future fonts.

Multiple Master findfont Procedure Multiple master font
programs from Adobe include a procedure which redefines
the findfont operator in systemdict. This is necessary
because of the need to generate font instances on-the-fly to
satisfy multiple master font references in a PostScript lan-
guage document. The procedure creates all necessary font
instances before calling the standard £ indfont procedure.

Two procedures, NormalizeDesignVector and
ConvertDesignVector, which are referenced in
findfont, must be configured for the number of axes and
master designs in the font program in which they are used.
The NormalizeDesignVector procedure must calculate
the normalized equivalent of the design coordinates in the
FontName, using the values in the BlendDesignMap ar-
ray. These normalized coordinates must be left on the
stack for the ConvertDesignVector procedure. This
procedure should take the normalized coordinates, generate

Using Adobe Type 1 Multiple Master Fonts with TEX

Design label Blend space
coordinates
design 1: light condensed small 000
design 2: black condensed small 100
design 3: light expanded small 010
design 4: black expanded small 110
design 5: light condensed large 001
design 6: black condensed large 101
design 7: light expanded large 011
design 8: black expanded large 111

Table 1: Design labels and blend space values for
the Minion 3-axis multiple master font

WeightVector values, and leave them on the stack for the
makeblendfont operator.

Using Multiple master fonts with TEX

Multiple master fonts come with a set of multiple mas-
ter AFM files, which are called “AMFM” (Adobe Master
Font Metrics) files. This file contains information about
the number of master designs, the number of axes, the
BlendDesignPositions and BlendDesignMap arrays,
as well as the names, and weightvector for the master
designs, from which all font instances are derived.

To get the actual metric information for the characters
in a font instance, one has to combine the metric informa-
tion of the master designs (eight, in the case of Minion).
To do this one needs to calculate the weightvector for
the given instance. Starting from design-coordinate space
one can use the NormalizeDesignVector operator to
transform to the normalized coordinate space, and from
there with the ConvertDesignVector operator one ob-
tains the weightvector. These two operators are particular
to a font (since they depend on the master designs), and
are present in the multiple master font dictionary. One can
decode the PostScript code for calculating the weightvector
and translate it into another computer language, and then
use the procedure to combine the values in the AFM files
for the master designs to calculate the values needed for the
font instance. For instance, in the case of the MinionMM
font, the PostScript code defines the eight components of the
weightvector as follows:

wy = xyz wy = (1-2)yz
wy = z(l—y)z ws = (1—2)(1—-y)z
ws = wy(l-2) we = (1-=z)y(l-2)
wr = z(1l—y)(1—2) wg = 1-— ZZL=1 Wn,

where z is the normalized weight, y the normalized width,
and z the normalized optical size.

These eight numbers w; allow the calculation of all
needed parameters in an AFM file for a font instance. One

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting 255

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

/y 140 def
300 100 700 % outer loop on width>>>>>>>>>>>>+
{ /x 25 def % reset x v
/y y 25 sub def), calculate y v

/Wi exch def % width from for loop<<+
220 100 820 % inner loop on weight>>>>>>>>>>>+
{ x y moveto % go to new coordinate v
/We exch def % weight from for loop<<+
/MM /MyriadMM findfont dup begin [
We Wi NormalizeDesignVector ConvertDesignVector

] end makeblendedfont definefont 20 scalefont setfont
(Hxkp) show
/x x b5 add def % recalculate x
} for
} for

Figure 2: PostScript code for generating a a two-dimensional matrix showing instances of the multiple master font Myriad

o Hp Hp R o Hdp Hdp
HQ o Hép Pdp Hdp Hxkp Hxkp
Hkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp
Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp
Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Figure 3: Two dimensional grid showing various instances of the two axes multiple master Myriad sans serif font.

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp
Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp
Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp
Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp
Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp
Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp
Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Figure 4: The three axes multiple master Minion serif font. The top line shows various optical sizes (6pt, 8pt, 11pt,

18pt, 40pt, and 72pt) normalized to 20pt. The bottom matrix shows various weights (increasing from left to right) and widths
(increasing from top to bottom).

256 TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting

reads each parameter valuein turn in the eight master design
AFM files, applies the relevant weight, and the weighted sum
thus obtained is the desired interpolated value of the given
parameter for the font instance.

Myriad is a sans serif companion font to Minion. It has
two design axes and four master designs. The weights for
derivingfont-instance parameters in normalized coordinate
space in function of the four master designs are given by:
(1—2)(1—y) w (1-=z)y

z(1—y) wy = Yy
where x is the normalized weight and y the normalized
width. The corresponding mapping parameters between
design space and normalized coordinates are:
BlendDesignPositions [[0 0] [1 0] [0 11 [1 1] 1
BlendDesignMap [[[215 0]1[830 111[[300 0][700 1111
BlendAxisTypes [/Weight /Width]

Now one can extract any of the boundingbox and kern
entries for a given font instance by getting the element in
question from the eight (or four, in the case of Myriad)
master files and calculating the interpolated value. To make
matters simpler an explicit example will be given for the
Myriad font, since it involves only four numbers in each
case. Figure 5 shows some parts of the four master-design
AFM files

When the instance AFM file has been created, a suitable
metric for TEX can be built with afm2tfm or the fontinst
package.

w1
ws =

In practice

We have instantiated the ideas outlined above by developing
Unix shell scripts, and adapting an AFM-parsing program
distributed by Adobe. The main script takes the following
actions:

1. create a small PostScript file to invoke multiple master
operators with values passed to the script;

2. run GhostScript on this file to derive normalized
weights, and write them to a temporary file; note that
thismust be version 3.33 or later of Aladdin GhostScript
—earlier versions of the program did not have the code
to realize multiple master fonts;

3. run our “mmafm” program to read master AFM files,
write a new instance AFM file, and create a TEX met-
ric (our initial setup uses afm2tfm to create 8r base-
encoded metrics, and EC-encoded virtual fonts for ac-
tual use);

4. write a dvips map entry and header file to tell the
driver about the new font.

Thus a call to our scripts consists of the parameters
MinionMM zmnl8ac6 360 460 6

Thiscreatesametricfilecalled zmn18ac6, using KarlBerry’s
scheme to name “Minion, light weight, 8a-encoded, con-
densed, at 6pt design size”. The entry in the map file reads

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting

Using Adobe Type 1 Multiple Master Fonts with TEX

zmnl8rc6 zmnl8ac6 "TeXBaselEncoding \
ReEncodeFont" <8r.enc <MinionMM.pfb \
<zmnl8ac6.pro

where the prologue file zmnl8ac6.pro contains instruc-
tions to the PostScript interpreter as to how the given font
instance should be generated from the multiple master font
codeinMinionMM. pfb: zmnl8ac6 . procontainsthecode:

/zmnl8ac6 /MinionMM findfont

dup begin [
360 460 6 NormalizeDesignVector
ConvertDesignVector
] end makeblendedfont definefont

Note the presence of the NormalizeDesignVector,
ConvertDesignVectorandmakeblendfont PostScript
operators described earlier.

In addition, we hand-wrote “fd” files to tell ElzZX how to
match up the various weight and width instances we created
to its notions of series and shape. The only complication
here was that the Minion font has an optical size axis, and we
built four instances which we wanted BIjEXto use at different
user sizes:

\DeclareFontShape{T1}{zmn}{lc}Hn}{/%
<-7>zmnl8tc6 %
<7-10>zmnl8tc8 Y
<10-15>zmnl18tcll %
<15->zmnl18tc18}

>

The effect of the optical sizes is demonstrated by Figure 6
which shows the 6pt and 18pt instances scaled to the same
size. The differences in design are as apparent as the corre-
sponding examples from Computer Modern would be.

The tools we developed served to test the ideas, and
build a set of metrics; they are available from us on request,
but users should beware that they are neither intuitive in
use, nor necessarily robust. It is to be hoped that a more
functional, portable, solution will be developed in time. The
keen TEXie may be interested in developing a MakeTeXTFM
script for Unix web2c systems to apply the programs on the
fly from within TEX.

257

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

Fontlame MyriadMM-LightCn FontName MyriadMM-BlackCn FontName MyriadMM-LightSemiEx
FamilyName Myriad MM FamilyName Myriad MM FamilyName Myriad MM
Weight Light Weight Black Weight Light
ItalicAngle 0 ItalicAngle O ItalicAngle 0
IsFixedPitch false IsFixedPitch false IsFixedPitch false
FontBBox -52 -250 970 818 FontBBox -64 -250 970 843 FontBBox -58 -250 1100 825
StartKernPairs 974 StartKernPairs 974 StartKernPairs 974

KPX A z 10 KPX A z 10 KPX A z 25

KPX A y -31 KPX A y -10 KPX A y -10

KPX A x & KPX A x O KPX A x 0

KPX A w -36 KPX A w -10 KPX A w -10

KPX A v -42 KPX A v -10 KPX A v -25

KPX & u -9 KPX A u 0 KPX A u -10

KPX A t -17 KPX A t 0O KPX A t 0

KPX & s 0 KPX A s 10 KPX A s -10

KPX A r -4 KPX A r O KPX A r 0

KPX A quoteright -90 KPX A quoteright -20 KPX A quoteright -30
KPX A quotedblright -90 KPX A quotedblright -20 KPX A quotedblright -30
KPX A q -9 KPX A q O KPX A g -10

KPX A p -4 KPX A p O KPX A p O

KPX & o -12 KPX A 0 0 KPX A o -10
EndKernPairs EndKernPairs EndKernPairs

Figure 5: The four AFM files for the Myriad master designs

FontName MyriadMM-BlackSemiEx
FamilyName Myriad MM

Weight Black

ItalicAngle O

IsFixedPitch false

FontBBox -48 -250 1432 867

StartKernPairs 974

KPX Az 7
KPX A y -44

KPX A x -6

KPX A w -47

KPX A v -62

KPX A u -22

KPX A t -32

KPX A s -6

KPX A r -10

KPX A quoteright -90
KPX A quotedblright -90
KPX A q -18

KPX A p -10

EndKernPairs

Moy
Moy

Figure 6: Minion instances from opposite ends of the optical size axis set at the same size (exaggerated)

258 TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting

