
Modularity in LATEX

Matt Swift
59 Brainerd Rd #202
Allston MA 02134-4564
USA
Email: <swift@bu.edu>

Abstract

The author surveys several kinds of desirable modularity in LATEX and argues
the advantages of a system in which sources and macros may inhabit modules
called bits and features, respectively, that are independent of their context in a
disk file and are identified by names independent of disk file names. The author
discusses implementation, and sketches are given of solutions involving extensions,
enhancements, front ends, and back ends to TEX. The author has made available
code which adds some new modular features to LATEX.

This paper aims to clarify several issues in the
use and development of LATEX that belong under
the general heading of modularity. The issues have
arisen during attempts to solve particular problems.

Certain modular features are not worth imple-
menting in LATEX2ε and should instead be the con-
cern of those who are designing and implementing
LATEX3, ε-TEX, NT S, and the tools that will ac-
company them. Other modular features can be im-
plemented in LATEX without a large programming ef-
fort or extensive changes in user syntax. The author
has implemented some modest modular features in
LATEX with encouraging results.

Some terms will be given a precise definition
below, but modularity will be used only as a broad
descriptive term.

Several concerns addressed here have been ad-
dressed earlier in the companion papers “An Object-
Oriented Programming System in TEX” (Baxter,
1994) and “Object-Oriented Programming, Descrip-
tive Markup, and TEX” (Ogawa, 1994) published in
the TEX Users Group ’94 proceedings (TUGboat 15,
no. 3). I recommend these thoughtful papers to
readers interested in this subject. Baxter describes a
LATEX-like markup that realizes many of the benefits
of object-oriented program design. Its syntax could
for the most part exist simultaneously with stan-
dard LATEX. Ogawa enumerates some ways LATEX
falls short of an ideal object-oriented markup lan-
guage.

What is a document?

The LATEX processor and an accompanying suite of
programs and hardware devices translate a com-

puter disk file called a LATEX source (“source”) into
a document. One can reasonably say, in our con-
text, that a document is a text-dominated visual
presentation of information whose canonical form is
an ordered collection of pages.

We are used to calling many things documents
that are not documents in this sense. A source is not
a document—not a visual presentation of informa-
tion—nor is it intended to be a complete description
of a document (though it is such, trivially, when it
is viewed or printed). A source is a partial, abstract
description of a document, a meta-description of a
document. The LATEX processor interprets the min-
imal information in a source by means of implicit
conventions and explicit rules, and the resulting in-
terpretation (the dvi file) is a complete document
description. A subsequent procedure transforms the
document description into a real document, a real
image on a screen or page.

There are several good reasons to create and
maintain sources instead of document descriptions
or documents themselves. Source files are much
smaller than the files that result from them, since
they contain less information. They are human-
readable, whereas document descriptions, in the in-
terests of efficiency, are difficult or impossible to
read. Worrying about the large amount of extra
information necessary to describe a document dis-
tracts authors, to whom it is superfluous. Sources
are a versatile form because they can be used to
produce many different kinds of documents or even
presentations of the information that are not docu-
ments in the present sense, such as aural presenta-
tions (see Raman, 1995).

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 269



Matt Swift

Our goal is to allow a computer program to
present information to our senses in a manner that
meets our needs, which can change from time to time
and from user to user. Ideally, marked-up text in the
source makes explicit all the information we would
like the document in any form to convey. Marked
text is a very efficient conventional form of informa-
tion. Typically, we wish to present the information
in a manner that most greatly facilitates the reader’s
understanding by presenting various aspects of its
content efficiently to the eye, which can process it
extremely quickly. But there is not a single superior
scheme for accomplishing this. Also, because per-
ceiving a document is a personal experience like any
other, typesetting can aim to be beautiful, or, as
in advertising, manipulative. To meet these various
needs, a variety of documents can be derived from
the source by reprocessing it with different parame-
ters.

Practically, it is very hard to decide what in-
formation should be made explicit by markup, and
what can be assumed. When we stretch the borders
of the present definition of a document, we change
our ideas of what elements must be differentiated
in the document and consequently discover a need
to mark structures that were handled implicitly for
more familiar documents. In some languages, for ex-
ample, the sequence of glyphs in the source must be
presented right-to-left, or top-to-bottom, or both,
not in the way of written English. The notion of
pages is ill-adapted to a computer-screen. And when
we change the presentation’s form from visual to au-
ral, we discover that some of our markup is visual
and not as abstractly informational as perhaps we
thought.

One can consider a LATEX source from several
different points of view. Very basically, it is a pro-
gram written in TEX, which is a “list-based macro
language with late binding” (NTS, 1995), and us-
ing the LATEX macro library. From another point
of view, as mentioned, it is a meta-description of a
visual presentation of text-dominated information.
If a certain method of processing the source, such
as standard LATEX, is agreed upon, then it can be
agreed that a source is a complete description of a
document.

Our present interest suggests another point of
view that considers a source to comprise two kinds of
elements identified by markup (not including com-
ments). A block element is a list of atoms— ir-
reducibles such as font glyphs and spaces—other
block elements, and/or anchor elements. An anchor
element is a signal to the formatter that it should

act as if certain atoms or block elements were in the
source at that point.

Anchors are used when it is better that the
formatter supply data from somewhere at runtime,
rather than the user include it in the source docu-
ment. There is a close correspondence between an-
chors and HTML entities (see Goossens and Saarela,
1995a). An anchor used for citation, for example,
might generate two block elements such as (Hobson
1956) and an entry in a bibliography at the end of
the chapter.

From a more abstract point of view, blocks and
anchors are markup functions. The difference —not
strict— is that blocks take an argument, often a long
one, of text to be represented quite directly in the
typeset image, whereas anchors do not take an ar-
gument of this kind.

A source is therefore itself a single block ele-
ment. Once anchor references are resolved, it may
be considered to be a single list of atoms. Any num-
ber of contiguous regions of the list are identified
(“tagged”) as subordinate block elements. Block el-
ements may nest but not overlap.

In the translation from source to document, the
order of the list of atoms is for the most part pre-
served. Certain classes of block elements, however,
are conceptually independent of their contexts in the
source, and routinely appear in new contexts in the
document. We might call this kind of block element
a float element as opposed to a fixed element whose
immediate context does not change in the transla-
tion. Float elements include footnotes, LATEX floats,
marginalia, and entries in bibliographies and indices.
The existence of float elements is possible exactly
because block elements do not overlap in the source.

LATEX is both the language in which sources are
written and the engine which creates a document
description from a source. Users must distinguish
these capabilities or confusion and inefficiency may
result. Regions in the list of atoms that compose
the source are ideally tagged by markup that de-
scribes what the region is; that is, markup that is
not specific to any particular document description
derived from it. Some “visual markup”, or markup
that describes how the region should be actually pre-
sented, is inevitably necessary during the creation of
complex documents, when the automatic procedures
break down and require manual aid. What is most
to be regretted, however, is the confusion and en-
couragement of inefficient habits that results from
allowing the same syntax for both the desirable and
undesirable kinds of markup.

270 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



Modularity in LATEX

A new block element is needed

Block elements usually constitute the majority of
a source, conceptually and physically. Let us use
the term block modularity to describe what allows
LATEX to handle block elements independently and
abstractly. LATEX already provides block modularity
in several useful ways. An itemized list, for exam-
ple, is a natural unit of text for which LATEX pro-
vides the itemize environment whose appearance
in the document is controlled by macro definitions
that are in effect only inside the environment. This
kind of local definition is made possible by TEX’s
grouping mechanism. The items within the list are
blocks in their own right, and these in turn might
be divided further into paragraph blocks or other
kinds of blocks, such as emphasized phrases, and so
on. The document environment is another natural
unit of text, a much more general one. Its appear-
ance is controlled by the preamble, which includes
\documentclass and \usepackage commands.

These examples show that block elements are
specified in the source file in a broad variety of ways.
Some of the causes and consequences of this variety
are adduced in another section below.

I propose as a useful concept a block element
of intermediate size called a bit defined as a con-
ceptually independent unit of text, a block element
that might reasonably appear in new contexts. If
the block could reasonably appear with a null con-
text, that is, could alone generate a reasonable doc-
ument, it is not only a bit but also a potential doc-
ument. The name is appropriate because any docu-
ment could conceivably be placed in a new context,
though long documents are quite unlikely to appear
in any but the null context.

A collection of poems or recipes would consist
almost entirely of a sequence of bits. An academic
paper would probably contain only one bit, its entire
self, but might contain a bit here or there, such as
an embedded poem, illustration, or derivation. The
standard LATEX letter class provides a clear exam-
ple of a bit structure. The document environment
in a source of the letter class consists of one or more
LATEX letter environments, each of which is func-
tionally modular and conceptually independent.

Bits are similar to sections as we might think
of them when we read or write. Sections, however,
may not be conceptually independent. The LATEX
sectioning commands such as \chapter have lim-
ited power and serve for the most part as informa-
tive markers in a continuous stream of text. There-
fore they should be considered not as tagging the
long block element that follows them, but rather as

an anchor specifying one fixed element (the section
heading) and one float element (the entry in the ta-
ble of contents).

The status of the LATEX sectioning commands
as anchors and not block delimiters is not required
by their syntax; that is, not required because they
occur singly and do not enclose text. The familiar
sectioning commands could in fact be implemented
to give a programmer control over the following text
as a block element, but they are not implemented
this way.

When we consider the modularity of sources
and documents, bits are the most basic and impor-
tant unit. They are atomic in the sense that every
document has an integral number of them. When
we think about the exchange of sources, we should
think in terms of the bit.

A generally useful implementation of bits would
have several key characteristics. First, there should
be an anchor for bits, a command which says “put
this bit here”. Bits should also be as independent
as possible of disk files. By this I primarily mean 1)
they should be referred to by names which do not
depend on the disk file in which they occur, and 2)
as LATEX program code they should be portable—as
independent as possible of their immediate program-
ming context in the disk files that contain them. A
bit should have a type and a name —a unique label.
To process a source is to process a bit of type “doc-
ument”. This task comprises relatively independent
subtasks, one corresponding to each bit type, and
one to handle the presentation of the entire sequence
of bits and intervening text, the presentation of the
document as a whole.

Many users are probably accustomed to imple-
menting bits implicitly by taking advantage of the
modularity of disk files. A bit can be put into its
own disk file which can be incorporated into new
contexts by the action of disk file inclusion. The bit
name is the disk file name. Chief among the ad-
vantages of identifying bits explicitly in the markup
is that disk file structure and disk file names can
be freed from this frequent burden of bearing infor-
mation about bits. This change facilitates several
beneficial developments proposed below. Summar-
ily, the introduction of a layer of abstraction between
disk files and user syntax makes possible a broad and
desirable flexibility in the distribution of source doc-
uments among disk files. Disk files might ideally be
construed as objects which can export bits.

Many things said so far about source documents
and disk files apply also to code libraries and disk
files. In particular, there are similar advantages
in recognizing functionally independent segments of

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 271



Matt Swift

code through markup, rather than disk file struc-
ture, and to introducing a layer of abstraction be-
tween disk files and programmer syntax. These seg-
ments, which we can call features after GNU Emacs,
are exact analogs of the bit in a context of program-
ming code. The breaking up of the kernel and the
standard document classes into functionally inde-
pendent modules is the intended first stage of the
NT S project (NTS, 1995).

Present limitations on LATEX disk file
structure

The TEX primitives \input and \endinput deter-
mine the possible structures of LATEX disk files. The
\input command is an anchor for the contents of a
disk file. When the contents of a disk file are being
processed at the request of an \input command, the
\endinput command signals the formatter to act as
if the end of the file was encountered at the end of
the current line.1

Though many disk file configurations are pos-
sible, only one seems practical, namely, a principal
source that contains a single document environment,
and any number of auxiliary sources that contribute
material to the principal source or to other auxiliary
sources by disk file inclusion.

LATEX provides two more sophisticated inter-
faces to the \input primitive. The \include and
\includeonly commands implement a convenient
way to enable and disable the inclusion of files. The
price is that \include commands cannot be nested
like \input commands. The group of class and pack-
age commands new in LATEX2ε keep track of what
files have been included, perform some checking to
ensure that the right file was included, and imple-
ment a system of user options—a system of passing
certain information to the included files.

Because both extensions are founded on the
primitive \input, the basic modular unit is still the
disk file, identified by its name. Several alterna-
tive ways to identify bits and features may now be
suggested. One difficulty to keep in mind is that
file names are often exactly how users choose to
uniquely identify their information. Consider two
versions of the same composition residing in two files
in the same directory, distinguished only by a few
changed words.

The possibilities seem to be:

1. Mandate a new TEX primitive

\inbit{〈bit-name〉}

1 Suppressing the continuation until the end of the line
is a surprisingly complex task; here, to my mind, is a good
candidate for a change to TEX.

or primitives upon which such a command could
be constructed. One can imagine a kpathsea-
like system library which handles requests for
both files and bits. When a search is ambigu-
ous, the engine could issue a warning.

2. Bend the rules and allow the back end (system-
dependent implementation) of \input to search
for bits if its argument does not match a file
name. This change would not break the trip

test, and need not be considered an change to
TEX.

The search method for bits could be path
searching like kpathseaor involve other schemes
like file stamp attributes or a catalog of cross
references like the SGML Open HTML catalog
file (see Appendix D of Goossens and Saarela,
1995b). When a search is ambiguous, the en-
gine could issue a warning.

This is the most promising solution to pursue.

3. Develop a sophisticated front-end to LATEX that
will hide from the user a preprocessing stage
that assembles a conventional source document
for compilation.

A back-end solution is going to be more stable
and portable than a front-end solution, but it must
inevitably be less ambitious and slower to appear.

Experiments in LATEX

The author is in the process of implementing bits in
a limited way within LATEX. The ongoing project,
called Frankenstein, will provide several bit types
as well as generic routines for creating new ones. It
will be a poor-man’s Object-Oriented Processor (see
Baxter, 1994). The anchor for bits, available in the
newclude package, has the following syntax:

\includebit{〈bit name〉}{〈file name〉}

And a bit is tagged as follows:

\begin{〈bit type〉}{〈bit name〉}{〈init code〉}
...

\end{〈bit type〉}

For example, the command

\includebit{Ode to a Lion}{safari}

would include the bit that is declared in the file
safari.tex with

\begin{poem}{Ode to a Lion}

{\numberstanzas

\newcommand\growl{{\large Gr\"owl!}}}

The new interface to \input provided by the
newclude package implements two new basic com-
mands, a command like \include but without the
enclosing \clearpages, and a command to include

272 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



Modularity in LATEX

a delimited section of a disk file. The omission of
the \clearpages is achieved by writing out a single
aux file per document (eliminating the additional
ones for each file included with \include). None of
the features of the old \include command are lost.
The task of including only a delimited section of an
included file is accomplished by generalizing the ver-
batim package so that all irrelevant parts of the the
file can be ignored.

The success of the system so far is promising.
It is now possible with LATEX to create a document
whose contents are LATEX environments distributed
among an arbitrary number of disk files. In this
case these files are used as auxiliary sources, but
nothing prevents them from being principal source
files that can be processed independently by LATEX.
That is, they may have the usual \documentclass
declaration and document environment or not, it is
irrelevant.

One can imagine the following application: a
teacher’s 25 students turn in (or, better, make avail-
able over a network) 25 LATEX sources containing
three book reviews each. The teacher can prepare
a document consisting of all the reports on a single
book, or a portfolio of the best reviews of each stu-
dent, or a snapshot of their work in progress. It
remains possible for the students to format their
sources in their own preferred manner, completely
independent of the formatting the teacher chooses
for the composite documents. Since the sources for
each are the same, version control does not involve
more than the usual task of keeping document im-
ages up to date with principal sources.

Further applications suggest themselves read-
ily. A lecturer can extract derivations or figures or
abstracts or quotations from scholarly papers and
incorporate them into slide presentations. If any of
the source material is revised in the future, it need
only be revised in one place. Selected parts of a
LATEX source can be exported and published on the
World Wide Web using latex2html. This is already
possible using that program’s conditional inclusion
facilities, but the bit solution allows the same source
to export different parts of itself to different web
documents without need to alter it (see Goossens
and Saarela, 1995b).

The limitations encountered in this system have
prompted theoretical contemplation of more power-
ful improvements. The shortcomings include, no-
tably, the continuing dependence of bit names on
disk file names. The method of including regions of
files accepts only a strict verbatim syntax and verba-
tim matches for the delimiters. TEX inserts \par at

an \input, so that bit boundaries must correspond
with paragraph boundaries.2

These are significant limitations, and the way
forward in LATEX is difficult. The verbatim and doc
packages are evidence of how complex is the task
of getting TEX to perform the offices of even a sim-
ple inflexible text stream editor. Moreover, it seems
foolhardy to attempt to emulate in LATEX what can
be done in UNIX with minimal effort, and proba-
bly with no more effort on other TEX platforms. I
believe these experiments in LATEX are going to be
useful, but the most satisfactory way forward must
be toward one of the solutions suggested at the end
of the previous section.

The implementation of block
modularity

I observed above that block elements are specified
in a variety of ways. Some (though not all) of the
differences can be justified by an appeal to natural
user syntax. It would certainly be inconvenient most
of the time, for example, to have to type

\beginparagraph

...

\endparagraph.

The differences present a problem, however, to the
LATEX developer for whom, as a programmer, stan-
dards are always an advantage.

TEX’s internals confront us with basic differ-
ences between those units handled by an every*
token variable (paragraphs, lines, etc.), those han-
dled by TEX’s grouping mechanism (environments,
\items), and those handled by macro arguments
(e.g., \emph). A good programmer interface would
hide these differences as much as possible.

The number and format of optional and manda-
tory arguments to environments is nonstandard. In
the present LATEX environment, one needs to rely on
a convention, such as the syntax given above for bits,
the syntax suggested by Baxter (1994) of a series of
command sequences each taking a single mandatory
argument, or a single argument parsed by the keyval
package.

The document “environment” looks like an en-
vironment and should be parallel to one. The pream-
ble is just a special kind of argument that is serving
to instantiate a block element, a bit of type “docu-
ment”.

The list environment is an attempt to pro-
vide a standard programmer interface to defining a

2 This behavior seems to be another good candidate for a
change to TEX.

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 273



Matt Swift

block element made up of a single kind of subele-
ment separated by dividing commands. This is the
right idea and can profitably be made more general:
the inheritance (nesting) of lists is ad hoc, and only
one kind of subelement is allowed (that is, \items).
In typesetting a play, for example, you would like at
least two kinds of subelements: speeches and stage
directions. This of course could be implemented us-
ing environments, but there are many situations in
which using dividing commands rather than enclos-
ing commands is preferable (e.g., ease of use, im-
porting or converting source material).

Intra-package modularity

While developing the Frankenstein system, I ran
into an interesting problem which led to the idea
of intra-package modularity. I had a large package
which accomplished a number of things that I pre-
ferred to use in constellation but others were go-
ing to use singly or in arbitrary combinations. The
problem was to find a system that allowed me to
share my code with the LATEX community in a way
that both provided efficient code and allowed me to
maintain the code easily. Using the vocabulary in-
troduced in this paper, the problem was how to get
a single disk file to efficiently provide more than one
feature.

If I broke up my large package into a number
of smaller independent packages, then each package
would be efficient when used alone but I would have
to maintain several different packages that shared
common code and documentation. In some cases,
the shared code was so brief that it seemed ineffi-
cient and confusing to separate it into its own disk
file. There would also be an efficiency problem with
TEX’s resources such as command names and coun-
ters, since each package would have to reserve its
own resources. A way was desired to let this group
of packages share resources, while preventing con-
flicts with other packages.

With a tool like noweb (see Bzyl, 1995), the
doc package and docstrip program, or an imple-
mentation of features as discussed above, a macro
written only once in the source can end up in any
number of extracted packages. None of the standard
defining commands, however, are suitable for defin-
ing such a macro. If \def is used, all the extracted
packages are vulnerable to name conflicts with other
packages (not to mention self-conflict during devel-
opment). But \newcommand is also wrong because
then the extracted packages could not be used to-
gether—the second package to define the command
would fail. If \renewcommand were used, the first

would fail. The command \providecommand, which
defines a macro only if it is not already defined,
was added to LATEX2ε. But using this, one assumes
that if the macro was already defined it has an ac-
ceptable definition. This level of checking might be
sufficient in some circumstances, but a command is
desired that guarantees a macro will subsequently
have a particular definition. To this end I define
\guaranteecommand which calls \newcommand if its
first argument is undefined and \CheckCommand if it
is already defined.

In the Frankenstein source, any macro which
will end up in more than one package, but which I do
not want to install into a separate package required
by the others, is defined using \guaranteecommand.
The definition of \guaranteecommand occurs in the
safedefs package, which all the other packages re-
quire (though it is not hard to bootstrap this one
command, to get it to guarantee itself).

Disk files and copyrights

The LATEX developers have put a lot of effort into
making it easy to create sources which reliably pro-
duce identical document descriptions (identical dvi
files) at different sites. Such uniformity in the docu-
ments derived from a single source is very important
in many situations, especially when a longer docu-
ment is assembled from multiple sources.

One of the ways in which the developers have
sought to establish and maintain this standard is by
placing conditions on the distribution of the LATEX
system files that require disk file names to serve as
unique labels for segments of code. Because com-
mands like \documentclassand \usepackage cause
LATEX to load files with particular names, there is
one and only one (legally-produced) document de-
scription that can be generated from a source which
invokes standard LATEX classes and packages.

No one doubts the usefulness of a good stan-
dard for deriving documents from sources, but this
standard has been achieved at the cost of abstrac-
tion. The unique labels which serve to establish the
standard should not of necessity coincide with the
labels by which a feature or document class is iden-
tified in the source. It should never be necessary to
alter a source to derive different document descrip-
tions from it. Altering sources is time-consuming. It
causes timestamps to be updated and confuses ver-
sion control systems. It can introduce errors, and
it encourages a proliferation of not-quite-identical
copies.

On the other hand, it should always remain ob-
vious how to generate the standard document from

274 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



Modularity in LATEX

a source, so that standard documents are generally
available and convenient.

In response to these two concerns, the author
has developed the ALATEX system. The A may be
understood to stand for alternate or abstract, or to
be the indefinite article, which emphasizes that fact
that documents derived from sources with ALATEX
are just one of an indefinite number of possibilities.

ALATEX is a simple system. It is a slightly-
modified clone of the standard LATEX format, which
when used as distributed behaves exactly like LATEX,
except that it displays its own identification ban-
ner. (Only in the most perverse situations will the
two formats not produce identical output.) Inter-
nally, the behavior is not quite the same. The
\documentclass command in ALATEX parses its ar-
guments and passes them to a file of code called
metaclas.cfg. As its name implies, the file is a
meta-class which determines how the class speci-
fication in the source should be interpreted. And
just as important, the file may be altered and dis-
tributed with no restrictions. The meta-class dis-
tributed with ALATEX emulates LATEX’s behavior,
but this can easily be overridden by changing the
file, or putting a different file with the same name
earlier in TEX’s search path. Code that enables
either of two convenient mechanisms of overriding
are provided in comments. Using one of these sam-
ple mechanisms restores a useful level of abstraction
to LATEX sources, because if full abstract control is
available at the first line of the source, it is available
for the whole source.

Because it is very difficult to have a working
ALATEX without also having a working LATEX, no
one is likely to find it inconvenient to create, from
the same source, either a standard LATEX dvi file
(by invoking the LATEX format) to facilitate seamless
exchange of sources, or a not-standard-LATEX dvi file
(by invoking the ALATEX format with an appropriate
meta-class).

It should be emphasized that there is no rea-
son at all to compose sources while previewing with
ALATEX. Doing so could compromise the portability
of the source if a strange meta-class is used. ALATEX
is useful only to change the look of already-existing
sources from the standard appearance to a nonstan-
dard appearance. Even in this case, using ALATEX
is not always necessary, since it may be possible to
legally modify the appropriate style files, or not too
inconvenient to modify the source.

Conclusion

I have argued for the advantages of several kinds
of modularity in the LATEX user and developer en-
vironments that do not presently exist to a satis-
factory degree. A primary difficulty not resolved
is the choice of the domain in which to improve
modularity. Are the Frankenstein, newclude, and
ALATEX solutions adequate? If not, should solutions
be effected in LATEX, in LATEX3, at the back end
of TEX in platform-dependent TEX distributions, at
the front end of LATEX in platform-dependent inte-
grated LATEX user and developer environments, in
extensions to TEX (ε-TEX), or in enhancements to
TEX (NT S)? In any case I hope I have won inter-
est and enthusiasm for discussing and working on
changes in a certain direction.

The Frankenstein system, the safedefs and new-
clude packages, and the ALATEX format should be
available on CTAN by the time of publication, if they
are not in the meantime adopted in some form into
the standard LATEX distribution.

References

NTS. “Frequently asked questions of NTS-L”. 1995.
5th edition, available as CTAN:info/nts-faq,
maintained by Jörg Knappen <knappen@

vkpmzd.kph.uni-mainz.de>.

W. E. Baxter. “An object-oriented programming
system in TEX”. TUGboat 15(3), 331–338, 1994.

W. Bzyl. “Literate plain source is available!”.
TUGboat 16(3), 297–299, 1995.

M. Goossens and Saarela, Janne. “A practical in-
troduction to SGML”. TUGboat 16(2), 103–145,
1995a.

M. Goossens and Saarela, Janne. “TEX to HTML

and back”. TUGboat 16(2), 174–214, 1995b.

A. Ogawa. “Object-oriented programming, descrip-
tive markup, and TEX”. TUGboat 15(3), 325–
330, 1994.

T. V. Raman. “An Audio View of (LA)TEX Doc-
uments — Part II”. TUGboat 16(3), 310–314,
1995.

TUGboat, Volume 16 (1995), No. 3 —Proceedings of the 1995 Annual Meeting 275


