
TUGBOAT

Volume 20, Number 2 / June 1999

83 Addresses

General Delivery 85 From the President / Mimi Jett

86 Editorial comments / Barbara Beeton

Remembering Norman Naugle and Roswitha Graham;

New home for the UK TUG FAQ; TUGboat authors’ rights; Home site

for ConTEXt; Credit where credit is due; The growing Russian TEX library;

A new feature: Cartoons by Roy Preston

87 Norman W. Naugle –A Rememberance / Bart Childs

89 Roswitha von den Schulenburg Graham / Dag Langmyhr

89 You meet the nicest people . . . Father Everett Larguier / Mimi Burbank

Views &

Commentary

91 The french package on and off CTAN / Bernard Gaulle

92 Response from the CTAN team

92 Editor’s commentary / Barbara Beeton

Letters 93 The good name of TEX / Jonathan Fine

93 Reply / Petr Oľsak

Typography 94 Typographers’ Inn / Peter Flynn

Fonts 96 A short introduction to font characteristics / Maarten Gelderman

104 METAFONT: Practical and impractical applications / Bogus law Jackowski

Language Support 119 Typesetting Bengali in TEX / Anshuman Pandey

Software & Tools 127 The CTAN May 1999 CD ROM set by DANTE e.V. and Lehmanns bookstore /

Klaus Höppner

128 Interacting pdfTEX, PERL and ConTEXt / Gilbert van den Dobbelsteen

134 NetBibTEXing / Robert Tolksdorf

Hints & Tricks 141 Hey — it works! / Jeremy Gibbons

Abstracts 143 Les Cahiers GUTenberg, Contents of Issues 31 (December 1998)

and 32 (May 1999)

News &

Announcements

146 Calendar

Late-Breaking

News

147 Production notes / Mimi Burbank

147 Future issues

Cartoon 140 Monk-ey business / Roy Preston

TUG Business 148 Institutional members

150 TUG membership application

Advertisements 149 Cambridge University Press

151 TEX consulting and production services

152 Y&Y Inc.

c 3 Blue Sky Research

Just as the terms bureaucracy and bureaucrat long ago
came to suggest narrow outlook, lack of humanity, and
otherwise vague reprobation, similar connotations have
been attached to computer technology and personnel,
although less frequently as a laity begins to take
responsibilities from the priesthood.

James R. Beniger
The Control Revolution:

Technical and Economic Origins

of the Information Society (1986)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 20, NUMBER 2 • JUNE 1999
PORTLAND • OREGON • U.S.A.

TUGboat, Volume 20 (1999), No. 2 85

General Delivery

From the President

Mimi L. Jett

Greetings, fellow TUG members!
Happy 20th! Two decades of TUG, and our

future is brighter than ever. With the widespread
acceptance of structured markup languages, and a
worldwide movement toward open standards, TEX
is being recognized as an early front-runner, “way
before its time” some say. The community of TEX
users has been sharing ideas and technology since
the beginning, and the result has benefited people
in dozens of countries for thousands of projects. As
the world of print publishing evolved into digital
delivery, the TEX community has responded by cre-
ating programs that work with and around other
technologies. Now that MathML is becoming the
standard for mathematical markup, we see TEX as
the math input language as well as the typesetting
engine to back up XML. How convenient that scores
of thousands of people already use it! It has been
an interesting 20 years, full of technological miracles.
May our next 20 be so fruitful.

With the first half of the year already behind
us, it is time to look at our progress against the
goals we set down at the end of last year. One
shining star is our office, where the staff has finally
tamed the database and established procedures to
control membership records. There are occasional
glitches, an unavoidable fact in most systems. Being
very close to the situation (the office is merely 3
miles from my home), I can report that TUG is
running smoothly, providing better service to the
members than we have in a very long time. All this is
accomplished with a staff of 2 half-time workers, and
an occasional intern from Portland State University.
Another group of stars, truly the solar system of
our little community, is the board of directors. We
welcome Stephanie Hogue and Cheryl Ponchin to
the board! It is a huge advantage to TUG that the
entire board has returned to serve another term.
Learning to work together, simply understanding
each other’s strengths and weaknesses, takes a long
time. Compound the distance between us — from
Australia to the Czech Republic — with the diversity
of our life’s experiences, and you see why it takes
the first years to discover how to work together not
only efficiently, but also enjoyably. We may not
always succeed, but we continue to try. There are so
many hours spent on committees, projects, commu-

nications, and administration that are not always
apparent, yet this volunteerism fuels the advances
we share and improvements in the benefits we offer.
The executive committee has worked very closely
to oversee the works, meeting monthly with the
business committee and office staff to set priorities
and review progress. Our financial condition is often
discussed at length, as we review reports and state-
ments together via teleconferencing. Such scrutiny
contributes to the understanding and accuracy of
our financial reports, which will be presented during
the annual general meeting at TUG ’99 in Vancou-
ver, BC. Absolute control of our financial affairs
was a goal not very long ago. We have achieved it
nicely with the help of our treasurer, Don DeLand,
and the diligence of our office staff. Thanks to all!

This has been a year of growth and change
for me personally. After more than 20 years of
entrepreneurism, I am happy to be part of one of
the biggest and greatest companies on earth, IBM.
Ironically, it was a presentation at EuroTEX in St.
Malo that changed my outlook on Web publishing,
and then my life. Bob Sutor and Angel Diaz gave a
such a compelling demonstration of live math from
LATEX code, it was impossible not to tell the world
what they had accomplished. After several months
of cheering from the sidelines, they invited me to join
the team. I have the best job possible, evangelizing
a very cool product. In addition to working hard
on XML technologies, and contributing to many
W3C committees, IBM also supports TUG in a big
way. All my lucky stars lined up for this wonderful
outcome, and I am very thankful.

In this issue you will find a set of 3 CDs con-
taining the latest CTAN archive. This distribution
is a benefit of membership, we hope you find it
useful and valuable. Please see page 127 for an
article describing the contents and installation of the
software. Please let us know what you think. Send
your comments to tug-pubs@tug.org.

Don’t forget the upcoming annual meeting and
conference TUG ’99 to be held in Vancouver in
British Columbia August 15–19. The quality of
papers and panel discussions, in addition to the out-
standing venue, should contribute to one of the best
conferences we have had. The University of British
Columbia is a beautiful setting, and Vancouver is
one of the finest cities in North America. If you
are not able to make the trek to Canada, plan for
the EuroTEX conference in Heidelberg, “Paperless
TEX”, September 20–23, which also has a strong
program and promises a wonderful time. Both will
be great!

86 TUGboat, Volume 20 (1999), No. 2

Finally, a note of thanks to all of our members,
past and present. Over the years we have had
thousands of people support our work for the TEX
community. By joining TUG and contributing to
our publications and projects, you are contributing
to a worldwide consortium and expanding knowl-
edge base dedicated to mathematics. Thank you,
members!

⋄ Mimi L. Jett

IBM

T. J. Watson Research Center

P.O. Box 218

Yorktown Heights, NY 10598

jett@us.ibm.com

Editorial Comments

Barbara Beeton

Remembering

One of the great pleasures of TUG is meeting so
many interesting people. This is balanced by sor-
rows, when some of these people are taken from us.

Earlier this year, two deaths occurred in the
TEX family — Roswitha Graham and Norman Nau-
gle. Later on in these pages, you will find a brief re-
membrance of each of them, written by a colleague.
But let me do a little remembering here.

I met Roswitha in 1989, when she attended the
annual meeting at the invitation of Bart Childs, then
president of TUG, along with the heads of several
other European TEX groups, to share their knowl-
edge of the many users of TEX in their groups who
were not members of TUG. These individuals sat on
the TUG board for several years as Special Directors,
and we came to know one another in that context.
Roswitha was always concerned about what was
best for the users and the organization; she took this
responsibility very seriously, but with great charm
and dignity. In the spring of 1992, after a standards
meeting in Copenhagen, my husband joined me for
a trip through parts of Scandinavia. While in Stock-
holm, we visited with Roswitha, both in town and on
the Grahams’ island in the archipelago outside the
harbor. During that visit, she showed us where Don
Knuth had found a real web— constructed by a dili-
gent spider— and she and I made arrangements to
transcribe the tape of Don’s Q& A session following
the presentation of his honorary doctorate from the

Royal Institute of Technology (see TUGboat 13(4),
pp. 419ff). I remember Roswitha as a gracious and
capable person, welcoming and caring.

Norman Naugle burst upon the TEX scene much
earlier; his name first appears in a membership list
in 1982, and I met him that year at the annual
meeting at Stanford. Outgoing, exuberant, all the
adjectives one can think of to describe a Texas native
(or TEXas as it would later appear in the program
of the 1990 annual meeting in College Station).
Norm didn’t want anything to do with the TUG

bureaucracy, but he surely spread the word about
TEX throughout Texas A&M — among other things,
he is responsible for Bart Childs becoming president
of TUG, and he nurtured a number of bright and
enthusiastic students, among them Tom Rokicki,
whom he mentored as an undergraduate. When I
asked Tom if he had any thoughts in memory of
Norm, he sent me this message.

Norman Naugle was a hero. He was my
mentor at Texas A&M and he always seemed
to have a job or a programming task that
challenged and rewarded me. But more than
anything else he was a great friend. He
charmed my mother by bragging about her
son, invited me to dinner when I couldn’t
make it home over spring break, and gener-
ously shared his computing toys. It is my
great fortune to have known him, and I will
miss him greatly.

It has been a privilege to know both Roswitha
and Norm, and I will miss them both.

New home for the UK TUG FAQ

Not long after the UK TUG FAQ was first published
on paper, in the UK TUG Journal Baskerville (vol. 4,
no. 6, December 1994), the group established a
“temporary” Web address for interactive access to
the FAQ. The School of Cognitive and Computing
Sciences of the University of Sussex at Brighton
was host to this “temporary” service for about four
years, a service for which all TEX users are grateful.

Now, at last, a “final” home has been an-
nounced by the UK TUG, established in association
with the CTAN node at the University of Cam-
bridge Computer Laborarory: http://www.tex.

ac.uk/cgi-bin/texfaq2html?introduction=yes

The sources, and readily-printable copies, of
the FAQ remain on CTAN in directory usergrps/

uktug/faq.
The interactive FAQ still offers the same facili-

ties as it always has, but there are plans to develop
new facilities to further enhance its utility.

TUGboat, Volume 20 (1999), No. 2 87

The FAQ is under constant development, and
in particular a new printed version is in prepara-
tion. The UK TEX Users’ Group would very much
welcome contributions at this time.

Comments, suggestions and error reports con-
cerning the FAQ should be addressed to the current
maintainer, via uktug-faq@tex.ac.uk.

Thanks to Robin Fairbairns for this report.

TUGboat authors’ rights

In the last issue, we stated our policy about mak-
ing TUGboat available in electronic form, via the
TUGboat web pages. Although it was stated that
authors retain the copyright to their own articles,
we neglected to mention that TUG has no objection
to authors posting this material on their own Web
pages, or including it with packages on CTAN. Once
an article has appeared in TUGboat, the author
is welcome to include the reference in a footnote;
if an author requests it, we will return the file as
published for the author’s use.

In fact, we encourage authors to keep their
articles updated, if information in them is subject to
change—what will appear on the TUGboat pages is
just what appeared in print, except for application
of errata and corrigenda, if any such are called to
our attention.

Home site for ConTEXt

In the last issue, it was announced that the ConTEXt
system, by Hans Hagen, was available at CTAN.
Hans has reminded me that although the macros and
maybe a few manuals are on CTAN, the main site
is actually www.pragma-ade.nl. Here one can find
about 50Mb of macros, documentation, examples,
and more; this is expected to double as Hans finds
the time to sort things out. Since CTAN has limited
disk space, only the most important pieces will be
found there.

Credit where credit is due

The article on Father Truchet in the last issue
of TUGboat was written by both Jacques André
and Denis Girou. Unfortunately, Denis’ name was
omitted from the table of contents. Apologies!

This omission has been rectified in the on-
line version of the contents and in Nelson Beebe’s
TUGboat bibliography.

The growing Russian TEX library

We have been informed that The LATEX Companion

has joined the collection of TEX-related books now
available in Russian. If you are interested in this
edition, by Mir Publishers, please get in touch with

Irina Makhovaya, the Executive Director of Cyr-
TUG, at irina@mir.msk.su.

A new feature: Cartoons by Roy Preston

For about a year, visitors to the Typo-L web site
have been amused by topical cartoons by Roy Pre-
ston. Topics have been wide-ranging: type identifi-
cation and usage, commentary on particular types or
typographers, questions about copyright protection,
even a few ad hominem items inspired by various list
correspondents. Many of the topics are (or should
be) familiar to TUGboat readers, so I asked Roy for
permission to publish some of his cartoons— and he
has generously granted it.

Roy is a semi-retired former illustrator/graphic
designer/art director/creative director with 25 years
of experience in advertising. He lives with his
family of three cats in Hardy’s Dorset, England, and
spends his waking time painting, designing fonts,
and indulging in discussions on Typo-L.

You can see some of Roy’s cartoons (and a
lot of other interesting typo-related material) on
the Typo-L web site, at http://www.ids.co.uk/

preston/typo/. If you’d like to subscribe to the
mailing list, instructions are on the web site. Typo-
L was started as a TEX-related list (the “listmom”
is our good friend Peter Flynn), though it has since
been adopted by “mainline” type mavens; however,
there are still a number of TEXies in the ranks.

So watch for the cartoons. I think we’re in for
a treat.

⋄ Barbara Beeton

American Mathematical Society

P.O. Box 6248

Providence, RI 02940 USA

bnb@ams.org

Norman W. Naugle

A Rememberance

Bart Childs

Norman Wakefield Naugle died on Friday, July 1,
1999. He was 68 years old and had been suffering
from the dreaded Alzheimer’s. Still, to the end he
was pretty much the Norman that we knew and
recall so fondly.

A few years ago he married Esta, a friend from
high school times. She was a great partner for him

88 TUGboat, Volume 20 (1999), No. 2

and with his son Ross and daughter Nancy gave him
the care needed toward the end. They finally had
him admitted to a specialized care facility and he
died two weeks later. It is such an unfair disease.

Norman was from Saginaw, Texas, which is now
nearly swallowed from the northward expansion of
Ft. Worth. He finished high school and immediately
pursued his B.S. at Texas A&M. He told me that he
wanted to be an electrical engineer, but that he quit
because they required him to take too many power
courses and discouraged his studying electronics.

In those days this was a small school, all male,
and all military. He identified with his Corps of
Cadets unit, the Signal Corps. He remained ac-
tive in the alumni affiliations with that until just
recently. Esta attended some of their functions with
him.

Norman was last in my office in early May.
I saw him on his bicycle later in the month. He
knew why he wanted to be there, to talk about
helping people understand and use TEX/LATEX. It
hurt because he could not find or remember people’s
names or the city they were in. If he was trying to
indicate Don Knuth, Tom Rokicki, or someone in
Austin, he would gesture to the west.

Norman introduced me to TEX. I was support-
ing a basic word processor in our department. I
made a large number of extensions to it including
going into graphics mode and beating out an integral
sign by repeated use of the period. We saw each
other at the university dairy bar one day and I
told him I wanted to show him this. He responded
that he would like to see it but wanted to show me
something when I finished. He brought the original
TEX and METAFONT book from Digital Press. I do
not think I ever touched that word processor again.

Dave Kellerman approached Norman about be-
ing President of TUG. Norman deflected that to-
ward me. That opportunity to serve has certainly
been one of the highlights of my professional career
and I will be forever grateful. Norman often spent
his own money to get release tapes of the TEX
systems during our development days. He was that
kind of giving and unselfish guy.

At his memorial service, Carl Pearcy told about
one of their colleagues asking Norman to turn in his
dissertation to the library, where it was scrutinized
with great care. It came back with a large number of
necessary changes to be accepted. Norman quietly
sat down and retyped the colleague’s dissertation.
Carl also pointed out that Norman finished his
Ph.D. while working at NASA on the Lunar Landing.
He was the person responsible for the mapping of the
lunar surface, and he did it!

Norman loved Texas A&M and most things
about it. He would stop and pick up discarded drink
containers, newspapers, . . . , as he walked across
campus, and put them in the next trash bin. Many
of you know that he (and I) did not carry through
in that vein to our own offices.

My favorite Norman story concerns the fact
that he spent long hours in his office. One late
afternoon, a beautifully tanned coed knocked gently
on his door. He acknowledged her presence and
she stated “I can’t find my instructor, will you
help me with this algebra problem?” He answered
“Certainly, as long as you will let me do you a bigger
favor!” She asked what that would be? He said,
“When we get through with the algebra I want to
tell you about the dangers of overexposure to the
sun.” She did not accept the help.

I will miss Norman. We will miss Norman.
He certainly was a unique, intelligent, and unselfish
contributor to our community. I will treasure my
many memories and the comments that have been
made to me about the loss of our friend.

The above photograph was taken during the
outing to Stratford, at the TUG annual meeting in
Birmingham, England in 1993.

⋄ Bart Childs

Texas A&M University

College Station, Texas

bart@cs.tamu.edu

TUGboat, Volume 20 (1999), No. 2 89

Roswitha von den Schulenburg Graham

28 March 1935 – 14 April 1999†

Dag Langmyhr

Roswitha worked at the
Kungliga Tekniska Hög-
skolan (Royal Institute
of Technology) in Stock-
holm, Sweden. Her
job was to organize
the production of books,
compendiums and other
teaching material for
the students. She heard
about TEX and saw its
potential. Even though
she never used TEX her-
self, she became very en-

thusiastic about it and made a great contribution to
introducing it at KTH.

Producing books in the Swedish language, she
quickly noted the shortcomings of TEX2. For in-
stance, even though all the letters were there, the
Swedish quotation marks were missing. The worst
problem, however, was that you could not properly
hyphenate words containing either an ‘̊a’ or an ‘ö’.

In 1988 she was the major force when NTUG

(the Nordic TEX Users Group) was founded. Its
main purpose was to ‘promote the use of TEX and
related programs in the Nordic countries (Denmark,
Estonia, Finland, Iceland, Norway and Sweden)’.
Another important issue was the work to extend
TEX to fix the problems of the Nordic users. Mem-
bers of the Nordic group— and Roswitha in par-
ticular— had several meetings with Donald Knuth
on this. With the advent of the 8-bit TEX3 and
the Cork font encoding, the Nordic languages (and
others) got the necessary support.

Roswitha led the Nordic group from its initia-
tion until 1993 and in these years she was also auto-
matically a board member of TUG. After 1993, she
remained on the board of NTUG, and her enthusiasm
for TEX and the group never diminished.

We who have met her will remember her for this
enthusiasm for TEX and its users, but also because
she was so immensely hospitable. Quite a few TEX
personalities have fond memories of visits to her
summer house on a small island in the Stockholm
archipelago. In TUGboat volume 13(1992) no 4, we
can read about Donald Knuth’s visit there and the
talks he had with Roswitha.

Our thanks to Peter Graham, Roswitha’s husband, for pro-

viding the photograph.

Roswitha was so very much alive that it is
difficult to believe she is no longer among us. We
will surely miss her.

⋄ Dag Langmyhr

Leader of NTUG

dag@ifi.uio.no

You meet the nicest people . . .

Mimi Burbank

Everett Larguier, s.j.

In late July of 1998, I received an email message, the
first line of which said, “Pardon me for bothering
you, but yours is the first contact available . . . ”.
The gentleman needed some help with some TEX
application on his computer, and kindly provided
the necessary information regarding what system,
and printer he was using.

What caught my attention was the following:

. . . I am an old man scrambling toward the

door of the 90th year of my life, using LATEX

and Linux to keep old man Alzheimer from

my door.

I thought then that this man must be the oldest TEX
user and if not, then certainly one of them!

We have now celebrated the first anniversary
of this correspondence,∗ and I must say, “You re-
ally meet the nicest people by email.” Providing
assistance to users can often be a strain on your
time, resources and temperament! I can cheerfully
say that in this particular case, I’ve learned nearly as
much as any help I’ve provided. One cannot help but
want to know more about someone who is 90 years
of age, and using TEX! Sebastian Rahtz became
involved in this correspondence and his response
to the above statement was, “TEX will keep you
young. . . ”

In his own words

I am a member of TUG and have been so

since about 1989. Reading TUGboat has not

been too easy over the years; most of the

articles are beyond my comprehension. Over

50 years ago, I got a Ph.D. from Michigan

∗ The quotations in this article come from email corre-

spondence as well as from the biographical publication Pera-

gente Anno Octogesimo Octavo.

90 TUGboat, Volume 20 (1999), No. 2

and pursued my professional life as a math-

ematician at Spring Hill College in Mobile,

Alabama, until retirement at age 75. But in

being out of the mainstream of mathemati-

cal research I have forgotten over these later

years much more mathematics than I know

now.

In the early ’80s, I ventured into using a

PC and a VAX as a means of fending off

old man Alzheimer. It has been reasonably

successful. I picked up a copy of pcTEX along

the way, which introduced me to TEX and

LATEX. Subsequently, I joined TUG with the

thought that it might be helpful. That’s where

I stand right now. I have been using Linux

for a few years now, abandoning DOS, Win95

and the VAX for the most part and becoming

a Linux nut.

Needless to say the above only led me to ask more
questions, and Fr. Larguier kindly supplied me with
a biographical document, Peragente Anno Octoges-

imo Octavo, published by Dragonfly Press, Mobile,
Alabama in 1997, typeset using LATEX. The photo-
graph is from an unknown announcement entitled,
“Fr. Everett Larguier, SJ, 70 Years a Jesuit”. It
was very nice to have a “face” to go with the email
messages.

Biographical Extracts

Fr. Larguier was born
January 26, 1910 in
New Orleans, Loui-
siana. He entered
the Jesuits at the age
of 19. He attended
St. Louis University
starting in the fall of
1932, and obtained
a Master’s Degree
in mathematics in
1936. He obtained
his doctorate in math-
ematics from the Uni-
versity of Michigan
in 1947, and then served as a faculty member of
Spring Hill College in Mobile, Alabama, until his
retirement from full-time teaching in 1975. His
first publication was in the Annals of Mathemati-

cal Statistics in 1935, and since that time he has
published other mathematical research articles; sev-
eral books have been published by the Spring Hill
College Press.

One of the more humorous moments occurred
at the time of his ordination, in June of 1941, at

which time it was discovered that his baptism had
been recorded to have occurred almost 19 years
before his birth!

As we all know, poverty is one of the disciplines
of monastic orders, and in reading the biographical
material I can only remark that his first job, in 1927,
paid $.50 an hour, and he worked about 50 hours a
week —surely good preparation for the salary of a
Jesuit!

Attendance at mathematical society meetings
afforded him the opportunity to meet John von Neu-
mann, one of the most outstanding mathematicians
of this century. von Neumann was “impressive by his
casual demeanor and lack of pretension. In fact he
looked more like a small-town banker than a world-
famous mathematician. Perhaps in this respect he
was following a family tradition; his father was a
banker in Hungary.”

Advent of computers

In the late 1970s, Fr. Larguier had an “on-campus”
terminal connection to the college computing facil-
ities. Following a move of the Jesuit community
to an off-site location, and because of advancing
years and increasing arthritic problems, ambulatory
access was a problem, and terminal access was pro-
vided in his residence. This was later followed by mi-
crocomputing facilities — a Zenith computer, Epson
printer and modem connection to a VAX computer.
He began working with TEX in the l980s.

Fr. Larguier’s computing facilities have changed
over the years, and he has been gaining experience
with Unix and Linux. He says that this was “putting
a strain on the brain cells. However as long as some
progress is being made in gaining experience with
Unix-like stuff, I will know that Alzheimer is not
hanging around in the entrance-way to take over my
brain.” I can only say, “More power to you!”

Today

His interest since retirement has largely been in
the area of topology, as well as a continued in-
terest in the history of mathematics. These days,
Fr. Larguier is learning a lot about setting up a
Linux system, and installing the TEX Live CD,
writing letters, and working on a book on topology.

⋄ Mimi Burbank

408 DSL

Florida State University

Tallahassee Fl 32306-4130 USA

mimi@scri.fsu.edu

TUGboat, Volume 20 (1999), No. 2 91

Views & Commentary

The french Package on and off CTAN

Bernard Gaulle

Editor’s note: The following letter was distributed
in May 1999 to everyone on the French TEX users
list. The views expressed are solely those of the
author.1

−− ∗ −−

The archivists of CTAN (the Comprehensive TEX
Archive Network) have been facing an increasing
number of requests from editors and user groups
wanting to redistribute, and even sell, CTAN archive
contents, including software with specific copyright
statements. The recurring question then arises:
do these specific copyright statements allow such
redistribution, and under what conditions?

In response to these redistribution requests [for
CTAN materials], different possible options have
been considered, rather like a catalogue of exten-
sions or styles and other products, yielding a synthe-
sized attribute, representative of the features of var-
ious copyright statements. Various discussions have
taken place, more particularly with those making
such requests than with authors [of CTAN material].
Amongst the requesting parties, a majority would
like to see the archive distributed freely (in the style
of the TEX copyright: everything can be taken and
and modified, provided the item no longer bears the
same name). This is the sense of “free software”,
which is certainly popular but which addresses a real
need, so my criticism is not aimed in this direction.
For some, however, this notion has become a sort
of religion, and thus warrants some kind of crusade
against all those who don’t buy into it. What
influence such cyber-crusaders have had, difficult to
say. But it is true that most of what’s available to
read has been about exclusion rather than gathering.

Now, CTAN, by virtue of its name and original
intent, has always had the aim of assembling ev-

erything — developed codes and various tools— that
exists in the (LA)TEX world. And that has functioned
well until a few months ago. However, under pres-
sure from requests to manufacture CDs, the CTAN

archivists have decided to split the archive into two:

1 The author wishes to thank Barbara Beeton and
Christina Thiele for their efforts in finding a translation that
makes sense in English without violating the original French.
In case of doubt, the original French text is the definitive one:
“À propos de french”, La Lettre GUTenberg 15 (1999), p. 16.

one “free” tree, which can be redistributed without
any problem, and a “nonfree” tree, for which all
sorts of restrictions may exist. Justification for the
split has been based on the assumption of legal texts,
although no-one’s been able to give me a single refer-
ence. Richard Stallman, founder of the GNU project
and the “free software” concept, affirms that such
texts exist and suggested that I should consult a
lawyer. For my part, I regularly see CDs distributed
free of charge with well-known monthly magazines,
CDs which feature many “shareware” products with
restrictive copyrights. However, none of these mag-
azines has yet been condemned for unauthorized
distribution of software. The claim that only “free”
products can be redistributed without special au-
thorization is therefore an ironic statement.

The CTAN archivists (who, for the most part,
I truly believe only want to satisify their users)
began applying their decision at the end of last
April, redeploying software according to these two
trees, “free” and “nonfree”. And thus, from one
day to the next, the french package found itself on
the “nonfree” side. I therefore had to analyse the
situation and ask myself if this was acceptable or
not, if I have to change something or not.

The French translation of “free” means, of
course, ‘without cost’ or ‘freely’ [‘without con-
straints’ –Ed.]. If french then is placed on the
“nonfree” shelves, it means either that it has to be
charged for or it is being held hostage to restrictions
of some kind. However, the copyright statement for
french has existed for years now, and was indeed
originally devised in such a way that anyone could
use it freely and however they wished. Only modifi-
cation and commercial distribution were subject to
a few restrictions. After discussing this with the
CTAN group and seeing that my views were not
being understood, I decided that it was too shocking
to see french placed in the “nonfree” tree and
therefore I asked that it be removed.

As a result of this action, my long-standing aim
to see french always available to everyone can no
longer be achieved and so I have to ask myself some
questions. In the first place, is this CTAN policy
of favouring “free” redistribution [of the archive
contents] via CD going to last? It’s possible but
still, I do believe other groups will choose to return
to the previous situation and propose an RCTAN

(Really Comprehensive TEX Archive Network), in
which case everyone would again be happy.2 If
it doesn’t happen, then maybe I should consider
another form for french, more liberal in its rights

2
RCTAN has now become a reality: ftp.loria.fr.

92 TUGboat, Volume 20 (1999), No. 2

statement but then also probably more restricted in
functionality . . . The future and your comments will
help shape my choice.

In the meantime, I’ve chosen freedom, freedom
to choose where french will be placed, outside
the slightly shameful world of “nonfree”, so that
everyone can freely do what they will with it,
within the limits of its copyright statement, without
a priori constraints or commercial connotations.
Thus, the french distribution will remain available,
as always, from the GUTenberg server http://ftp.
gutenberg.eu.org/pub/gut/french. Anyone may
fetch it for free and freely make use of it.

I thank you for having read my text to the

end; I have tried to be as balanced as possible

because I don’t want any polemics. Rather, I hope

that all needs can be satisfied in the future, leaving

authors free to choose the terms of their copyright

statements.

⋄ Bernard Gaulle

Vice-President, GUTenberg

gaulle@gutenberg.eu.org

−− ∗ −−

Response from the CTAN team

The CTAN team has made the following statement
about the content and arrangement of the archive:

The aim of the CTAN team is to make CTAN

consistent, simple, and reliable, both for
users and maintainers. We apologize if our
policies cause upset to some people.

−− ∗ −−

Editor’s commentary

Having been party to some of the discussions that
led to the segmentation of CTAN, I understand
the intent of the split in a way that is probably
somewhat different from that of someone coming
upon it de novo.

One of the driving requirements for the split
was a request to the TEX Live team for permission to
distribute the CD beyond the confines of the formal
TEX user community, in particular, to include the
CD in a commercially published book on LATEX.

Although CTAN contains shareware and tools
that originated outside the TEX community, these
items are made available by their authors or primary
distributors on other net-based archives, and their
presence on CTAN is a convenience.

Earlier versions of TEX Live were not much
concerned with formal permissions from the authors
or primary distributors of the files included on
the CD; their presence on CTAN was considered

tacit permission, and besides, the intention was
to distribute the CD only to the user groups that
cooperated in its creation. However, with the
request to redistribute TEX Live 4 beyond this
limited sphere, permissions suddenly became very
important.

For a few items restricted by the originators
from wider distribution, special permission was re-
quested, and, in most cases, granted; a special ver-
sion of TEX Live 4 was generated for the “external”
distribution, omitting any items for which restric-
tions existed and no permission was forthcoming.

In order to make the creation of TEX Live 5 and
future editions more straightforward, it was decided
to make the provenance of all CTAN holdings obvi-
ous without having to check each file. The concept
is clear; the naming is perhaps not so clear.

The terms “free” and “nonfree” are short and
easily remembered, but “nonfree” seems to imply a
monetary transaction. In the CTAN sense, however,
it means only that the author has placed some
restriction that limits redistribution. This could be
a request for a shareware fee, or a statement that
a package requires special permission if it is used
for other than strictly personal use. In the case of
french, there is a requirement that any file in the
package with an explicit copyright statement not be
modified, and the package may not be redistributed
as part of any commercial offering regardless of
whether or not compensation is asked; these are not
unreasonable requests, but they do attach “strings”
to the package that mean it cannot be automatically
included on a CD such as TEX Live, which may find
its way into distribution beyond the user groups.

Perhaps “restricted” and “unrestricted”, or
(more colloquially) “strings” and “nostrings” might
have been better choices of terminology: it’s not
instantly clear what the terms mean, and if one
checks, one will learn exactly what is meant. The
kinds of restrictions placed on CTAN offerings are
not shameful, and there are good reasons for them
in most cases; the CTAN team, as I see it, is merely
trying to comply with the wishes of the owners.

I worked for a number of years in international
standards working groups. International standards
have a reputation for stilted and overly precise
language. However, a central requirement for these
documents is that they be translatable into many
different languages with no change of meaning. This
is the misfortune that has now befallen CTAN — an
intention to make clear to users that certain items
should be checked for possible restrictions has been
badly misunderstood.

⋄ Barbara Beeton

bnb@ams.org

TUGboat, Volume 20 (1999), No. 2 93

Letters

Letter to the Editor

Jonathan Fine

The good name of TEX

One of the many wonderful things about TEX is
that its behaviour is essentially the same, no matter
where it runs. TEX is a fixed point, identical on all
machines. The same goes for METAFONT and the
Computer Modern fonts.

The author of TEX, Donald Knuth, has made
it perfectly clear that he does not object to anyone
revising TEX(or METAFONT) just as long as the re-
sulting program is called something else. However,
he also says “nobody is allowed to call a system TEX
or METAFONT unless that system conforms 100the
TRIP and TRAP tests”.

He also asks us “to help enforce these wishes,
by putting severe pressure on any person or group
who produces any incompatible system and calls
it TEX or METAFONT or Computer Modern —no
matter how slight the incompatibility might seem”.
(Both quotations are from TUGboat, 11(4), p489,
reprinted in Knuth’s Collected Papers in Digital Ty-

pography).
In a recent article in TUGboat (issue 19(4),

p366–371), Petr Olsak describes encTEX, a not com-
pletely compatible revision to TEX. It seems to me
that Olsak has not followed Knuth’s wishes in a con-
sistent manner.

Although he calls his new program encTEX, in
his article he talks about TEX this and TEX that
when he is referring not to Knuth’s TEX, but to his
own encTEX. For example, he describes the creation
of encTEX the program as a “new compilation of the
TEX binary” (p367), and throughout the article he
talks of iniTEX when in fact he means iniencTEX.
On page 369 he writes “the production version of
TEX” when in fact he is referring to his encTEX pro-
gram.

Olsak is tackling a real problem faced by TEX
users in his own country, and he deserves credit for
this. His solution requires an incompatible revision
of TEX the program. If this has to be, it has to be.
But more care is required in the documentation.

⋄ Jonathan Fine

203 Coldhams Lane

Cambridge, CB1 3HY

United Kingdom

fine@active-tex.demon.co.uk

Reply

Petr Olsak

Jonhatan Fine wrote a little response to my arti-
cle about encTEX published in TUGboat 19(4). He
is right in all his arguments. My article was writ-
ten about an extension of TEX, not about TEX it-
self. This extension was called encTEX. The ban-
ner was changed. It was my mistake that in some
sentences of my article I talk about TEX but I mean
my encTEX extension. Please accept my apology for
this. My sentences might add to the confusion about
the “name of TeX” for some readers. Jonathan Fine
is an example of one such reader. I am sorry.

The primary aim of my article was to show
that the correct localisation of TEX in our country
is possible only if some extension which is incom-
patible with the TRIP test is done. The non stan-
dard xord/xchr/printability settings are explic-
itly needed. No matter if these settings are imple-
mented via encTEX, via TCP tables in emTEX, via
TCX tables in web2cTEX, or constant settings are
made in some sections of tex.web/tex.ch signed
as “system dependent”. The resulting program (us-
able for our localisation) is impossible to call TEX
because the TRIP test explicitly specifies that codes
higher than 127 are written in two-circumflex nota-
tion into \write files and logs.

This feature (incompatible with TRIP) is im-
plemented into some widelly used “TEX” distribu-
tions: emTEX (with -8 parameter) or web2cTEX (if
TCX tables are used or locales are installed and set).
This described behavior of web2cTEX implies that it
is impossible to call web2cTEX “TEX” if TCX tables
are used or locales are installed; yet this distribution
is widely known as a TEX distribution. The banner
is unchanged. This program is distributed on CDs to
all TUG members with the name TEX. This repre-
sents more of a problem of the “good name of TEX”
than the name-confusion in my article.

In addition, there is the more incompatible ex-
tension of web2cTEX from Knuth’s original TEX.
I mean its sensitivity on first special line in the
.tex source of the document. If the first line of
the document starts with “%&” double, then the
web2cTEX switches to behavior undocumented in
Knuth’s Computers & Typesetting (namely volume
A and B). I mean, the web2cTEX is not TEX.

⋄ Petr Olsak

Faculty of Informatics

Masaryk University

Botanicka 68a, CZ-60200 Brno

Czech Republic

olsak@math.feld.cvut.cz

94 TUGboat, Volume 20 (1999), No. 2

Typography

Typographers’ Inn

Peter Flynn
University College Cork

Reversed quotes

The pox of reversed quotes (’) continues to spread. If
it isn’t checked, we’ll have an entire new generation
of typographers who believe that ’this’ is the right
way to implement ‘quotes’.

I don’t know if it’s attributable to ignorance, or
if there is a version of some lesser breed of software
out there which has implemented it as the default.
Perhaps someone who is a more frequent user than
I of Q—k X—s or F—r and other such tools could
check this and let me know.

The glyph is in itself harmless, and as I said
when I started this campaign, I first saw it in a book
published in the 1970s, so it has a long and dishon-
orable history. It would be nice to think that its use
just displays ignorance or carelessness, but typogra-
phers are usually neither ignorant nor careless: there
is some deliberate behavior at work, and it goes un-
noticed by most readers. I suspect it comes from
a mistaken desire for a spurious symmetry rather
than anything else, but what mystifies me is how it
came to exist in the first place, and where people
are finding it in fonts.

The usual pint in Vancouver or other suitable
venue for the person who mails me the grossest ex-
ample of this abuse.

Tag abuse

Talking of abuse, I shall shortly be relaunching the
Society for the Definitive Abolition of Tag Abuse
(SDATA). This worthy organisation was set up to
campaign for better markup languages in order to
relieve authors and editors of the need to abuse ex-
isting markup systems, and thus to prevent the more
obvious typographic mistakes which arise from am-
biguous or meaningless markup.

Tag abuse takes several forms, depending on the
language, but the most obvious example perpetrated
in LATEX is the use of \emph to achieve italics even
when emphasis is not the objective. To some extent
this is a problem of our own making: for so long
we thundered at the poor users ‘Thou Shalt Not

Use {\it } For Emphasis, Only {\em }’ that
many of them now believe they will be shot at dawn
for using the undistinguished \textit for italics of

any sort instead of \emph. The labs are full of them,
and they propagate the myth to every new intake of
users.

There is admittedly the advantage to \emph

that it handles its own context-sensitive font con-
trol, appearing in italics within a roman body and
in roman within italics, but as this is merely a macro
in latex.ltx,

\DeclareRobustCommand\em

{\@nomath\em

\ifdim \fontdimen\@ne\font >\z@

\upshape \else \itshape \fi}

I see no reason why it shouldn’t be called some-
thing like \romital and made available for anyone
to implement in any circumstance where a context
requires a distinguishing font shape.

Despite this kind of misunderstanding, we have
been shielded to a large extent from some of the hor-
rors of undistinguished markup: there is far worse
outside the TEX world. One system I have seen pro-
vided perfectly sensibly for emph but covered itself
by also providing for emph1, emph2, emph3, and so
on, with notes in the specification saying which one
was to be used for italics, bold, bold italics, small
capitals, etc. This allowed the markup to reflect how
the editors wanted the text to appear, but didn’t let
them specify it meaningfully. They still had to make
the decision on which font to use but could not name
that reason in the markup.

The whole area of generic markup and mean-
ingful names for things is a two-edged sword for de-
signers. If an author or editor marks some words
in italics in a document, does she mean italics ruat
cœlum (come what may), or does she mean italics
mutatis mutandis (according to sense)? The point
about markup abuse is that she shouldn’t be mark-
ing italics in the document at all in this case, but
something like \foreign instead, and leaving the
font decision to the designer in the stylesheet.

We have become so used to commutative font
specification, where the surrounding font parame-
ters are inherited, that users now expect to be able
to get bold italic small cap sans-serif outline swash
characters when requested, and it’s no use telling
them that the font designer only drew swash char-
acters for a few decorative italic capitals. Worse,
many DTP systems actually make a feature of pro-
viding any permutation of anything vaguely font-like
on command.

On the other hand, there’s nothing wrong at all
with marking decorative italics or bold for what they
are, depite the screams of protest from the purists.
What’s wrong is calling them something that they

TUGboat, Volume 20 (1999), No. 2 95

are not, like ‘emphasis’. I’ve had users ask me how
they can make italics ‘more italic’ because they want
increasing levels of emphasis.

As the world is poised to start the slow move
away from hard-coded appearance to a more extensi-
ble markup system (well, that’s the theory, anyway)
it is going to become more important that typog-
raphers and compositors are able to untangle the
mess left by well-meaning authors or editors un-
knowingly abusing what they believe to be usable
markup. Join now and maybe we can educate them:
http://www.ucc.ie/sdata.

Word-swallowing

The other day I was explaining to someone who
wanted a mathematics textbook typeset that there
were only a handful of fonts which included the math-
ematical symbols and had math-spaced italic char-
acters (Times, Lucida, Computer Modern, Concrete,
and another whose name escapes me at the mo-
ment). I must have been less than lucid, because
he went away with the idea that LATEX could only
set in these five fonts!

No damage done, as I was able to explain that
LATEX could typeset in pretty much anything that
was available in PostScript, Metafont, or TrueType:
it was only math typesetting that was restricted to
the brave few.

The question then arose, could a different body
font be used with one of them? Many of you will
have seen the effect of setting text in Times and
math in CM, and it’s not very pretty, but in this case
the math turned out to be less complex than usual,
as the book is a remedial work for those who suc-
ceeded in skipping math earlier in life. With the con-
centration on arithmetic and simple fractions, and
relatively few symbols beyond +, −, ×, and ÷, it’s
perfectly possible to get away with pretty much any
suitable book font, such as Palatino.

However, the pretty little PostScript font in-
staller I mentioned last time has taken a major nose-
dive. An MS-Windows crash led me to give up my
last Microsoft machine and return to Unix, so while
I still have the source code for the font installer, I
don’t willingly have the platform, and a lot of people
have mailed me to ask when it will be available.

The program was written in response to the
large number of complaints and requests I get about
difficulties in installing Type 1 fonts for LATEX sys-
tems. Like many long-term users, I spend a small
but significant amount of time explaining to others
that LATEX is not restricted to CM — math mode or
not— and Type 1 is still the easiest of the other for-

mats to handle1 and the typographic facilities pro-
vided by pstricks are too useful to pass up. However,
too many install-time options, especially for font en-
codings, made me realise that what most users want
is a simple, prescriptive installer which you point at
a directory or CD-ROM of fonts and tell it to install
selected fonts come hell or high water and not to go
asking questions.2 In its last incarnation it not only
did the .afm to .tfm conversion and file-copying,
but added the relevant line to psfonts.map, and
created the .fd and .sty files in ..\latex\local,
and ran texhash (or equivalent) to update things
(it did assume that the user’s installation was TDS-
compliant, however).

It was written as a pilot in Visual DisplayScript
for Windows, which was the only tool I could find at
the time with anything like the functionality needed
for writing simple windowing utilities, and I men-
tioned that I was seeking a similar environment for
Unix. Several readers pointed me at Tcl/Tk, which I
was vaguely aware of from earlier attempts but had
never managed to get working. The recent versions
are hugely improved, and as it is multi-platform,
the rewrite of the font installer will be available for
Macs, MS-Windows, and X. The bad news is that
because of this shift, it won’t be in a usable form for
Vancouver, so a large helping of humble pie is my
dessert. Sorry.

⋄ Peter Flynn

University College Cork

Computer Centre, University

College, Cork, Ireland

pflynn@imbolc.ucc.ie

http://imbolc.ucc.ie/~pflynn

1 I have had no success in getting TrueType fonts to work

in LATEX: if someone can point me at a reliable, authorita-

tive, prescriptive, and bug-free document describing the pro-

cedure, I’d be very grateful.
2 The default encoding I use is Y&Y’s LY1, for the simple

reason that it’s the only one I’ve found which puts all the

characters I want in places where LATEX and dvips can find

them: if someone can point me at a reliable, authoritative,

prescriptive, and bug-free document describing why another

encoding is superior, I’d be very grateful.

96 TUGboat, Volume 20 (1999), No. 2

Fonts

A short introduction to font characteristics∗

Maarten Gelderman

Abstract

Almost anyone who develops an interest in fonts is
bound to be overwhelmed by the bewildering variety
of letterforms available. The number of fonts avail-
able from commercial suppliers like Adobe, urw,
LinoType and others runs into the thousands. A
recent catalog issued by FontShop (Truong et al.,
1998) alone lists over 25 000 different varieties.1 And
somehow, although the differences of the individual
letters are hardly noticable, each font has its own
character, its own personality. Even the atmosphere
elucidated by a text set from Adobe Garamond
is noticably different from the atmosphere of the
same text set from Stempel Garamond. Although
decisions about the usage of fonts will always remain
in the realm of esthetics, some knowledge about font
characteristics may nevertheless help to create some
order and to find out why certain design decisions
just do not work. The main aim of this paper is
to provide such background by describing the main
aspects that might be used to describe a font.

The outline of the remainder of this paper is
as follows. First I will discuss some basic font
characteristics. Next some elementary, numerical di-
mensions along which properties of a typeface design
can be assessed will be discussed. The next section
elaborates on those measures and some additional
aspects of ‘contrast’ will be discussed. The final
two sections briefly present a font classification along
the dimensions discussed in the previous section and
some implications.

Some elementary differences

Proportional and monospaced. A first differ-
ence that can be recognized between typeface de-
signs is the spacing of fonts. Monospaced or type-
writer fonts in which each character occupies the

∗ Apart from some minor modifications, this article is
identical to an earlier publication in MAPS, the communi-
cations of the Dutch TEX User Group, Nummer 22, Voor-
jaar 1999, pp. 81–93.

1 This enormous variety is partially made possible by the
introduction of electronic typefaces, which allows for world-
wide distribution without exceptional cost. In 1950, that
is before the advent of electronic typesetting, Groenendaal
could still attempt to list all typefaces readily available to an
ordinary typesetter.

same amount of space can be distinguished from
proportionally spaced fonts.

Computer Modern typewriter
(monospaced): Winmvw

Computer Modern Con
rete
(proportionally spa
ed): Winmvw
Hardly anyone will dispute the statement that

proportionally spaced fonts are more beautiful and
legible than monospaced designs. In a monospaced
design the letter i takes as much space as a letter m
or W. Consequently, some characters look simply
too compressed, whereas around others too much
white space is found. Monospaced fonts are simply
not suited for body text. Only in situations where it
is important that all characters are of equal width,
e.g., in listings of computer programs, where it may
be important that each individual character can be
discerned and where the layout of the program may
depend on using monospaced fonts, can the usage
of a monospaced font be defended. In most other
situations, they should simply be avoided.

Romans, italics, and slant. A second typeface
characteristic that will hardly be new for any TEX-
user is the difference between italic, oblique (slanted)
and roman fonts. The difference between italic fonts
and the roman fonts lies in their history. Italic fonts
are the descendants of handwritten letter shapes,
whereas the roman fonts were originally chiselled in
stone. Consequently, the romans look more rigid;
the italics, to the contrary, show more elegance and
are more ‘curvy’. Furthermore, the shapes of some
individual characters differ; this difference is most
apparent when we look at a, g and a, g (here
in the italic and roman variant respectively). The
origins of the italics being in handwriting, they are
usually slanted, whereas the romans are typically
typeset upright. This, however, is not strictly nec-
essary. Italics can theoretically be typeset upright
and romans may be slanted:

An upright italic and a slanted or oblique
italic

An upright roman and a slanted or oblique
roman

Generally designers agree that text set in roman
is more legible than text set in italic, although the
readability of italics accompanying different fonts
may differ considerably, which is important if large
pieces of text are typeset in italics. Compare for
instance:

TUGboat, Volume 20 (1999), No. 2 97

A block of text set

from Utopia Italics.

Generally designers

agree that text set

in roman is more

legible than text set

in italic, although

the readability of

italics accompanying

different fonts may

differ considerably,

which is important if

large pieces of text are

typeset in italics.

A block of text set

from Computer Modern

italics. Generally

designers agree that

text set in roman is

more legible than text

set in italic, although

the readability of

italics accompanying

different fonts may

differ considerably,

which is important if

large pieces of text are

typeset in italics.

If multiple slanted fonts are used in one piece
of running text, it is important to ensure that the
angle of slant is comparable, otherwise a page will
look rather uneven.

Serif and sans serif. An issue that raised much
discussion in the first half of this century (see e.g.,
Tschichold, 1991) but on which a communis opinio

now seems to have been reached is the usage of
serifed or sans serif fonts:

Computer Modern (with serifs)

Computer Modern sans (sans serif)
Whereas at the beginning of this century a large

group of designers were of the opinion that sans
serif designs were to be preferred as they were more
modern, emphasizing the pure shape of the individ-
ual characters and omitting superfluous elements,
it is now generally recognized that the serifs have
an important function for the following, not always
independent, aspects of legibility:

� Serifs make individual characters more distinct.
In their sans serif variant many characters look
remarkably, if not exactly, like mirror images
of each other. During the reading process they
are easily confused, especially by persons suf-
fering from dyslexia. The advantage of serifed
typefaces over their non-serif counterparts, in
this respect, is easily seen from the following
example:

b d
p q

b d
p q

� Serifs emphasize the beginning and ending of
individual characters, compare e.g., rn with rn.

� Serifs emphasize the shape of words. It is
generally recognized that experienced readers

do not read individual characters, but read
words and mainly use the upper half of a line of
text for this purpose. The general claim is that
the serifs facilitate this process. Just check it
for yourself by looking at the next set of lines:

Now you miss the upper half of this line

This is a text: quer auer galapagos

This is a text: quer auer galapagos

Furthermore, serifs have an important function
in shaping the personality of a type design. Differ-
ent serifs— a set of possible serifs is presented in
Figure 1— give a typeface design a clearly distinct
personality.

The first serif actually is no serif at all. The
second one, the slab serif, is orthogonal to the stem
to which it is attached and has about the same width
as this stem. Slab serifs are generally, but not neces-
sarily (Lucida Typewriter is a well-known example),
used for monospaced fonts like Courier and Com-
puter Modern Typewriter. Some proportionally-
spaced fonts, like the Computer Modern Concrete
we encountered earlier in this paper, also have slab
serifs. Those fonts are generally called Egyptiennes
and are normally used for two purposes: display text
in advertising, and typesetting labels on maps. A
well known example is ‘Atlas’, by the Amsterdam
Typefoundry (see Figure 2). An important reason
for using slab serifs in this latter type of copy may
well be that the serifs clearly belong to the letters
and consequently are not likely to be confused with
other elements on the map.2

The next type of serif, the wedge serif, has
been popular in advertising and for book covers
during the fifties and sixties of this century, but
is hardly used nowadays. The main, and probably
only, advantage of this design is that is is easily
drawn by hand and still looks somewhat unusual.

The hairline or modern serif is typical of ‘mod-
ern’ typefaces like Didot or Bodoni (see Figure 3).
Such serifs became popular in the second half of
the eighteenth century. Great craftmanship was
required to make the matrices needed to cast letters
with those extremely thin serifs. Furthermore, great
care had to be taken during printing, as the hair-
line serifs were very fragile and could easily break.

2 A second reason for the preference for Egyptiennes and
sans serif fonts in applications like map printing is that
the contrast of those fonts typically is near unity; see the
discussion on contrast later in this paper.

98 TUGboat, Volume 20 (1999), No. 2

sans serif slab serif wedge serif

hairline/modern serif bracketed/oldstyle serif bracketed/oldstyle serif

Figure 1: Different types of serifs.

Figure 2: Font specimen of ‘Atlas’ (source: N.V.
Lettergieterj Amsterdam [Undated]).

Nowadays, one sometimes wonders whether those
designs are the equivalent of Paganini’s capriccios
for violin, if their main purpose is not to show
craftsmanship rather than beauty? Nevertheless,
one has to admit that a book in Bodoni, carefully
typeset on the right kind of paper, still looks stun-
ning (apart from blackletter, Bodoni is one of the
very few typefaces that looks good in combination
with high contrast illustrations like woodcuts Groe-
nendaal, 1950).

The serif we encounter most often is the brack-
eted or oldstyle serif (both the lower and upper serif

are shown in Figure 1). This is the traditional serif,
found in fonts like Garamond, Bembo and Times.3

The dimensions of a typeface design

Size and design size. The best known, and prob-
ably least useful, dimension of a font is its ‘size’.
Everyone has encountered remarks like ‘this text is
set from a 10-point Bembo’ and ‘papers should be
submitted in 12-point Times Roman’. Traditionally
the size of a font is the height of the piece of lead
from which the text is set. Nowadays the size of a
font can generally be considered an almost useless
figure. In most fonts it is equal to the height of the
parentheses (‘()’), but even that is not always the
case. In wordprocessors, the point size will generally
be equal to the distance between lines of text if you
set linespacing to one. For practical purposes this
knowledge is limited; the only thing about font size
that is important is that most fonts have a design
size. This is the size at which the font will look best.
Although bu using modern typesetting software like
TEX, or any Windows or Macintosh program, it is
possible to scale a font to any desired size, you will
generally get better results if you stick to a size in
the neighbourhood of the design size. For some
popular fonts, like Times Roman or our good old
Computer Modern, different design sizes even are
available. This allows the careful designer to use all
fonts at their optimal sizes. When using Computer
Modern, the standard LATEX document classes even
take care of this automatically: the footnotes, for
instance, are set from a font with another design
size than the font used for the main text. This
ensures an equal level of ‘grayness’ across the page
and increases legibility (characters of fonts with a
smaller design size are generally somewhat wider
and heavier); look for instance at the difference
between the next two examples:

3 Times is somewhat peculiar in this respect: the bold
characters use modern serifs, the ordinary roman, oldstyle
serifs.

TUGboat, Volume 20 (1999), No. 2 99

Computer Modern with
5-point design size

Computer Modern with 17-point design size

The x-height. For practical purposes, a more
important characteristic is the x-height of a font,
which is exactly what the name implies: the height
of an x (or any other letter without ascenders or
descenders) in the given font.4 The x-height of a
font essentially determines the size of the font as
it will be perceived by the reader.Fonts with an
identical nominal size may have x-heights that differ
surprisingly. The next two examples show Utopia
and Garamond at the same size. The x-heights, and
consequently the perceived size of the font, however,
differ considerably:

Hamburgefont Hamburgefont

When combining fonts in running text, for in-
stance when using typewriter or sans serif fonts in
combination with an ordinary serifed roman, it is
important to ensure that the x-heights of all fonts
used are identical. A traditional problematic com-
bination consists of the standard PostScript fonts
Times, Helvetica and Courier. Those fonts have
quite different x-heights, which distorts the evenness
of a page if no measures are taken:5

Times Helvetica Courier

Fortunately, the New Font Selection Scheme
(a short introduction to the NFSS can be found
in Kroonenberg, 1999) makes solving this problem
rather easy: the default is to load each font at the
same size; however, it is also possible to specify
a scale factor in addition, which may be used to
compensate for different x-heights.

Ascenders, descenders and capitals. In addi-
tion to the x-height and font size, three other height-
related dimensions of a font are available: the height
of the capitals (e.g., K, H, and S), the height of
the ascenders (e.g., k, l, and h), and the length
of the descenders (e.g., j, g, and y). In many
fonts the capital-height is equal to the height of
the ascenders; sometimes, however, the ascenders
are slightly longer than the capitals. The main ad-
vantage of making the capitals slightly shorter than
the ascenders is that this gives a more even level
of grayness across the page; otherwise— especially

4 The x-height of a font is readily available in TEX. If you
want to specify a length in terms of the x-height of the current
font, just use the measure ex, instead of a more traditional
measure like cm or pt.

5 The example also shows that color and rhythm of the
three typefaces differ.

when the ascenders are large relative to x-height—
the capitals would stand out too much.6 An example
of a font that uses slightly smaller capitals than
ascenders is Garamond:

HhKkLlAk

The combination of x-height and ascender and
descender heights roughly determines how econom-
ical a typeface is,7 in other words: how much text
can be put on a page without sacrificing legibility.
Fonts with relatively large x-heights compared to
their size can be used at small sizes. Consequently,
they are rather economical: more lines of text can
be put on a single page and more text will fit on a
single line. However, the gain is not as large as one
might hope for: fonts with relatively large x-height
generally require some additional interline spacing.

Width and stem width. Apart from the mea-
sures of font height, discussed in the previous para-
graphs, we also need some measure of font width.
TEX provides the user with an amount called em-
space, the width of a single m, which for design con-
siderations has relatively little importance. Some-
what more important is the average width of a font,
generally measured (Rubenstein, 1988) by the total
width of all lowercase characters. This width is also
of importance when combining fonts. Although less
perceptible than the x-height, fonts with different
widths (given an identical height) tend to combine
badly (this problem is mainly related to the ‘rhythm’
of the font, to be discussed later in this paper).8 Of
course width also is related to the amount of text
that can be put on a page; the larger the width the
smaller the number of characters that fit on a single
line. Not surprisingly, fonts with an x-height that is
relatively large tend to have a large width as well,
thus reducing the economy gained by using such a
font.

A final directly measurable characteristic of a
font is stem width: the width of the stems of letters
like l. Of course this also influences the results when
combining different fonts in a piece of text. The
next example shows two monospaced fonts, along

6 Barbara Beeton drew my attention to the fact that this
is especially important when typesetting text in German,
where every noun is capitalized.

7 Morison (1997) even claims that the general principle
behind the evolution of font design is economy, and indeed
more recently developed typefaces tend to be more economi-
cal than traditional ones.

8 Unfortunately TEX is only able to scale the height
and width of a font simultaneously, so this problem is not
easily solved. Future generations of TEX may well solve this
problem.

100 TUGboat, Volume 20 (1999), No. 2

with a Times. With regard to stem width (and con-
sequently blackness) Computer Modern typewriter
combines far better with Times than the traditional
Courier (but of course, the x-height still needs some
adjustment).

Courier Times Computer Modern
Typewriter

Some more complex dimensions

Color. Although it is impossible to characterize
a font completely by a set of numbers, we may
refine the measurements presented till now to get
some additional insight into the properties of a
design. Most TEX-users, for instance, will have
heard the remark that Computer Modern is ‘too
light’. This somewhat subjective criticism can be
made more objective by calculating a measure of
‘color’. This measure is defined as the ratio of the
width of the set of all 26 lowercase letters, divided
by the stem width (Rubenstein, 1988). In other
words, color is a measure of the amount of paper
left white: the higher the color-value of a font is,
the lighter it looks. Color values for a number
of popular fonts are provided in Table 1. It is
evident that Times, which is the font of reference
for most people, is much darker than the Computer
Modern fonts. What also is noteworthy is that
the 12-point Computer Modern is somewhat lighter
that the 10-point variant. Finally, one may notice
that, notwithstanding the common criticism that
Computer Modern is ‘too light’, it is not the lightest
font in the small set presented here: Garamond is
even lighter. Apparently, color is not all there is to
say. When we look at the other measures provided
in this table, it seems as if Garamond is able to
compensate for an apparent lack of color by a high
contrast value.

color contrast weight

cmr12 197.111 1.703 0.146
cmr10 192.258 1.650 0.153
Times 156 2 0.17
Garamond 208 3 0.15
Helvetica 163 1 0.16
Bembo 184 2 0.16
Van Dijck 191 2.75 0.15

Table 1: Color, weight and contrast of some
popular fonts (the statistics for Times, Garamond,
Helvetica, Bembo and Van Dijck are based on
measurements presented in Rubenstein (1988); the
statistics for both Computer Modern variants were
kindly provided by Taco Hoekwater).

Contrast. Contrast is defined as the ratio be-
tween the width of vertical and horizontal stems
(Rubenstein, 1988). Contrast is, roughly speaking,
what makes a font lively, brilliant if you wish. If
contrast gets extremely high, a font is hardly legible
at all and only suited for use as a display typeface
in, for instance, advertising. Similarly, fonts with
extremely low contrast are hardly legible. Endless
discussions about optimal contrast values are, of
course, possible, but there seems to be some gen-
eral agreement that for, serifed typefaces, contrast
should be somewhere between 2 and 3.5. It is
evident from the data presented in Table 1 that
Computer Modern scores rather low on the contrast
(of if you wish, high in the ‘dullness’) dimension.
The design simply lacks contrast to an extent that
may impel legibility. The cautious reader may also
have noticed the extremely low contrast value of
Helvetica. Such contrast values are rather typical for
sans serif typefaces, which tend to stress evenness,
often at the cost of legibility.

There is another aspect of contrast that de-
serves attention: contrast also is an indication of
the ‘fragility’ of a font. At low resolutions (or looked
at from large distances) designs with high contrast
may be seriously distorted. This is one of the main
reasons why sans serifed typefaces (and typewriter
and slab serif fonts, which also tend to have contrast
values near one) are the fonts of choice for trans-
parencies, traffic signs and computer displays.

Theoretically, contrast values between zero and
one are also possible. Such extreme designs, how-
ever, are only suited for advertising and other more-
or-less artistic utterances.

Weight. A final, common dimension of a font is
its weight. Color measures the darkness of a font
as it appears to the reader who looks at a page of
text. Weight is used to assess the darkness of the
individual letters and it calculated by dividing the
vertical stem width by the x-height of the font. Ac-
cording to Rubenstein (1988) if weight lies outside
the range 0.15–0.2, legibility suffers. Apart from
the 12-point Computer Modern all fonts presented
in Table 1 are within this range. Times is the most
‘weighty’ design in the set of fonts presented here,
but the differences are less noteworthy than on the
previous dimensions.

Additional aspects of contrast

Contrast is one of the more important aspects of a
type design. However, the measure of contrast pre-
sented above does not cover this aspect completely.
A first additional aspect of contrast is the axis of

TUGboat, Volume 20 (1999), No. 2 101

Figure 3: Font specimen of ‘Bodoni’ (source:
Klein et al., 1991).

contrast, or the angle at which the broader parts of
the characters appear. If we compare, for instance,
the design of Bodoni (see Figure 3) with Bembo
(see Figure 4), it is not only clear that contrast
of Bodoni is higher than that of Bembo, but also
that the axis of contrast differs. This is most easily
seen, by comparing the ‘o’ or the ‘e’ of both fonts.
In Bodoni, contrast is orthogonal to the baseline,
whereas in Bembo, it is slanted to the left.9 The
axis of contrast has little influence on legibility of a
typeface, although the axis of contrast is related to
contrast and hence influences legibility indirectly.10

The second additional aspect of contrast, fre-
quency, is a far more important determinant of
legibility. Figure 5 show the sensitivity of the hu-
man eye as a function of frequency. Sensitivity is,
roughly, defined as the ease with which for instance

9 If one mentally imagines the ‘o’ begin drawn on paper
with a broad brush or pencil, the brush would be held
horizontally when drawing the Bodoni ‘o’, and at a 30◦ angle
when drawing the Bembo ‘o’.

10 To maximize contrast, the horizontal parts have to be
as thin as possible and this can only be accomplished using
a ‘horizontal brush’.

Figure 4: Font specimen of ‘Bembo’ (source:
Tschichold, 1992).

individual lines, drawn on a sheet of paper can be
distinguished. If the lines are very far apart, that is
frequency is low, the human eye is simply not able
to focus on both lines simultaneously and sensitivity
is low. If the lines are very close to each other,
frequency is high, the human eye does not distin-
guish individual lines any more. Although a page
may contain black and white lines, it is perceived
as being gray.11 The ability of the human eye to
perceive individual lines, rather than no lines at all,
or some level of gray, is at a maximum somewhere
between 6 and 11 cycles per degree. Of course,
in order for a typeface design to be legible, it is
highly desirable that the individual strokes of the
characters are easily discernible. Unfortunately let-

11 Frequency is not defined in terms of lines per inch but
in terms of lines per degree of visual angle. If the sheet of
paper is closer to our eyes, the number of lines per degree of
visual angle diminishes, although the number of lines per inch
remains the same. In this way the individual lines that look
like uniform gray at reading distance, become distinguishable
at closer examination. At a reading distance of about 40
centimeters, frequency in lines per inch is about two times as
high as frequency in lines per degree of visual angle.

102 TUGboat, Volume 20 (1999), No. 2

Figure 5: Sensitivity of the human eye as a
function of frequency (in cycles per degree of
visual angle) (source: Rubenstein, 1988).

ters do not consist of simple lines but are slightly
more complex: a single number will not suffice to
describe the frequency of a font. A number of
frequencies will be present on a single page. For-
tunately, using Fourier analysis it is possible to find
those frequencies and make a plot of them, as is
done in Figure 6 for three popular typeface designs:
Times, Helvetica and Courier. Now we can look
for a dominant frequency which hopefully lies some
where between 6 and 11 cycles per degree. The
results confirm our expectations: both Helvetica and
Times show a clearly distinguishable peak in their
frequency distribution at about the point of max-
imum discernability to the human eye. Helvetica,
however, shows a second peak, which will make the
design less readible. Courier, finally shows at least
four peaks in its frequency distribution.

From characteristics to classification

The characteristics mentioned in the previous sec-
tion provide the clues that can be used to build a
classification of typefaces. The traditional classifica-
tion scheme distinguishes four categories of serifed
typefaces: Venetian, oldstyle, transitional and mod-
ern. Venetian typefaces have been in use since about
1470. They are hardly distinguishable from oldstyle
typefaces, which have been in use since about 1500.
Both categories of fonts share a slanted axis of con-
trast and the usage of, not surprisingly, oldstyle ser-
ifs. Capitals, typically, are somewhat smaller than
the ascenders, they end where the serifs of ascenders
start. One reason for this is that the ascenders
and descenders of those fonts are relatively long and
their x-height is relatively small. Furthermore, those
fonts are typically relatively light, and contrast is

Figure 6: Results (power spectra) of Fourier
analysis on text samples in three popular typefaces
(source: Rubenstein, 1988).

not extreme. To distinguish a Venetian font from an
oldstyle font, two features are of importance: first,
oldstyle fonts usually have a horizontal crossbar of
the lowercase e, whereas this crossbar in a Venetian
is at an angle of about 20◦ with the baseline (like
in the ‘Heineken’ logo). Furthermore, the oldstyle
capital M has the usual serifs, whereas the Venetian
M has double serifs. Prime examples of oldstyle
fonts are Garamond, Baskerville and Caslon. Popu-
lar Venetians are Cloister, Centaur and many of the
designs by Goudy.

The first transitional font was the ‘Romain du
Roi Louis xvi’ designed for French governmental
publications in about 1702, but only came into
general usage at about 1755. Although the serifs
of those fonts are already horizontal, the contrast
axis is not yet orthogonal to the baseline, but more
upright than in the Venetian or oldstyle typefaces. It
is generally claimed (Morison, 1997) that the ascen-
ders are as high as the capitals in those transitional
fonts, however, upon my examination of some font
specimens I learned that this rule is not universally
valid. Similarly, although the transitional fonts are
supposed to have lining numbers instead of old-
style numbers,12 this also is not always the case.

12 Lining numbers all have the same height and do not have
ascenders and descenders. Oldstyle numbers, on the contrary,
differ in size and some numbers (e.g., 9) have descenders,
whereas others (e.g., 6) have ascenders. Another important
dimension along which numbers may vary is whether they
are fixed-width or not. This latter aspect is of course im-
portant for their applicability in tabular material. Thanks to
Barabara Beeton for making this additional comment.

TUGboat, Volume 20 (1999), No. 2 103

The transitionals are generally blacker than oldstyle
fonts; they look stronger, but less elegant.

Finally the moderns, of which Bodoni and Di-
dot are the prime examples, can be found from 1790
on. The development of those typefaces continues
the development started with the transitional fonts.
The x-height slightly increases and the capitals are
as high as (and sometimes even slightly higher than)
the ascenders. The axis of contrast now is com-
pletely vertical and the serifs are horizontal. Con-
trast often is extreme, a page set from Bodoni looks
brilliant. Although the page may look particularly
well from a distance, legibility may suffer from this
extreme contrast. Other moderns, like Egmont and
Walbaum, are less extreme in this respect and con-
sequently more legible. Table numbers are the rule,
but exceptions may still occur.

Some implications

Typefaces, of course, neither were nor are designed
with the classification or the numerous characteris-
tics mentioned above in mind. The classification is
not perfect, in particular, recently-developed fonts
are difficult to classify. As a taxonomy, the clas-
sification scheme is useless, it merely functions as a
starting point in determining the characteristics of a
typeface, and the way it may be used. Typography
remains an art, not a science, and each rule has its
exception, but some rules of thumb may nevertheless
help.

In the previous sections numerous aspects of
font selection have already been mentioned. Mono-
spaced fonts are generally not the best choice. Only
for typesetting computer programs and similar ap-
plications, may they be the preferred kind of type-
face. For applications like traffic signs, transparen-
cies, computer applications and other messages that
have to be read at low resolution or from a large dis-
tance, typefaces with low contrast, particularly sans
serif and slab serif typefaces are generally preferred.

For typesetting large amounts of text, e.g., in a
journal or a book, serifed typefaces are generally the
best choice. If the result has to be striking, modern
typefaces are preferred. They may draw attention
to a magazine the consumer otherwise wouldn’t
buy or to a feature article that otherwise might be
skipped by most readers. Modern typefaces may
also be the font of choice because they blend well
with illustrations or emphasize the ‘designer-like’
atmosphere of a book. Art books are a typical
example.13

13 The majority of the applications in which modern type-
faces can be used share another characteristic: they are
typically printed on glossy paper which not only combines

If it may be assumed beforehand that a text will
be read, for instance in the case of a novel, oldstyle
and transitional designs are preferred. Legibility
of those designs is better than that of any other
font category. Economy may be one of the crite-
ria for font selection: with transitionals, generally
more text can be put on a given amount of paper
than with the oldstyle fonts. Oldstyle fonts, on the
other hand may be slightly more legible and, more
importantly: they look more elegant. Selection of a
particular typeface may also be guided by other con-
siderations: Caslon is a fairly appropriate choice for
a text by Spinoza; for a French novel from the early
19th century a Didot may be the right choice, just
because of the contemporary atmosphere elucidated
by such a design.

After a certain typeface has been selected, some
general guidelines may be drawn knowing its place
in the classification scheme. Again, those guidelines
are not laws, but mainly “rules of thumb”. With
Venetians and oldstyles the œ and æ ligatures may
be used, and usage of the fi, fl, and fli ligatures is
almost required. When using a modern or tran-
sitional, the f-based ligatures can be omitted, and
usage of the other ligatures generally looks kind of
overdone.

Font selection for the body text also has some
implications for other design decisions. One of
the charms of oldstyle fonts is that they look so
quiet. To maintain this feature, chapter and section
headers may be typeset from an ordinary roman
or from small capitals rather than the more com-
monly encountered boldface variant. In some cases,
depending on how similar to the roman font this
variant is, an italic may also work. Combined with
modern faces, however, a design in which only or-
dinary roman and small capitals are used looks just
too withdrawn. The timidity of such a design just
does not mix with the aggressiveness of a modern
font.

A final remark may be made about the com-
bination of different typefaces in a single design.
Generally speaking it is required that both typefaces
are clearly distinct. Furthermore it most often works
best when the typeface used for headers and other
sparingly used features is blacker than the font used
for body text. Thus a Helvetica for section headings
with a body text of Times may work well. Bembo
for headings with Garamond for the body text (or
vice versa) will just be plain ugly. Bodoni for the
headings with a body of Garamond may work (if

well with the atmosphere of, e.g., a Bodoni, but also is
a prerequisite for adequate printing of the extremely thin
hairlines of this typeface.

104 TUGboat, Volume 20 (1999), No. 2

used with care); Garamond for the headings with
Bodoni for the body will probably be ugly, etc. One
may feel tempted to deduce the general rule that
when combining two typefaces, the least legible one
is most suited for headings.

Of course, the rules mentioned above have their
exceptions. The only way to find out what works
is to experiment. The guidelines given may just
help to reduce the number of options to be investi-
gated and to explain afterwards what did and didn’t
work. And this feature, combined with an urge
to communicate the joy that playing around with
fonts gives me, was the main aim I had with this
article. To anyone who wishes to pursue the topics
touched upon in this paper in more depth, I can
recommend reading Tschichold’s treasury of art and
lettering. For those interested in technical details,
Rubenstein’s monograph is a valuable source book.

References

Groenendaal, M. H. Drukletters: hun ontstaan en

hun gebruik. De technische uitgeverij H. Stam,
1950.

Klein, Manfred, Y. Schwemer-Scheddin, and
E. Spiekermann. Type & Typographers. SDU Uit-
geverij, ’s-Gravenhage, 1991.

Kroonenberg, Siep. “NFSS: using font families in
LATEX2ε”. MAPS 22, 52–54, 1999.

Morison, Stanley. Letter forms: typographic and

scriptorial. Hartley & Marks, 1997. Originally
published: New York, Typophiles 1968. (Ty-
pophile chap bok 45).

Rubenstein, Richard. Digital typography: an intro-

duction to type and composition for computer

system design. Addison-Wesley, 1988.

Truong, Main-Linh Thi, J. Siebert, and E. Spiek-
ermann, editors. Digital Typeface Compendium:

Font Book. FontShop International, Berlin, 1998.

Tschichold, Jan. Schriften 1925–1974. Brinkmann
& Bose, Berlin, 1991. Herausgegeven von Günter
Bose und Erich Brinkmann.

Tschichold, Jan. Treasury of alphabets and lettering.
Lund Humphries, London, 1992. Introduction by
Ben Rosen.

⋄ Maarten Gelderman

De Boelelaan 1105-kr 3A36

1081 HV Amsterdam

The Netherlands

geldermanm@acm.org

http://www.econ.vu.nl/kw/

members/maarten.htm

104 TUGboat, Volume 20 (1999), No. 2

Fonts

METAFONT: Practical and Impractical
Applications

Bogus law Jackowski

The First Steps

This article is intended to be an introduction to
problems related to preparing fonts for the TEX
system using METAFONT. Many details will be
omitted, hence the reader may find quite a large
number of intentional or inevitable inexactitudes.
I believe, however, that the crucial points can be
illustrated by a good number of simple examples.

One should not expect to become a METAFONT

expert after reading this article. I will be
satisfied if the presented material turns out to be
comprehensive enough to teach what METAFONT

is, how to use it in simple cases, and in which cases
it is most promising to use it.

I assume that the reader knows the TEX system
a bit, e.g., what is the name of its author (hint: the
same as the name of the author of METAFONT),
what DVI files are, how to process documents, what
drivers are, etc. In short, I assume that the question
“what is TEX” does not require an answer. Instead,
I will try to answer the question:

What is all that METAFONT ?

First, however, one should ask “What is a font?”
For TEX, a font is a collection of data stored in
a metric file (TFM). TEX examines it in order to
find character codes, the dimensions of characters
(height, width and depth), kerns to be inserted
automatically between some characters (implicit
kerns), etc.

Note that TEX does not care about the shape
of characters— only drivers are interested in that.
Commonly, the shapes of the characters are stored
as bitmaps in PK files or — rarely — in GF files.
Bitmaps are not obligatory. If PostScript is
involved, outline (Type 1) fonts can be used.
Nevertheless, Tomas Rokicki, the author of one
of the most popular PostScript driver, dvips, and
the author of PK coding says that bitmaps are
usually more efficient. On the other hand, storing
a lot of bitmaps of various sizes for various output
devices leads quite soon to storage problems.

A cure is to employ METAFONT for generating
the required fonts on the fly. The process of
generating the set of bitmaps for a single font of the
Computer Modern family on a PC computer with a
486 processor takes a few dozens of seconds. Since
the Computer Modern family consists of about
ninety fonts, the time needed for the generation of
the complete set of fonts is several minutes, which
is negligible in comparison with the time needed to
prepare a document using TEX.

METAFONT is not merely a program for
generating bitmaps. In fact, it is a programming
language, resembling AWK, BASIC, C or Pascal. The
main difference is that METAFONT is equipped
with special tools (data structures and operations)
facilitating the description of graphic objects and
assembling them into a TEX font. I will focus on
these two aspects: first, the graphic capabilities of
METAFONT, and second, employing METAFONT for
generating fonts. This, hopefully, should answer the
question posed in the title of this section.

Whenever convenient, the practical aspects
of using METAFONT will be briefly considered.
Briefly — because it does not make much sense
to theorize about practice; moreover, METAFONT

is very simple to use and a few minutes with a
moderately experienced METAFONT user is usually
enough to master running the program.

How to run METAFONT ?

The description of a graphic object in the
METAFONT lingo consists of a series of statements
(instructions) to be interpreted and executed
consecutively. METAFONT performs calculations
and generates the bitmaps of the processed graphic
objects (characters) in the form of a GF file
(generic file) and a TFM file (TEX font metric file).
Additionally, a LOG file is created which contains
the information about the run and messages issued
by METAFONT during the run.

The programmers’ tradition is that we should
start with a dull and trivial example. It is a bad
custom not to respect tradition, so let’s assume that
we have prepared the following program (a percent,
as in TEX, begins a comment; a semicolon, as in
Pascal, ends a statement):

message "This is a trivial program.";

end

TUGboat, Volume 20 (1999), No. 2 105

Invoking METAFONT
1 in the following way

(please note the name “plain”, known from TEX):

mf386 \&plain foo.mf

will result in producing neither GF nor TFM file; only
the LOG file will appear in the current directory.
The LOG file reads:

This is METAFONT (mf386),

Version 2.718 [4b]

(preloaded base=plain 95.11.10)

13 SEP 1996 13:13

**\&plain foo.mf

(foo.mf

This is a trivial program.)

The message

This is a trivial program.

will appear also on the screen.
Now, let us consider a bit more realistic

program named, say, REC.MF:

beginchar(48, % ASCII code of character

2cm#, % width of character

1cm#, % height of character

0cm# % depth of character

);

fill unitsquare xscaled 2cm yscaled 1cm;

endchar;

A moderate knowledge of a programming language
(or even plain English) and a moment of thought
is sufficient to find out what character will be
generated: obviously, a rectangle of dimensions
2 cm × 1 cm. The meaning of the statements used
in the above program will be explained later.

This time METAFONT should be invoked
differently, since now the resolution of the output
device, for which the bitmap is meant, is essential.
In the following example

mf386 \&plain \mode=hplaser; input rec.mf

the formula mode=hplaser is responsible for setting
the resolution.2 More precisely, the variable, mode,
receives the value of the symbol hplaser which
is set to an appropriate value during the process
of generating the base (plain); the value of mode

is used by the macro mode_setup, which tells
METAFONT that a bitmap for a Hewlett-Packard

1 Throughout the booklet, Eberhard Mattes’s im-
plementation of METAFONT for MS DOS, mf386, is
referred to in examples.

2 The backslash \ preceding the formula causes
METAFONT to change the mode of the interpretation
of command-line parameters: starting at the backslash,
METAFONT expects to encounter statements written in
its own lingo.

laser printer of resolution 300 × 300 pixels per inch
is to be generated.

Three files will be created this time:
REC.300GF, REC.TFM, and REC.LOG. REC.300GF

(PC DOS abbreviates its name to REC.300) contains
the description of the bitmap; REC.TFM contains
information that the font consists of one character
of code ASCII 48 and that the dimensions of the
character are 2 cm × 1 cm; and REC.LOG contains
text which is a little more elaborate than the
previous example:

This is METAFONT (mf386),

Version 2.718 [4b]

(preloaded base=plain 95.11.10)

13 SEP 1996 13:13

**\&plain \mode=hplaser; input rec.mf

(rec.mf [48])

Font metrics written on rec.tfm.

Output written on rec.300gf

(1 character, 520 bytes).

If the TEX installation at our site is equipped
with drivers which can read GF files, the character
generated a moment ago can now be printed. In
order to do this, one should place the file REC.TFM

in a directory searched by TEX, and, moreover, the
file REC.300GF in a directory searched by the driver.
The respective TEX program might look as follows:

\font\f rec\f0\end

If the installed TEX drivers do not accept GF

files, they are bound to accept PK files, hence it
suffices to convert the file REC.300GF to REC.PK.
This can be done with the help of the program
GFTOPK, belonging to the standard TEX distribution:

gftopk rec.300 c:\pxl\300\rec.pk

(c:\pxl\300\ is a hypothetical name of the
directory, where the PK files of resolution 300 × 300
pixels per inch are to be collected.) The conversion
GF → PK is always advantageous, as the PK files are
more efficiently compressed.

It should be stressed that the presented method
of generating the font REC is fairly universal. In
particular, the fonts of the Computer Modern family
can be generated using exactly the same scheme.
The somewhat troublesome operation of copying
the resulting files to appropriate directories need
not be performed manually. In Eberhard Mattes’s
package, emTeX, one can find the program named
MFJOB which neatly performs this part of job. In
fact, MFJOB is devised to control the overall process
of font production.

106 TUGboat, Volume 20 (1999), No. 2

METAFONT as a Programming Language

Now that we are warmed up, let’s look at some
elements of the METAFONT lingo. Hopefully, the
chosen subset is representative — I believe that the
presented fragment will enable the reader to imagine
the omitted part of the language. I apologize in
advance for a virtual vagueness I am unable to
avoid.

Variables

The notion of a METAFONT variable is somewhat
peculiar. For the purpose of this article, however,
it is enough to know that variables can be used in
much the same way as in Pascal or C, except that
the set of admissible characters is broader: besides
letters (capital and small letters are distinguished)
and digits, the name of a variable can contain such
characters as a hash, an apostrophe, an exclamation
mark, a question mark, a dollar sign, a tilde, etc.

The declaration of variables is not obligatory.
Using an undeclared variable makes METAFONT

interpret it as a variable of the numeric type
(see the section “Numbers”). All variables are
assigned initially a value “undefined”, which is
not the same as “not defined”. This feature
distinguishes METAFONT from other computer
languages which either do not initialise variables
by default (C, Pascal) or assign them a null value
(AWK). It can be assumed that every programmer
hunted fiercely at least once for a variable which
was not assigned an initial value — it is really
a tremendous task. From this point of view,
METAFONT is safe, since a programmer can check
from within a program (see the section “Logical
values”) whether a variable is initialised or not. As
we shall see soon, it is not the only advantage of
having this seemingly exotic possibility.

Units

Now, the time is ripe to explain a strange dualism
of the units occurring in the program REC.MF: both
cm# and cm appear. At a glance one may consider
it to be a bug, but it is not a bug. On the contrary,
the dualism is an important feature of METAFONT

programs, and in order to understand them one
should be aware of the source and the consequences
of the dualism.

Well, the units followed immediately by
a # denote quantities independent of resolu-
tion, so-called sharp units. In fact, they
are variables which are assigned values in
the plain format: pt#=1, cm#=28.45276,

mm#=2.84528, dd#=1.07001, bp#=1.00375, pc#=12,
cc#=12.84010, and in#=72.27. The user is expected
not to change them. Their change — METAFONT

does not prevent this — may likely cause havoc.
Observe that the unit values are expressed in

points, hence a more appropriate name would be
point units. In agreement with tradition, however,
I will let the name sharp units stand.

All sharp units have their “hashless” coun-
terparts, pixel units : pt, cm, mm, dd, bp, pc, cc,
and in. Similar to the sharp units, they are
numeric variables. They express the number of
pixels falling into the interval of a respective length.
In our example (recall that the resolution was set
to 300 × 300 pixels per inch) the values of the pixel
units are: pt=4.1511, cm=118.11055, mm=11.81102,
dd=4.4417, bp=4.16667, pc=49.81314, cc=53.30035,
and in=300. They are computed when executing
mode_setup.

The metric files, i.e., the TFM files, contain
sharp values, whereas pixel units should be used for
drawing curves and filling areas. This simple trick
facilitates the construction of METAFONT programs
(provided some discipline is obeyed), since the
programs become, in fact, resolution-independent.
The following program:

1. mode_setup;

2. beginchar(48, 56.90552, 28.45276, 0);

3. fill unitsquare

4. xscaled 236.2211 yscaled 118.11055;

5. endchar;

6. end

is, in principle, equivalent to the program REC.MF,
but it has at least two drawbacks: first, it is
significantly less intelligible; secondly, if a change
of resolution is required, the fourth line of the
program should be changed which would necessitate
computing the respective values manually — who
wants to do that?

Assigning values to variables

A METAFONT variable can be assigned a value in
one of two ways: either by the use of an assignment
symbol := (as in Pascal), or by the use of an
equality symbol, e.g., 2+x=3*y. One can easily
see that the two ways are not equivalent, as the
statement 2+x:=3*y appearing in a Pascal program
would yield a translation error.

The former assignment method is common to
all programming languages (only the assignment
symbol may vary from language to language), and
therefore it does not require thorough explanation.
On the other hand, the latter method is so

TUGboat, Volume 20 (1999), No. 2 107

important, especially in the context of numerical
calculations, that we shall dwell a bit longer on this
subject.

In many cases, it is more natural and convenient
to describe a graphic object, or a part of it, in terms
of certain relationships rather than in terms of
specific values, resulting from these relationships.
If the relationships lead to an algebraic system of
linear equations, METAFONT is well-suited to deal
with such tasks — there is no necessity of solving
the system by hand. The problem of finding an
intersection point of two straight lines may serve as
a characteristic example of such a task. The solution
involves both METAFONT-specific equations as well
as expressions with undefined values, as we shall see
in the section “Vectors”.

Data Types and the Relevant Operations

Logical (also called Boolean) values. META-
FONT, like most programming languages, provides
two logical constants: true and false. The logical
expressions can be formed with relational symbols
(<, =, >, etc.), logical operators (and, or, not, etc.)
and braces, e.g., (1<0) or (true<false). The
logical expressions appear primarily in conditional
and loop statements (see sections “Conditional
statements” and “Iterative statements”).

A logical variable can be declared using the
instruction boolean; e.g., boolean a,b,c means
that the names a, b, and c represent the logical
variables from this point.

As has already been mentioned, METAFONT

can check whether a given expression has a definite
value. For this purpose the operators known and
unknown can be used syntactically preceding the
expression. The value of the expression known b

immediately after the declaration of b is, obviously,
false. (What is the value of the expression
known (known x)?)

Furthermore, METAFONT provides for checking
the type of an expression. In particular,
the expression should be preceded with the
operator boolean in order to check whether a
given expression is of the logical type, e.g.,
boolean(true and false). In general, the same
operator can be used both for declaring a variable
and for checking the type of an expression.

Strings. A sequence of characters not exceed-
ing a single line, surrounded by a pair of
double quotes denotes a string (text), e.g.,
"this is a string aka text". Strings are mainly
used for communication between the program and

the surrounding world — we have already seen one
example. Another place where one-character strings
may appear is the statement ligtable (see section
“Statement ligtable”).

Obviously, the instruction string is meant for
declaring string variables.

Numbers. METAFONT, unlike typical program-
ming languages, does not distinguish between
integer and real (floating point) numbers. All
variables that can take numeric values are uniformly
declared by the instruction numeric. The fraction
part of a number is always separated by a period
(recall that in TEX both a period and a comma are
admissible), and the integer part of a real number
can be omitted, e.g.: 1234, .61804, 3.14159, etc.

METAFONT accepts typical expressions like
1+x, abs(x), x*y/2, x-round(x), etc. Even more,
it allows for omitting a times operator between
a number and an expression, e.g., instead of
2*(x+3*y) one can use a shorter form 2(x+3y),
which is very convenient in practice.

Rational fractions are treated as numbers,
i.e., the expression 1/2x will be interpreted by
METAFONT as 1

2
x, not as 1

2x
.

METAFONT offers a set of geometry-oriented
algebraic operations. Among others, Pythagorean

addition and subtraction,
√

x2 + y2 and
√

x2 − y2,
are available. These operations, very useful in the
process of creating graphic objects, are denoted by
++ and +-+, respectively. They represent binary
(infix) operators, i.e., one uses them in expressions
like x++y or x+-+y.

Yet another METAFONT-specific operation is
mediation between points (“of-the-way” function),
especially useful in the context of expressing
relations between points on a plane. Instead of
saying (1-t)*x+t*y, one can simply say t[x,y],
where t can be an arbitrary expression. In
particular, t can be a variable.

With this notation, METAFONT differs from
AWK or Pascal. Typically, x[2,5] denotes a variable
with two indices, x2,5 in mathematical notation. For
METAFONT, it is a linear expression yielding 2 for
x=0 and 5 for x=1; in other words, the formula
x[2,5] is equivalent to 3x+2. The variable with
two subscripts should be represented in METAFONT

as x[2][5], which is also a convention accepted by
Pascal. There is virtually no limit for the number
of indices in METAFONT.

A somewhat peculiar numeric quantity, what-
ever, is predefined in plain. Formally, it is a
parameterless function yielding a numeric undefined

108 TUGboat, Volume 20 (1999), No. 2

value. The question arises: what is such a fancy
constant for? The answer will soon emerge. . .

Vectors. As a program designed to operate on
a plane, METAFONT is equipped with pairs of
numbers that can be interpreted as points or vectors
of a Cartesian plane. The notation is intuitive and
simple: given two numeric values (expressions) x

and y, the formula (x,y) represents the expression
of type “pair”. The instruction pair can be used
for declaring pair variables and for checking the
type of expressions.

There are two functions, specific for this
data type, taking a pair expression as an
argument and returning a numeric value, namely,
xpart and ypart. Their meaning is obvious:
xpart((x,y)) = x, ypart((x,y)) = y.

Five useful vectors are predefined in plain:
origin = (0, 0), right = (1, 0), left = (−1, 0),
up = (0, 1), and down = (0,−1).

Pairs of the form (x〈anything〉,y〈anything〉),
where 〈anything〉 denotes a valid ending part of a
name (suffix), can be abbreviated to z〈anything〉;
e.g., one can write z123 or z’ instead of
writing (x123,y123) or (x’,y’), respectively. In
particular, formulas (x,y) and z are equivalent,
provided x and y are numeric variables, which is
usually the case, unless a mad user defines them
otherwise. It should be noted that it is not a
built-in convention — the notation is due to a smart
definition of the symbol z.

The operation of mediation, described in the
section “Numbers”, can also be applied to vectors.
In this case — the interpretation is self-suggesting —
t[z1,z2] denotes a point, belonging to the segment
with endpoints z1 and z2, such that the segment is
divided by this point in the proportion t : (1 − t).
For example, 1/2[z1,z2] denotes the midpoint
of the segment, 0[z1,z2] denotes the point z1,
1[z1,z2] denotes the point z2.

A truly useful paradigm of METAFONT

programming can now be demonstrated: given
points z1, z2, z3, and z4 such that the line
determined by z1, z2 and the line determined by
z3, z4 are not parallel, find the point where the
two lines cross. The natural METAFONT solution is
elegant, although perhaps somewhat surprising:

z5=whatever[z1,z2]=whatever[z3,z4]

Indeed, it is the demanded solution, since —
according to what has already been said —
whatever[z1,z2] denotes a certain point belonging
to the line drawn through the points z1 and z2;
similarly, whatever[z3,z4] denotes a certain point
belonging to the line drawn through the points the

z3 and z4. Therefore, the point z5 belongs to both
lines.

Actually, the foregoing formula is interpreted
by METAFONT as a system of linear equations
which, under the stated assumptions, has a unique
solution, z5.

Affine transformations. Besides the pairs of
numbers, METAFONT provides also 6-tuples, repre-
senting affine (linear) transformations of a plane.
Affine transformations convert squares into paral-
lelograms:

A METAFONT user need not be initiated into
the mysteries of mathematics in order to use
transformations efficiently. Operations with self-
explanatory names, such as shifted, rotated,
slanted, xscaled, yscaled, and similar names,
suffice in most cases.

The following objects can be subject to affine
transformations: vectors, paths, pens (see below)
and, of course, transformations.

For example, if a path p is to be translated
horizontally by 2 cm, the following construction can
be used:

p shifted (2cm,0)

Similarly,

z0 rotated 55

denotes the counter-clockwise rotatation of the
vector z0 by 55 degrees (a positive angle denotes a
counter-clockwise rotation);

p xscaled 2 yscaled 2

denotes the magnification of the path p by factor 2
(in this case, a simpler form can be applied:
p scaled 2);

p reflectedabout (z1,z2)

denotes the mirror symmetric image of the path p

about the line drawn through the points z1 and z2;
and so on.

TUGboat, Volume 20 (1999), No. 2 109

The user can declare transform variables using
the instruction transform. In order to use
such a variable, the following construction can
be used: 〈object〉 transformed 〈transformation〉,
e.g., z0 transformed A, where A is a variable of
type transform.

METAFONT also provides access to all nu-
meric components of a transformation, namely,
there are six functions xxpart, xypart, yxpart,
yypart, xpart, and ypart which for a given
transformation yields the respective components.
A less experienced user need not bother about
transform variables and their components — they
appear comparatively seldom in applications.

Pens. We now know almost enough to draw a
simple picture, except for one METAFONT tool —
pens. Let’s pass immediately to an example without
going into theoretical details:

1. pickup pencircle scaled 1cm;

2. draw (0,0);

3. pickup pensquare scaled 1cm rotated 45;

4. draw (2cm,0);

Typical parts of a METAFONT program, such as
mode_setup, beginchar, etc., have been omitted,
as they are unimportant here.

The first line contains the instruction
pickup pencircle which tells METAFONT use a
circular pen, 1 cm in diameter; the second line tells
METAFONT to use the currently chosen pen to draw
a “dot” in the origin of the coordinate system.
Similarly, the final two lines instruct METAFONT

to put a “square dot” at the point (2 cm, 0). The
resulting figure is admittedly trivial, nonetheless, it
is a good starting point:

Paths. It is nearly impossible to imagine a graphic
system without objects corresponding to planar
curves. Obviously, METAFONT provides objects of
this kind, called paths. They are declared using the
instruction path. Each path consists of segments
being third-order arcs, known as Bézier curves.
Such a segment is determined uniquely by four
points z0, z′

0
, z′

1
, and z1 (z′

0
and z′

1
are called control

points); for t ∈ 〈0, 1〉 the intermediate points of a
Bézier curve are given by the following formula:

z0 (1 − t)3 + 3z′
0
t(1 − t)2 + 3z′

1
t2(1 − t) + z1 t3

As in the case of affine transformations, a budding
METAFONT user can ignore all intricate subtleties
of mathematics connected with Bézier curves. It

is the simplicity of the foregoing formula that is
important here. Worth mentioning is also the
parametrization of Bézier curves (the parameter t
is sometime referred to as “time”): as t increases
from 0 to 1, the formula yields coordinates, in order,
of all points belonging to the curve. For t = 0 and
t = 1, the formula returns the coordinates of the
edges, z0 and z1, respectively. Some of METAFONT

path operations, e.g., the operation subpath, refer
to the parameter t (see below).

One of the most striking capabilities of
METAFONT is its skill at interpolating.3 The
excellent and efficient interpolation mechanism is
undoubtedly one of the best features of METAFONT.
To see how it works, let’s assume that a curve
is to be drawn through the points z0 = (0, 0),
z1 = (0, 2 cm), z2 = (2 cm, 1 cm), z3 = (4 cm, 2 cm),
and z4 = (4 cm, 0). If no additional constraints
are imposed, such a task can be expressed in
METAFONT as follows:

draw z0..z1..z2..z3..z4

The operation “horizontal colon” causes METAFONT

to employ its interpolation methods, trying to join
Bézier arcs as smoothly as possible. The result you
can see in the following figure (the grid was added
in order to facilitate the readings of the coordinates
of nodes).

According to my experience, I would suggest
that the designers of commercial graphic systems
consult the source code of METAFONT in order to
improve the interpolation involved in their systems.

The process of interpolation can be controlled
by imposing constraints. One such constraint is to
force the direction at a given node. To do this, an

3
METAFONT’s interpolation machinery was worked

out by John D. Hobby and was published in his thesis
at Stanford University. His idea was to keep the overall
curvature of the resulting curve constant, if possible. It
turns out that the human eye is extremely sensitive to
the changes of curvature, hence the human inclination
to perceive curves with smoothly changing curvatures
as aestethically pleasing.

110 TUGboat, Volume 20 (1999), No. 2

appropriate vector should be added in curly braces
at chosen nodes in a path formula, e.g.:

draw z0{right}..z1..z2..z3..{right}z4

(recall that right denotes the vector (1,0)). The
local change of constraints causes seemingly the
global change of the shape of the curve:

In fact, the disturbance is nearly local. More
precisely, it vanishes exponentially when going away
from the point of change. If the curve consisted
of a greater numbers of nodes, the effects of the
disturbance would be imperceptible only a few
nodes away from its source.

Besides the “horizontal colon”, there are
also other path operations. Frequently, the
“double-dash” operator, representing a straight-line
connection, is used. For example, the formula

draw z0{right}..z1--z2--z3..{right}z4

results in

The “double-dash” operator causes the neighbour-
ing segments to be calculated independently as if
they were disconnected. The control points of
straight-line segments defined in such a way fulfill
the relation z′

0
= 1

3
[z0, z1], z′

1
= 2

3
[z0, z1]; in other

words, the control points and the endpoints are
equidistant.

If a smooth connection of straight lines and
arcs is required, the “triple-dash” operator can be
used:

draw z0{right}..z1---z2---z3..{right}z4

which yields the following change of the curve:

This method, however, has one drawback. Namely,
the control points of segments marked by the triple
dash almost coincide with the edges of the segments.
METAFONT does not see anything particular in
such a singularity. If, however, exporting to other
systems is intended, the usage of the triple dash
should be discouraged, unless the user is aware of
what is being done. A safer method is to supply
the direction at the nodes explicitly and to apply
the double dash; in such a case the respective path
formula would take the form:

z0{right}..{z2-z1}z1--z2--z3{z3-z2}..

{right}z4

The Bézier straight-line segments are “tidy”and the
shape of the curve stays almost intact. (Check it.)

The paths considered so far did not form a closed
contour. In order to convert an open curve into
a closed contour, the path should be ended by the
operation cycle. Closed contours are important
as they can not only be drawn but also can be
darkened with the operator fill:

fill z0..z1..z2..z3..z4..cycle

The resulting figure is displayed below:

TUGboat, Volume 20 (1999), No. 2 111

More about paths. A reverse operation to
joining segments is, in a sense, an operation
that pulls a fragment out of a path. This can
be accomplished in METAFONT by the use of
the operator subpath. The previously mentioned
notion of the parametrization of Bézier curves is
crucial here. The notion was formulated for single
segments. Its generalization for multisegment paths
is straightforward: nodes are numbered from 0
upwards. As the parameter t takes on (real)
values from i − 1 through i, the corresponding
point traverses the path from the node i − 1 to the
node i. Assume that two numbers, u and v, are
given; the fragment of a path p corresponding to
the interval (u, v) can be expressed in METAFONT

lingo as

subpath (u,v) of p

Referring to our previous example, the statement

draw subpath (.5,3.5) of

(z0..z1..z2..z3..z4)

results in

The operation subpath always produces non-cyclic
paths, even if the operand forms a closed contour.

Although the path operations we have seen
so far suffice for most applications, there exists a
general path construction, enabling a fastidious user
to shape curves arbitrarily:

draw z0 .. controls z0’ and z1’ .. z1

The construction z0 .. controls z0’ and z1’ .. z1

corresponds precisely to the formula given at the
beginning of the section “Paths”. For example, the
figure

can be generated by the following short program

z0=(0,0);

z0’=(5cm,3cm);

z1’=(-1cm,3cm);

z1=(1cm,3cm);

draw z0 .. controls z0’ and z1’ .. z1

A few handy paths have been predefined in
the plain format. Two of them are particularly
useful: unitsquare, i.e., a square of the side length
equal to 1 and the lower left corner coinciding
with the origin of the coordinate system (cf.
example REC.MF) and fullcircle, i.e., a circle
whose diameter is equal to 1 and whose centre lies
at the origin of the coordinate system. Both are,
obviously, cyclic paths.

Supplementary path operations. Furthermore,
there are a few path operations characterizing
a point on a path. Two of them, point and
direction, are most frequently used. The operation
point yields coordinates of the point of a curve
corresponding to the value of a given parameter t.
The operation direction returns a vector parallel
to the direction of the path at a point corresponding
to a given time t. A sample code illustrating the
usage of these operations is given below:

z0=point t of p;

z1=z0

+1mm*(unitvector(direction t of p)

rotated 90);

z2=z0

+1mm*(unitvector(direction t of p)

rotated -90);

Point z0 lies, obviously, on the path p; pont z1 lies
1 mm to the left (with respect to the path direction)
of point z0; and point z2 lies 1 mm to the right of
point z0.

There is also a dual operation to direction,
namely, the operation directiontime. It returns a
real number t such that for a given vector d and
a given path p the equality direction t of p = d

holds. For example, the value of the expression

directiontime up of ((0,0){right}..

{left}(0,1))

is 0.5, which could easily be guessed.
We have already dealt with the problem of

finding a common point of two straight lines.
METAFONT is prepared for performing a more
general task. Namely, there exists an operation
intersectiontimes which finds a crossing point
for two arbitrary paths. Assume that two paths, p1
and p2, are given. The equation

(t1,t2) = p1 intersectiontimes p2

112 TUGboat, Volume 20 (1999), No. 2

defines two numbers, t1 and t2 such that
point t1 of p1 ≈ point t2 of p2

(the approximate equality is unavoidable due to
rounding errors).

If paths do not touch each other, the result
of the operation intersectiontimes is (−1,−1);
if there are several points where they touch each
other, the operation yields the first feasible point.

Arrays. Variables of all types can be declared as
indexed arrays. In order to do this, the name
declared should be followed by one or more pairs of
square brackets, e.g.,

transform T[][]; pair d[];

Now, you can say T[i+j][k] (provided i, j

and k are numeric), d[0], or even d[1.5], as
METAFONT allows for indexing with real numbers
(they are not rounded), etc. If the index expression
is a number only, the square brackets can be
omitted, i.e., d[0] is equivalent to d0, T[1][2] is
equivalent to T1 2, z[0]’ is equivalent to z0’, and
so on. This convention is METAFONT-specific.

Numeric arrays need not be declared. The first
occurrence of a variable, say, q0 causes an implicit
declaration numeric q[].

At last, the description of data types and the related
operations has come to an end. We are a few paces
from sensible applications. One important subject,
however, has not been treated yet — statements.

Statements

We have already seen a lot of statements,
e.g., message, fill, draw, beginchar, endchar,
mode_setup, to mention some of them. The
program can be built out of such primary statements
in three ways: (1) statements can be executed
sequentially, one after the other — to mark this
a semicolon is used; (2) one among several
statements can be performed, provided a certain
condition holds — these are conditional statements,
or conditions; (3) a given statement can be repeated
as long as a certain condition holds — these are
iterative statements, or loops.

First, some primary statements will be
described, followed by conditional and iterative
statements, and then we will deal with a more
elaborate example.

The statements beginchar and endchar. Both
statements have already appeared (see example
REC.MF). Needless to say, statements of this kind
should be present in any language devised for
rendering fonts. The details of their behaviour are

somewhat complex, but fortunately, we can slide
over this subject, as from the practical point of view
they are not essential.

The statement beginchar assigns values to
METAFONT’s internal variables charcode, charwd,
charht, and chardp according to the values passed
as parameters to the statement (four comma-
separated numbers enclosed by braces). They refer
to the ASCII code and to the width, height, and
depth of the character, respectively. The dimensions
should be given in sharp units. Furthermore, the
variables w, h, and d receive the values corresponding
to charwd, charht, and chardp, but expressed in
pixel units. When programming characters, these
variables come in handy.

The parameterless instruction endchar ends
the code for a given character. Once METAFONT

reads this statement, the values of charcode,
charwd, charht, and chardp are written out to
the TFM file, and the bitmap of the character is
written to the GF file. Next, variables such as x,
y (and hence z; see section “Vectors”) w, h, and d

are initialised, therefore the user need not bother
about the values assigned previously when dealing
with subsequent characters.

Both beginchar and endchar are defined in
the plain format, thus a fastidious user can adjust
them to meet particular needs.

The statements fill, draw, and erase. So far,
we have become familiar with the statements fill

and draw; the operator erase prepended to any of
them causes painting in white rather than in black.

The following example demonstrates the results
of the usage of the operations fill and erase fill:

The above figure was obtained by the following
program:

1. mode_setup;

2. beginchar("0",3cm#,2cm#,0);

3. pair c; c=(.5w,.5h); % centre of

4. % the character

5. path q; % a unit square with a centre

6. % coinciding with the origin

7. % of the coordinate system

8. q=unitsquare shifted (-.5,-.5);

9. fill q xscaled w

10. yscaled h shifted c;

11. erase fill q xscaled .9w

TUGboat, Volume 20 (1999), No. 2 113

12. yscaled .9h shifted c;

13. fill q xscaled .8w

14. yscaled .8h shifted c;

15. erase fill q xscaled .7w

16. yscaled .7h shifted c;

17. fill q xscaled .6w

18. yscaled .6h shifted c;

19. erase fill q xscaled .5w

20. yscaled .5h shifted c;

21. fill q xscaled .4w

22. yscaled .4h shifted c;

23. erase fill q xscaled .3w

24. yscaled .3h shifted c;

25. fill q xscaled .2w

26. yscaled .2h shifted c;

27. erase fill q xscaled .1w

28. yscaled .1h shifted c;

29. endchar;

30. end

Actually, it is a “naive” version of the program.
An improved version appears in the section entitled
“Iterative statements”.

The statement ligtable. This statement has
more to do with a font as a whole rather than
with the shapes of individual characters. The
general form of the statement ligtable is by far
too complex to be described here entirely — we shall
confine ourselves to the definition of kerns. Kerns
are tiny spaces, possibly negative, inserted when the
room between a pair of characters is optically either
too small or (more frequently) too large. Kerns
defined by the statement ligtable are presumably
known to the TEX user as implicit kerns. The
information about implicit kerns is written to a TFM

file at the end of METAFONT’s run.
It should be emphasized that kerns are vital for

the final appearance of the font. Improper kerning
can spoil a font even if the character shapes are
masterfully designed.

A typical example of a word in which kerns are
required is the word “WAY”. The letters in both
pairs, “WA” and “AY”, would be too far from each
other without kerning:

rather thisWAY than thisWAY
Here you have an excerpt from the ligtable

program for the font CMR10.

1. k#:=-5/18pt#; kk#:=-5/6pt#;

2. kkk#:=-10/9pt#;

3. ligtable "F": "V": "W":

4. "o" kern kk#, "e" kern kk#,

5. "u" kern kk#, "r" kern kk#,

6. "a" kern kk#, "A" kern kkk#,

7. "K": "X":

8. "O" kern k#, "C" kern k#,

9. "G" kern k#, "Q" kern k#;

10. ligtable "A": "R":

11. "t" kern k#, "C" kern k#,

12. "O" kern k#, "G" kern k#,

13. "U" kern k#, "Q" kern k#,

14. "L":

15. "T" kern kk#, "Y" kern kk#,

16. "V" kern kkk#, "W" kern kkk#;

The first two lines of the excerpt defines three
degrees of kerning to be used subsequently. One-
letter strings followed by a colon refer to the
left-hand sides of kern pairs, whereas one-letter
strings followed by the operator kern refer to the
right-hand sides of kern pairs. The right-hand
sides are to be paired with all preceding left-hand
sides. Such a notation allows for specifying a great
number of kern pairs in a compact and legible way,
e.g., the first ligtable statement specifies 38 kern
pairs. (Why? How many kern pairs specifies the
second ligtable statement?) The kerns under
consideration read kkk# for “WA” and kk# “AY”.
(Check it in TEX.)

It is the information produced by ligtable

statements that is responsible for the size of TFM

files, hence the kern pairs that are unlikely to occur,
e.g., “yY”, should be avoided. Incidentally, the
pairs “Av” and “Aw” are absent from the kern
pairs of the Computer Modern family, which I am
inclined to consider a drawback.

Finally, let’s quote Donald E. Knuth’s admo-
nition concerning the adjustment of the amount of
kerning:

Novices often go overboard on kerning.
Things usually work out best if you kern
by at most half of what looks right to
you at first, since kerning should not
be noticeable by its presence (only by its
absence). Kerning that looks right in a logo
or in a headline display often interrupts
the rhythm of reading when it appears in
ordinary textual material.

The METAFONT book, p. 317

The statements end and bye. These statements,
similar to TEX’s \end and \bye, trigger last-minute
actions. Among others, the information about
kerns is being written to the TFM file. Afterwards,
METAFONT closes the process of data processing.
As in TEX, both statements can be thought of as
synonyms.

114 TUGboat, Volume 20 (1999), No. 2

Conditional statements. The simplest condi-
tional statement has the following form:

if 〈logical expression〉 : 〈statement〉 fi
which means that 〈statement〉 is to be executed
if and only if 〈logical expression〉 takes on the
value true. The symbol 〈statement〉 stands not
necessarily for a primary statement; it can be an
arbitrarily complex construction, involving loops,
conditions and their sequences.

A more general form, often indispensable, is:

if 〈logical expression〉: 〈statement1〉
else: 〈statement2〉 fi

In this case, 〈statement1〉 is performed if 〈logical
expression〉 holds, and 〈statement2〉 otherwise.

The moral is that METAFONT’s conditions
differ mainly in syntax from those of Pascal or C,
while the semantics are equally straightforward.

Iterative statements. The reason for using such
statements has already appeared: in the example
demonstrating the usage of the operation erase, a
series of almost identical statements occurs, except
that the numbers occurring in the statements vary.
Iterative statements are suitable in such cases.
METAFONT’s for statement, syntactically similar to
the statement for of Algol 60 (who remembers it?),
allows for the replacement of the lines 9–28 of the
mentioned example by a more compact code:

1. for i:=10 step -2 until 2:

2. fill q

3. xscaled (1/10i*w)

4. yscaled (1/10i*h)

5. shifted c;

6. erase fill q

7. xscaled (1/10(i-1)*w)

8. yscaled (1/10(i-1)*h)

9. shifted c;

10. endfor

The meaning of the code can be explained as
follows: i is a local variable which takes on values
starting from 10 with step −2 until the value 2 is
reached, i.e., the “looped” statement (lines 2–9) is
performed for i=10, i=8, i=6, i=4, and i=2.

The code can be compacted further by using a
conditional statement:

1. for i:=10 downto 1:

2. if odd i: erase fi fill q

3. xscaled (1/10i*w) yscaled (1/10i*h)

4. shifted c;

5. endfor

The operation downto is equivalent to step -1 un-

til; the expression odd i yields true if i is an odd
number and false otherwise.

Loops are useful not only as a means of
abbreviating programs; first of all, they enhance the
expressive power of a language and thus facilitate
the modifications of programs. In order to obtain
the following figure

a simple cosmetic change of the recent version of
the program is needed:

1. for i:=20 downto 1:

2. if odd i: erase fi fill q

3. xscaled (1/20i*w) yscaled (1/20i*h)

4. shifted (1/20i*c);

5. endfor

Imagine how long the code would be without a loop
and how laborious the respective change would be.

The description of conditional and iterative
statements is far from being complete. Our
knowledge, however, is sufficient to understand
the examples I am about to demonstrate.

Examples

The title of this article suggests that the first
example should bear a stamp of practicality.
Needless to say, the truly practical applications
are infested with obscure details. Therefore the
following example, the font OK, should be regarded
as a model of reality rather than reality itself.

Font OK. The font OK contains only two letters,
namely, K and O. The font is admittedly simple.
This does not mean that it cannot serve as an ample
example. On the contrary, it turns out that the
detailed description of this simple font is surprisingly
long. It is by no means a drawback of METAFONT —
just that the task of font design is intrinsically
difficult. The complexity of METAFONT programs
is a derivative of the complexity of the task.

The font OK, like the fonts of the Computer
Modern family, consists of a parameter file
(primary), OK10.MF, and a driver file (secondary, to
be input), OK.MF. The parameter file defines a set of
numeric quantities, specific for a given nominal size
(10 pt), whereas the driver file defines in a generic
way the shapes of characters.

The magnified letters O and K of the font OK
are shown below:

TUGboat, Volume 20 (1999), No. 2 115

Notice the nodes marked with 0, 1, 1’, etc. They
correspond to the variables z0, z1, z1’, . . ., z11,
respectively. To show them in action, both programs
are presented in extenso. The reader is supposed
to decide which parts of the code are worth reading
and which can be skipped.

Let’s peep at the file OK10.MF:

1. s#:=10pt#; % nominal font size

2. u#:=1/18s#; % unit width

3. h#:=3/4s#; % height of letters

4. marg#:=u#; % sidebar size

5. o#:=1/50s#; % top and bottom overshoot

6. % of the letter ‘‘O’’

7. alpha:=5; % angle of the torsion

8. % of the inner and outer

9. % edges of the letter ‘‘O’’

10. stem#:=3u#; % thicknes of the arm

11. % of the letter ,,K’’

12. input ok

The first two lines are presumably obvious.
Doubts may arise at the third line: why does the
height of letters differ from the font size? There
is no rule for that. Usually the size of a font is
roughly the same as the overall height of a brace.
Although the font OK does not contain a brace,
it was intended to be used with the font CMR10 in
which letters are roughly 7 points tall.

Line 4 defines the distance between the glyph
of a character and the side edges of a character.
The width of a character is usually a bit greater
than the width of its glyph. In the case under
consideration, the letters would touch each other
in the word OK if the variable marg# was assigned

a null value. Note that, in general, left and right
sidebars need not be equal.

Line 5 sets the amount of a so-called overshoot.
This quantity is necessary for achieving the optical
balance between the heights of rounded and square
letters. The reason behind this is a well known
optical illusion. Namely, a square and a circle of
the same height are not perceived as being equal, a
circle is seemingly smaller:

0
How to compensate for this illusion? Don’t expect
it to be a trivial task. An expert in the realm of
computer fonts, Peter Karow (URW), says:

These and other optical effects can only
be properly and correctly considered by
experienced type designers. In future all
technicians should bear this fact in mind.
Let us hope that we have seen the last of
those “computer typefaces in 3 hours.”

Digital Formats for Typefaces, p. 26

Line 7 defines the asymmetry of the inner and
outer contours of the letter O. It is the matter of a
designer’s taste whether such an asymmetry is at all
needed. In the font OK the value of 5 degrees has
been arbitrarily assumed, but there are no profound
reasons to stick to this value.

Eventually, the thickness of the arms of the
letter K is determined in line 10.

Altogether, there are seven parameters —
pretty few in comparison with the sixty two
parameters of the Computer Modern family. But,
on the other hand, surprisingly many for such a
nearly trivial example.

The parameters allow for generating a broad
variety of alterations. In particular, the font
designer can obtain effects which cannot be
achieved by simple non-uniform scaling. Let’s set,
e.g., u#:=1/24s# and stem#:=2u#. Compare the
resulting light narrow font (left) with the original
one (centre) and with the original font narrowed by
factor 0.75 (right):

OK OK OK
A careless change of parameters may lead to

surprising and/or unwanted results, e.g., setting
u#:=1/4s# causes a hardly acceptable effect:
OK.

The last line of the file OK10.MF contains the
statement input ok. METAFONT’s input statement
works essentially in the same way as TEX’s \input

statement: after reading it, METAFONT switches
to the file OK.MF and continues to interpret the

116 TUGboat, Volume 20 (1999), No. 2

program. Following METAFONT, let’s also switch to
the file OK.MF. The METAFONT code becomes now
somewhat tougher, therefore the reader is supposed
to be armed with patience.

The two initial lines of the file read:

1. mode_setup;

2. define_pixels(stem,marg,o);

We are already acquainted with mode_setup.
The statement define_pixels remains unknown
thus far, but its meaning can easily be deduced.
Actually, it assigns values to the implicitly declared
variables stem, marg, and o. Obviously, the values
are expressed in pixel units and correspond to the
values of stem#, marg#, and o#, respectively.

The subsequent lines contain the description of
the letter O:

3. beginchar("O",15u#,h#,0);

4. z1=(marg,1/2h);

5. z1’=z1+9/8stem*

6. (right rotated -alpha);

7. z2=(1/2w,h+o);

8. z2’=z2+1/2stem*

9. (right rotated (-90-alpha));

10. z3=(w-marg,1/2h);

11. z3’=z3+9/8stem*

12. (right rotated (180-alpha));

13. z4=(1/2w,-o);

14. z4’=z4+1/2stem*

15. (right rotated (90-alpha));

16. fill z1..z2..z3..z4..cycle;

17. erase fill z1’..z2’..z3’..z4’..cycle;

18. endchar;

Note the intense usage of the variables w and h

(cf. section “Statements beginchar and endchar”).
Observe also that the first of the four parameters
passed to beginchar is not a number. Instead, it
is a one-letter string. METAFONT accepts such a
variant, presuming that the ASCII code of the letter
is meant, 79 in this case.

The next three lines prepare two auxiliary
variables to be used in the program for the letter K.

19. pair K’, K’’; % vectors determining

20. % the angle between the

21. % arms of the letter ‘K’

22. K’=unitvector(1,1);

23. K’’=unitvector(4/5,-1);

The operation unitvector, occurring in
lines 22–23, computes a vector of length 1, parallel
to the vector passed as an argument. Usually, it
is more convenient to formulate relations without
paying attention to the length of vectors (in this

case K’ = (1/
√

2, 1/
√

2), K’’ = (4/
√

41,−5/
√

41),

admittedly ugly formulas, aren’t they?), but in
order to control distances between elements of a
graphic object, unit-length vectors come in handy.

Now, a relatively complex program for the
letter K ensues:

24. beginchar("K",0,h#,0);

25. % the width will be computed soon...

26. forsuffixes $:= ,#:

27. stem$’=11/12stem$;

28. z0$=(marg$+2/3stem$,3/5h$);

29. z1$=whatever[z0$,z0$+K’];

30. x1$=marg$+stem$;

31. z2$=whatever[z0$,z0$+K’];

32. z3$+whatever*K’=z2$+stem$’*

33. (K’ rotated -90);

34. y2$=y3$=h$;

35. z7$=whatever[z0$,z0$+K’’];

36. x7$=marg$+stem$;

37. z6$=whatever[z0$,z0$+K’’];

38. z5$+whatever*K’’=z6$+stem$’*

39. (K’’ rotated 90);

40. y5$=y6$=0;

41. endfor

42. charwd:=x5#+.5marg#;

43. z4=whatever[z3,z3+K’]=

44. whatever[z5,z5+K’’];

45. z8=(marg+stem,0);

46. z9=(marg,0);

47. z10=(marg,h);

48. z11=(marg+stem,h);

49. fill for i:=1 upto 11:

50. z[i]-- endfor cycle;

51. endchar;

The main source of the complexity is a peculiar
principle underlying the construction of the letter:
if the thickness and the directions of the arms
are given, the width cannot be imposed, but has
to be calculated. In this case, the width is
controlled by the rightmost point of the letter K,
i.e., by z5. The width is set only in line 42.
It is assigned a value of the x-coordinate of the
point z5 increased by the value of the variable
marg# (cf. also sections “Vectors” and “Statements
beginchar and endchar”).

The tricky part is the loop in line 26. It works
as follows: its body (lines 27–40) is performed
twice; the control variable of the loop, $, is replaced
by an empty suffix during the first pass, whereas
during the second pass it is replaced by a hash. In
other words, during the first pass the body will be
interpreted as

TUGboat, Volume 20 (1999), No. 2 117

stem’=11/12stem;

z0=(marg+2/3stem,3/5h);

z1=whatever[z0,z0+K’];

...

and during the second pass as

stem#’=11/12stem#;

z0#=(marg#+2/3stem#,3/5h#);

z1#=whatever[z0#,z0#+K’];

...

The second pass is necessary to compute the
coordinates of z5 in sharp units. Actually, the
statement mode_setup defines the variable hppp

(horizontal pixels per point), and one might try to
compute z5# as equal to z5/hppp. This, however,
is wrong, as the value of z5# would then depend
on a given resolution due to rounding errors. The
employed trick ensures that the TFM file is resolution-
independent.

In order to understand the code in details, an
unaided study is unavoidable. Therefore, we’ll go
no further into the matter, merely pointing out the
characteristic features of the code.

The problem of finding a point where two
straight lines cross (see section “Vectors”) occurs
several times here, hence the intense usage of
equations and of the construction whatever[...].
Another interesting element is the loop in lines 49-
50. It is used inside a path expression. It is a
METAFONT-specific feature. Typical programming
languages do not allow for using loops in expressions,
while METAFONT accepts such constructions. For
example, the statement

message decimal(for i:=1 upto 100:

+i endfor)

will result in writing to the screen and to the LOG

file the value 5050, i.e., the sum
∑

100

i=1
i. Actually,

the for loop can be thought of as a macro (TEX
users are supposed to be familiar with the notion of
macros), expanding in this case to +1+2+3 . . . +100,
and that’s the point. The operation decimal

converts the numerical result to a decimal string
representation, i.e., to "5050".

The file OK.MF ends with the following sequence
of statements:

52. ligtable "K" : "O" kern -3/2u#;

53. font_size s#;

54. font_slant 0;

55. font_normal_space 6u#;

56. font_normal_stretch 3u#;

57. font_normal_shrink 2u#;

58. font_quad 18u#; % 18u#=s#

59. bye

An extremely simple form of the statement
ligtable appears in line 52. The first line defines
one implicit kern to be inserted between K and O.
The next six lines define six basic font parameters.
Lines 54–58 can be accessed in TEX as \fontdimen
registers, namely, \fontdimen1, \fontdimen2,
\fontdimen3, \fontdimen4, and \fontdimen6,
respectively (see The TEXbook, p. 433). The
font size, also called design size, presents a little
puzzle to TEX users: how to access a font size in a
TEX program? (Hint: it is not \fontdimen0.) TEX
makes use of the design size of a font when the font
is declared using an at clause. For example, the
statement

\font\f ok10 at 20pt

informs TEX that the font OK10 should be loaded at
doubled size, as the design size of the font is 10pt
(see the first line of the file OK10.MF). A number
appearing in a font name is traditionally equal to
the design size of a font, but it is not advisable to
rely on this information. In fact, TEX ignores it
completely.

Our font in miniature is ready. The miniature,
however, turned out to be fairly complex. I would
consider my goal to be reached (at least partially),
if the reader is not surprised to learn that the
manual for the Computer Modern family is about
six hundred pages long.

Solving systems of linear algebraic equations.
In the handbooks of elementary algebra one can
find exercises like this: given a system of linear
equations:

a + b + c = 1

a + 2b + 3c = 1

3a + 5b + 9c = 1
find numbers a, b, and c. It turns out that
METAFONT is well-suited for solving algebraic
problems of this kind. It just suffices to copy
verbatim the equations:

1. a+b+c=1; a+2b+3c=1; 3a+5b+9c=1;

2. showvariable a,b,c;

Running METAFONT on this program results in the
following message:

a=0

b=2

c=-1

The message is due to the statement showvariable.
The statement message might have been used
as well, but then numbers should be converted
to strings using the operation decimal (see the
previous two pages).

118 TUGboat, Volume 20 (1999), No. 2

Solving such problems using METAFONT does
not seem too practical, unless help in doing a child’s
homework is needed. . . Nonetheless, METAFONT’s
talents are not to be ignored. It is worth
mentioning that thousands of equations do not
frighten METAFONT.4 Matrices of this form arise
as a result of discretization of partial differential
equations. The right-hand sides of the equations
were chosen in such a way that the exact solution
was given by xi = 1

10
i. The average square

error was about 0.025 for n = 1000, about 0.65
for n = 2000, and about 4.95 for n = 4000;
maximal errors were about 0.036, 1.00, and 6.87,
respectively. The calculations lasted 40′′, 3′ 10′′,
and 13′ 45′′, respectively (an IBM PC compatible,
486 processor). It shows the strength and the
weakness of METAFONT’s numerical machinery.

My intention was to show a genuinely
impractical application. Eventually, the reader
is to decide whether I hit the target. Note,
however, that a neat example of a METAFONT

calculator can be found in The METAFONTbook

(the program expr.mf, p. 61). D. E. Knuth admits,
that he occasionally uses METAFONT as a pocket
calculator — why not follow the master? After
all, calculators can solve also systems of linear
equations. . .

Recreational applications. Finally, let’s have a
look at two examples of figures that can be produced
using METAFONT. This time, only the results will
be presented, otherwise the reader might be bored
stiff.

4 A few details for math-oriented users: sys-
tems of linear equations defined by matrices [ai,j],
i = 1, 2, . . . , n, j = 1, 2, . . . , n, such that ai,i = 4,

ai,j = −1 for i − j = 1 or i − j = 25, ai,j = 0, were

tested for n = 1000, 2000, 4000.

I borrowed the idea of winding the number
π around a circle from Alan Hoenig. The fractal
“branches” were published in “PostScript Language
Journal”, 2, No. 4. Translation from PostScript to
METAFONT and back is an instructive and thus an
advisable exercise, indeed.

One might call such applications “applications
of amusement”. I would reply that amusement is
no sin. On the contrary, it is often truly inspiring,
perhaps even more than serious applications can
ever be.

0123456789ABThe End

⋄ Bogus law Jackowski

BOP s.c., ul. Piastowska 70,

Gdańsk, Poland

B.Jackowski@gust.org.pl

TUGboat, Volume 20 (1999), No. 2 119

TUGboat, Volume 20 (1999), No. 2 119

Language Support

Typesetting Bengali in TEX

Anshuman Pandey

1 Introduction

The Bengali (or Bāṅglā bAMlA) script is one of the
thirteen primary scripts used throughout India. Like
other Indic scripts, the Bengali is derived from the
ancient Brahmi script. The script is intimately tied
with the Bengali language, which according to the
latest data from Ethnologue, is currently the fourth
most spoken language in the world with roughly
189 million speakers [2]. The language is spoken
mainly in the Indian province of West Bengal and
in Bangladesh. Bengali has been the medium for
many notable artists, of whom the famous litera-

teur Rabindranath Tagore and the great film-maker
Satyajit Ray are the best known.

2 The Script

Of all the scripts derived from Brahmi, Bengali is
most closely related historically to Devanagari. The
two scripts share a comparable inventory of conso-
nant, vowel, and conjunct characters, however, aside
from superficial form and design, the primary differ-
ence is the phonetic value assigned to certain char-
acters of the Bengali script.1

Like all Brahmi-based scripts, Bengali is techni-
cally an alpha-syllabic script. This system is based
on the unit of the “graphic” syllable, or aks.ara,
which by definition always ends in a vowel. Each
basic consonant character in Bengali is understood
to represent the consonant modified by the inherent
vowel a, eg. k = ka.

When a consonant is modified by any other
vowel, the syllable is written using a diacritic form
of the vowel. For example, the syllable kā kA is
composed of the consonant ka k and the vowel ā

aA (diacritic form: A). Syllables consisting of only a
vowel, or with a vowel in word-initial position, are
written with the full form of the vowel.

A “graphic” syllable consisting of a sequence
of consonants is written using a specific conjunct
form, or ẏuktāks.ar yu�A�r . For instance, the con-
sonant cluster kka (k + k) is written as a single

grapheme, �, not laterally as kk. The latter form

1 For further details on Bengali phonology please con-
sult Suniti Kumar Chatterji’s Origin and Development of the

Bengali Language, Allen & Unwin: London, 1970–72, reprint
of 1926 ed.

120 TUGboat, Volume 20 (1999), No. 2

represents kaka, not kka. Such conjuncts are rela-
tively easy to decipher because the conjunct retains
some semblance to the individual elements it com-
prises. However, with others decipherment is a little
more daunting because the form gives no indication
of its constituents: ks.a (k + F) �, ṅga (q + g)

�, and tra (t + r) ².

The subscript character called hasanta (◦ �) is
used to indicate an elision of the inherent a from a
consonant. For example, k� is k, not ka. In some in-
stances, generally when dealing with poor or limited
types, the hasanta is used in modifying consonants
to produce conjuncts. The modified consonant is
then written laterally with the following consonant
to produce a simplified ligature. Therefore, � may
theoretically be written as k�k, but such practice is
rare as traditional Bengali orthography places great
importance on the proper formation of letters.

3 Short History of Bengali Typesetting

The development of modern modes of printing and
typesetting Bengali coincided with the assumption
of government of Bengal by the British East India
Company in 1772. Seeing the need to educate its
officials in the vernacular, the British sought to pro-
vide a means by which to expedite such instruction.
The task was taken up by Nathaniel Brassey Hal-
hed who wrote a book titled A Grammar of the

Bengal Language. Printed in 1778 at Hoogly (near
Calcutta), this was the first book containing Ben-
gali characters printed with movable types. These
movable types were cast by Sir Charles Wilkins.

Wilkins, considered the pioneer of Indic type-
setting, not only instituted the mechanical print-
ing of Bengali, but even trained native technicians
and motivated them to apply their skills to other
Indic scripts as well. One of Wilkins’ students, a
man by the name of Panchanana Karmakar, eventu-
ally brought forth a large inventory of Bengali types
which led to further advancements in the printing of
Bengali [5].

4 Bengali Fonts and Packages for TEX

The typesetting of Bengali gained another big boost
when it was introduced to electronic typesetting and
publishing. Initially, due to the complex nature of
Bengali conjuncts and the intricate design elements
of the basic characters themselves, it was rather dif-
ficult to find a computer font containing a complete
set of conjuncts for the script, and/or a typeface
which was aesthetic in its display of the intricate
and complex glyphs.

TEX was first introduced to Bengali in 1992
when Avinash Chopde added a support module for
the HP Softfont ‘SonarGaon’ (sgaon) to his itrans

package. ‘SonarGaon’ was designed by Anisur Rah-
man in 1990, and was available in three weights:
normal, slanted, and compressed. Although it was
a decent Bengali font for the time, it was less than
complete in that it lacked several standard ligatures.

To amend this deficiency, Muhammad Ali Mas-
roor developed a package which supplemented the
support for ‘SonarGoan’ in itrans. Called arosgn, or
“Aro SonarGaon” (“more SonarGaon”), this pack-
age extended the ‘SonarGaon’ font by providing in
a METAFONT source the glyphs missing from the
parent font and a set of macros with which to access
these new extensions.

The support for ‘SonarGaon’ and arosgn was
later dropped from itrans partially because the font
was retracted from the public domain. The other
factor was the development by Shrikrishna Patil of a
user-defined Type-1 PostScript font called “ItxBen-
gali”. This font was adapted for use with itrans and
replaced ‘SonarGoan’.2

Last, but not least, is a program called ‘Bengali
Writer’ developed by Abhijit Das (Barda).3 ‘Ben-
gali Writer’ is a text editor for the X11 windows
system which allows the user to type Bengali doc-
uments and save them in TEX format. Documents
saved in TEX format are then to be used with TEX in
conjunction with the ‘Bengali Writer TEX Interface’
(bwti) package.

The bwti package consists of a beautiful Bengali
METAFONT and a set of macros which facilitate the
inputting of Bengali text. The input system is not
extremely fluid and has low readability. It appears
to be a verbatim reflection of the font encoding, and
conjuncts are defined as macros. For example, with
bwti a word like digbijaẏa idi�jy must be input
as idi\gb jy instead of digbija.ya as with the
bengali package.

5 The bengali Package

The Bengali for TEX (bengali) package is housed
on CTAN in the language/bengali/pandey/ direc-
tory. This package differs from those described in
the above section in that it:

1. provides a means aside from itrans and bwti of
typesetting Bengali

2. provides a simple, stand-alone preprocessor in-
terface

2 These and other Indic language packages are described
in the article “An Overview of Indic Fonts for TEX” [4].

3 For more information on ‘Bengali Writer’ and related
utilities see http://www2.csa.iisc.ernet.in/~abhij/bwti/.

TUGboat, Volume 20 (1999), No. 2 121

3. implements the ‘Velthuis’ transliteration scheme
(see Section 5.2 for details)

4. provides a simple, macro-based method of de-
limiting Bengali text, similar in form and style
to other Indic script packages like Devanagari

for TEX

5. complies with the New Font Selection Scheme
(NFSS)

6. incorporates the latest version of the ‘Bengali’
METAFONT developed by Abhijit Das (Barda)

5.1 The ‘Bengali’ Font

Das designed his ‘Bengali’ METAFONT after study-
ing the various types employed in the modern print-
ing of Bengali books in India. Das emphasized that
he did not model the font after the design and form
of any particular typeface, nor did he employ any in-
struments in its development, but relied heavily on
crude approximations made by the naked eye. Upon
close inspection, the characters of Das’s METAFONT

adhere to the traditional Bengali orthographic style
found in many printed books, and rival many mod-
ern Bengali typefaces of the highest quality.

The beautiful ‘Bengali’ (bn) font is currently
available in two shapes: normal (bnr) and slanted
(bnsl). It contains an almost complete inventory
of Bengali vowels, consonants, numerals, diacritics,
and punctuation marks. The font does lack three
rare characters: r̄

˚
(long vocalic ‘r’), l

˚
(vocalic ‘l’,

resembling the numeral 9: 9), and l̄
˚

(long vocalic
‘l’).4

Nonetheless, the font contains the entire reper-
toire of traditional Bengali conjunct and ligature
forms, and also a few extra ligatures used in writing
loan words. In addition to the conjunct forms given
in Table 2, Bengali has a few special consonant-
vowel ligatures formed from the vowel u �, and in
one case the vowel r

˚
�. These are illustrated in the

chart below:

g + � gu � h + � hu �
r + � ru � t + r + � tru ³
r + � ruu � n + t + � ntu Àu
S + � "su � l + g + � lgu ã
h + � h.r � s + t + � stu þ

4 The existence of these characters in the traditional Ben-
gali syllabary is debatable. Although The Unicode Standard,

Version 2.0 does not place the long forms of these characters
in the traditional ordering, it does reserve the positions they
would occupy were they to be included in the proper arrange-
ment. Nor does it list them under the heading ‘Independent
Vowels’, but places them instead under ‘Generic Additions.’
Unicode also gives the diacritic form of these characters [7].
However, the ISO draft standard 15919 for the transliteration
of Indic scripts does show the two long forms in the tradi-
tional arrangement [6].

With a few exceptions— namely kra �, tra ²,
and bhra ×, and variants of these — Table 2 does not
show conjuncts formed with ra r or ya Y, as most
ligatures containing these two elements are produced
in a relatively static vertical or lateral fashion. In
the case of ra, the ra-phala (�), or the ligature form

of ra is placed beneath the consonant: p� pra and
s� sra. In the case of ya, the ya-phala (
) is placed

after the consonant: p
 pya and s
 sya.
Additionally, when ra r is the initial element in

a consonant conjunct, it is written as a superscript
diacritic called repha. For instance, the word karma

is written kmÆ karma, with the r above the ma.
As there are no character primitives in the bn

font, producing conjuncts containing non-traditional
phonemes is a problem. A few of these have been
accounted for, but there may be cases which have
been overlooked. One solution is to use the hasanta

to explicitly produce such characters. If the prepro-
cessor detects a conjunct it does not recognize it will
‘create’ one by joining the full sizes with a hasanta.
The result is not pretty, but it is a solution!

A few subtle kerning adjustments were needed
to correctly align the placement of vowel diacritics
below consonants. The preprocessor manages such
kernings and therefore manual adjustments are not
needed.

Since the font contains several complex liga-
tures which will produce rather unsatisfactory out-
put at small sizes such as 8pt, font magnifications
below 10pt are not supported. Therefore attempts
to use bn in footnotes and with such NFSS com-
mands as \small will result in a message from TEX
complaining about a missing metric file. Perhaps a
solution is possible in the near future.

5.2 Transliterated Input

Bengali text is entered in transliteration. Each char-
acter in the Bengali syllabary has been assigned a
corresponding value based on the Roman alphabet,
or a combination of signs from the Roman alphabet.
The author has adapted the ‘Velthuis’ translitera-
tion scheme for the bengali package.

The ‘Velthuis’ scheme was developed in 1990
by Frans Velthuis as a means of providing translit-
erated input for his Devanagari for TEX package, or
devnag. As the Bengali syllabary resembles the De-
vanagari, the ‘Velthuis’ scheme is perfectly suitable
to transliterate Bengali (and, for that matter, any
other Indic script). It was necessary to add a few
extensions to the scheme, otherwise it has remained
largely unchanged from the original. The scheme as
modified for Bengali is given in Table 1.

122 TUGboat, Volume 20 (1999), No. 2

stops

c v

k ka ka

K kha kha

g ga ga

G gha gha

q ṅa "na

 ca ca

C cha cha

j ja ja

J jha jha

Q ña ~na

T t.a .ta

Z t.ha .tha

D d. a .da

R r.a Ra

X d. ha .dha

V r.ha Rha

N n. a .na

t ta ta

z tha tha

d da da

x dha dha

n na na

p pa pa

f pha pha

b ba ba

v bha bha

m ma ma

sonorants

c v

Y ya ya

y ẏa .ya

r ra ra

L ra ~ra

l la la

b ba ba

P va va

S śa "sa

F s.a .sa

s sa sa

h ha ha

numerals

c v

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

vowels

c v

a a a

aA ◦A ā aa

� i◦ i i

� ◦I ı̄ ii

� ◦ u u u

� ◦ U ū uu

� ◦ W r
˚

.r

� e◦ e e

	 E◦ ai ai

 e◦A o o

� e◦O au au

special characters

c v

M m. .m anusvāra

w ṁ ~m candrabindu

H h. .h visarga

� & hasanta

B t T khan. d. a ta

. . | dāṁr. i

c CSX+ 8-bit scheme

v ‘Velthuis’ 7-bit scheme

Table 1: Inventory of Bengali Characters

TUGboat, Volume 20 (1999), No. 2 123

k + k kk �
k + T k.t �
k + t kt �
k + m km �
k + r kr �
k + l kl �
k + b kb �
k + F k.s �
k + F + N k.s.n �
k + F + m k.sm �
k + s ks �
g + x gdh �
g + n gn �
g + m gm �
g + l lm Ǳ
g + b gb �
G + n ghn �
q + k "nk �
q + k + F "nk.s �
q + K "nkh �
q + g "ng �
q + G "ngh �
q + m "ngm �

 +
 cc �

 + C cch �

 + C + b cchb �

 + Q c~n �
j + j jj �
j + j + b jjb �
j + J jjh �
j + Q j~n �
j + b jb �
Q +
 ~nc
Q + C ~nch ¡
Q + j ~nj ¢
Q + J ~njh £
T + T .t.t ¤
T + b .tb ¥
D + D .d.d �
N + T .n.t §
N + Z .n.th ¨
N + D .n.d ©
N + N .n.n ª
N + m .nm «
t + t tt ¬
t + t + b ttb ­

t + z tth ®
t + n tn ¯
t + b tb °
t + m tm ±
t + r tr ²
z + b thb ¾
d + g dg ´
d + G dgh µ
d + d dd ¶
d + x ddh ·
d + b db ¸
d + v dbh ¹
d + v + r dbhr º
d + m dm »
x + n dhn ¼
x + b dhb ½
n + t nt À
n + t + b ntb Â
n + t + r ntr �
n + z nth Ä
n + d nd Å
n + d + b ndb ¿
n + x ndh Æ
n + n nn Ç
n + b nb È
n + m nm É
n + s ns Ê
p + T p.t Ë
p + t pt Ì
p + n pn Í
p + p pp Î
p + l pl Ï
p + s ps �
f + l phl Ñ
b + j bj Ò
b + d bd Ó
b + x bdh Ô
b + b bb Õ
b + l bl Ö
v + r bhr ×
v + l bhl Ø
m + n mn Ù
m + p mp Ú
m + f mph Û
m + b mb Ü
m + v mbh Ý

m + v + r mbhr Þ
m + m mm ß
m + l ml à
l + k lk á
l + g lg â
l + T l.t ä
l + D l.d å
l + p lp æ
l + b lb ç
l + m lm è
l + l ll é
S +
 "sc ê
S + C "sch ë
S + n "sn ì
S + m "sm í
S + l "sl î
S + b "sb ï
F + k .sk ð
F + k + r .skr ñ
F + T .s.t ò
F + Z .s.th ó
F + N .s.n �
F + p .sp õ
F + f .sph ö
F + m .sm ÷
s + k sk ø
s + k + r skr ù
s + k + l skl ú
s + K skh û
s + T s.t ü
s + t st ý
s + t + r str ÿ
s + z sth �
s + n sn �
s + p sp �
s + p + l spl �
s + f sph �
s + b sb �
s + m sm �
s + l sl �
h + N h.n �
h + n hn �
h + m hm
h + b hb >
h + l hl }
R + g Rg �

Table 2: Supported Bengali conjuncts

124 TUGboat, Volume 20 (1999), No. 2

ek l�eb emAr kAYÆ, keh sÆ
A rib {\bn ke la{}ibe mor kaarya, kahe sandhyaa rabi

�inyA jgB reh in�¬r Cib . "suni.yaa jagaT rahe niruttar chabi |

mAiTr p�dIp iCl, es kihl, �Aim maa.tir pradiip chila, se kahila, sbaami

aAmAr eYTuku sAx
 kirb tA aAim . aamaar ye.tuku saadhya kariba taa aami |

{ ribÅ�nAz ZAku r -- rabindranaath .thaakur}

Figure 1: A Poem by Rabindranath Tagore

Bengali does not distinguish between ba and va,
and collapses both into ba. For this reason, as a gen-
eral rule, all words containing va should be translit-
erated as ba. However, when parsing conjuncts the
preprocessor will accept va in place of ba, so the
word �Aim may be transliterated as either svaami

or sbaami. If the preprocessor detects va outside of
a conjunct, it will assume that the Assamese va is
intended, and will produce an undesired output.

Another significant point is the use of {} to
break the lexical scan. This is important when two
short vowels are encoded in succession. The brack-
ets will prevent the preprocessor from interpreting
the two short vowels as a diphthong. For example,
compare l�eb la{}ibe with Eleb laibe.

The above two points are illustrated in Figure 1.
As indicated in the figure, the transliterated input
text is placed within the scope delimited by {\bn

and }. This allows the preprocessor to locate and
properly translate the input to the appropriate font
character codes.

5.3 The Macros

The initialization for the bengali package is managed
by the beng style file. The style defines:

1. the macro \bn as the delimiter for Bengali text.
The definition of \bn sets the current font to
the bn family, initializes bn for use with NFSS,
and provides an appropriate \baselineskip so
there is adequate clearance between lines for
super- and subscript characters.

2. a bengali counter which may be used to pro-
duce Bengali numerals for page numbering and
enumerated environments.

An idiosyncracy of the \bn macro is that a curly
brace must immediately precede it and that a space
must immediately follow it: {\bn . Otherwise, the
preprocessor will return an error stating it was un-
able to locate a valid Bengali delimiter.

The document containing Bengali text is to be
considered as any other TEX file. As Bengali text is
delimited by {\bn text }, any other TEX macros and
packages may be used in the document. However,

these Bengali documents should have the extension
.bn in the file name. This lets the preprocessor know
that the file is associated with it.

Additionally, any shape- or size-changing com-
mands such as \large or \slshape should follow
the \bn macro. Otherwise, the declaration of the
default font as bn will be over-written by the NFSS

macro’s default declaration of the Computer Mod-
ern fonts. The result will be a jumble of characters,
not the intended Bengali.

5.4 The Preprocessor

Once the Bengali text has been transliterated, the
file is run through a program called a preprocessor.
A preprocessor is the ideal method for enabling the
typesetting of such complex scripts as Bengali be-
cause it presents the user with a simple interface for
character input. The user has only to be concerned
with the transliteration, because the preprocessor
will manage the conversion of the input text into
character codes with which TEX is familiar.

A preprocessor called beng has been developed
for use with the bengali package. It is a small pro-
gram written in C and based in function on the
preprocessor for Charles Wikner’s sanskrit package.
The syntax for its use is:

beng infile[.bn] [outfile[.tex]]

where infile is the name of the Bengali document.
The .bn extension is optional, as is the target out-
put file. By default the preprocessor will name the
output file the same as the input, but with the ex-
tension .tex.

Running the preprocessor without any argu-
ments invokes the interactive mode. The input and
output filenames must then be manually entered at
the prompts. The version number and other infor-
mation can be obtained from the preprocessor by
invoking it with -h. The author’s email address is
also given in case any problems arise with the use of
the program.

TUGboat, Volume 20 (1999), No. 2 125

5.5 A Note on Hyphenation

There is no tradition of hyphenating words in In-
dian orthography. In manuscripts, the use of hy-
phens is non-existent, and in early printed mate-
rials, hyphenation was applied arbitrarily between
any aks.ara-s when the end of a line was reached.
Nowadays, printers are more keenly aware of word-
breaks at the end of lines, and attempt to maintain
syntactic sense when applying hyphenation.

Unfortunately, such “intelligent” hyphenation
cannot be produced with the bengali package. When
the preprocessor converts transliterated input into
internal character codes, the output deviates sub-
stantially from what TEX would consider a ‘word’.
However, if by chance a word is broken at the end
of a line, TEX will produce a hyphen because the
bn font possesses a hyphen character at the stan-
dard position. A hyphen may otherwise be encoded
within a given text simply by typing the hyphen
character: -.

6 Support for Assamese

The script used in the far eastern Indian province
of Assam is nearly identical to the Bengali script.
The Assamese (or Asamı̄ẏa asmIy) script (also the
name of the associated language) differs from the
Bengali in the design of two consonant characters,
although the correspondence between pronunciation
and script is also different in a number of respects
between Assamese and Bengali. These two charac-
ters are ra L and va P.

These characters were not part of the original
bn font developed by Das. The author has created
them based on the design found in Halhed’s Bengali
grammar [3] and the descriptions given by Banerji
[1].

It is interesting that these two characters are
used in Halhed’s grammar. Their appearance in the
book implies that they were commonly used in Ben-
gali orthography, and that the switch from L to r
and from P to b must have occurred within the past
200 years. Also, it is probably during this time that
these earlier forms were restricted to the Assamese
script.

A group led by Jugal Kalita is believed to be
working on an Assamese package.5 However, no in-
dication of progress has been posted at the project’s
site, and as of yet, nothing has been released.

5 Details are available at http://www.acsu.buffalo.edu/
~talukdar/assam/language/assamlang.html.

7 What’s Next?

7.1 Refining the font

In addition to creating a suitable boldface, Das and
the author have discussed replacing the explicit con-
junct glyphs with character primitives. One advan-
tage of using primitives is the opening up of several
positions for other characters. The disadvantage
is replicating traditional ligature forms with prim-
itives: ligatures can be formed laterally or by juxta-
position, but this method serves an injustice to the
aesthetic of the Bengali script.

Depending on the number of character positions
available after the font has been revised, new char-
acters may be introduced to the repertoire. Possible
additions may be the characters r̄

˚
, l
˚

, and l̄
˚

, along
with their diacritic forms (described in further de-
tail in Section 5.1). Other possible inclusions may
be the currency signs given in Unicode.

Taco Hoekwater has generously offered to pro-
duce Type-1 versions of the bn font. Once the font
is stabilized, the conversions will be performed and
made available as part of the bengali package.

7.2 Uniting babel and bengali

Jun Takashima has developed hyphenation patterns
for Sanskrit and Kannada to be used in conjunc-
tion with Johannes Braams’s babel package. As the
lexica of both Kannada and Bengali are heavily in-
fluenced by Sanskrit, it is feasible that either the
Sanskrit or Kannada hyphenation pattern may be
adapted for use with the Bengali language.

Such an adaptation would require an input en-
coding scheme compatible with the babel conven-
tion. One idea could be to modify the beng prepro-
cessor to convert the ‘Velthuis’ transliterated input
to this babel-compliant scheme.

7.3 Printing Dates in Bengali

A new method for printing dates in Bengali needs
to be developed. This new method would print the
date according to both the Western and traditional
Bengali calendars. Both styles are commonly used
throughout Bengali-speaking regions of the world.

Of the two, the Western style is easier to im-
plement. As is expected, the \today macro does
not produce the correct result in the Bengali envi-
ronment. To overcome this, Masroor, who also de-
veloped the arosgn package, wrote a LATEX package
called bngtoday, intended for use with itrans.6 This
package provides the macro \BanglaToday which
gives the current Western date transliterated into
Bengali. For example, June is simply Jūn jUn.

6 On CTAN at language/bengali/bngtoday.sty

126 TUGboat, Volume 20 (1999), No. 2

The traditional Bengali calendar is quite differ-
ent from the Western and therefore requires a bit
more work for correct implementation. Due to the
arrangement of the Bengali calendar, Bengali and
Western months overlap. Thus, a given Western
month may be known by two different names in Ben-
gali. For example, June may either be Jyais.t.ha Ej
ó
or Āsār. aAsAR, depending on whether the first or
second half of the month is being referred to. Fur-
thermore, Ej
ó may also refer to the last half of
May, and aAsAR to the first half of July.

Additionally, in the Bengali calendar the first
four days of the month have special names, and or-
dinal numbers used for days of the month also have
distinct forms. The new package would automate
the calculations needed to produce the date accord-
ing to these conventions.

7.4 Implementing CSX+ in bengali

CSX+, or Classical Sanskrit eXtended+, is an 8-
bit encoding scheme which parallels the convention
adopted for the ISO Committee Draft 15919 [6].
Contrary to what its name indicates, CSX+ uni-
formly supports all Indic scripts. The CSX+ scheme
is modelled after IBM Code Page 437 and occupies
characters in the Upper ASCII block. Table 1 shows
the CSX+ scheme as it pertains to Bengali.

Currently the beng preprocessor only recognizes
7-bit input in the form of the ‘Velthuis’ transliter-
ation scheme. The author intends to extend the
preprocessor to recognize the 8-bit CSX+ encoding
scheme as well.

8 Notes

The author was informed of a book by Fiona G. E.
Ross titled The Printed Bengali Character (Curzon:
Richmond, 1999) which provides lucid and detailed
information on Bengali orthography and typogra-
phy. The author was strongly encouraged to review
Ross’s work, but unfortunately, a copy of the book
could not be acquired in time. It is hoped that this
does not diminish the force of the article.

References

[1] Banerji, R. D. The Origin of the Bengali Script.
Nababharat Publishers: Calcutta, 1973. Reprint
of 1973 1st ed.

[2] Grimes, Barbara F. [ed]. Ethnologue: Languages

of the World. Summer Institute of Linguistics,
Inc. Dallas, Texas, 1996. [Note: Information
on most widely spoken languages may be found
at http://www.sil.org/ethnologue/. The list
was last updated in February 1999.]

[3] Halhead, Nathaniel Brassey. A Grammar of the

Bengal Language. Printed at Hoogly, Bengal,
1778.

[4] Pandey, Anshuman. “An Overview of Indic
Fonts for TEX”, TUGboat, 19(2), 1998. pp. 115–
120.

[5] Priolkar, Anant K. The Printing Press in India:

Its Beginnings and Early Development [Being
a quatercentenary commemoration study of the
advent of printing in India (in 1556)]. Marathi
Samshodhana Mandala: Bombay, 1958.

[6] Stone, Anthony [ed]. ISO Committee Draft

15919: Transliteration of Devanagari and Re-

lated Scripts into Latin Characters. Avail-
able at http://ourworld.compuserve.com/

homepages/stone_catend/trdcd1c.htm.

[7] The Unicode Consortium. The Unicode Stan-

dard, Version 2.0. Addison-Wesley Developers
Press: Reading, Massachusetts, 1997.

⋄ Anshuman Pandey

University of Washington

Department of Asian Languages

and Literature

225 Gowen Hall, Box 353521

Seattle, WA 98195

apandey@u.washington.edu

http://weber.u.washington.edu/

~apandey/

TUGboat, Volume 20 (1999), No. 2 127

Software & Tools

The CTAN May 1999 CD ROM set by
DANTE e.V. and Lehmanns bookstore

Klaus Höppner

1 About the CD ROM set

This year, DANTE e.V. produced the snapshot of
CTAN in cooperation with Lehmanns Fachbuch-
handlung, a German bookstore— under participa-
tion of TUG and several international user groups
who are giving the CD ROM set to their members.

The set contains a nearly complete snapshot
of CTAN on 3 CD ROMs that was taken from
dante.ctan.org on May 30th, 1999. Since the
archive size of CTAN was about 3 GB, some parts
had to be zipped or left out, respectively.

Zipped Directory trees Missing Directories

fonts obsolete
digests nonfree/support/adobe
web support/ghostscript
parts of systems

The CD ROM set includes some additions from
early June, like the new teTEX version 1.0(.5) and
fpTEX 0.3e. Additionally, the current ConTEXt and
PPCHTEX macros from http://www.pragma-ade.

nl are included.

2 Technical remarks

The CD ROM snapshot from CTAN was made us-
ing the programs mkisofs and cdrecord under Linux.
The CD ROMs use the ISO 9660 file system with
Rock Ridge and Joliet extensions. Thus, the major-
ity of computers running under UNIX or Microsoft
Windows 9x/NT should be able to display long file-
names.

Computers running under operating systems
not supporting Rock Ridge or Joliet extensions for
CD ROMs will only display 8.3 file names. Each di-
rectory contains a file TRANS.TBL that relates the
short file names to the long ones.

All text files on the CD ROMs use the UNIX
style line endings (LF). This can cause problems
with some editors under operating systems using dif-
ferent line end conventions. One possible solution is
to use the Info-ZIP programs by compressing a file
with “zip” and uncompressing it with “unzip -a”
where the proper line endings for the used operat-
ing system are automatically produced.

3 Important note for users of
Windows 9x/NT

Due to an error in the version of mkisofs that was
used to create the CD images, Windows Explorer
will display a file <translation table> in each di-
rectory of the CD ROM that can’t be opened. Un-
fortunately, this prevents directory trees from being
copied from the CD ROM to the hard disk drive by
drag and drop in Windows Explorer. Windows Ex-
plorer will stop copying of all files with the error
message that it can’t copy the file <translation

table>.
To copy directory trees from CD ROM to hard

disk, please proceed as follows:

1. Open a command prompt (Start → Programs
→ Command Prompt)

2. Copy the directory tree with
xcopy /s /c source-directory

target-directory

(of course in one line)
Example: If your CD ROM drive is D: and

you want to copy the directory macros\latex\

required from CD ROM to the directory foo

on your hard disk drive (C:), please type
xcopy /s /c d:\macros\latex\required

c:\foo

(as above in one line)
3. If the target directory doesn’t exist, you will

be prompted whether the target is a file or a
directory. Please type D for directory in this
case. (This letter is only valid for the English
version of Windows!)

4. During copying you will get warnings that
the file <translation table> can’t be copied.
You can ignore these warnings.

5. You will get additonal information about the
usage of xcopy by typing

xcopy /? | more

4 The cover of the CD ROM set

Usually, the CD ROM set is shipped in a digi-
file cover. TUG decided to order the sets with-
out it. For this reason I created a PDF file (see
page 84) based on the original cover that can be
downloaded from http://www.tug.org/texlive/

cover.pdf, and should fit into a standard jewel case.
Of course, it looks nicer if you have access to a color
printer. . .

⋄ Klaus Höppner
University of Dortmund
Institute of Accelerator Physics

and Synchrotron Radiation
D-44221 Dortmund, Germany
k.hoeppner@physik.

uni-dortmund.de

128 TUGboat, Volume 20 (1999), No. 2

Interacting pdfTEX, PERL and ConTEXt

Gilbert van den Dobbelsteen

Abstract

PERL, pdfTEX, and ConTEXt are extremely useful in
the production of large documents which also need
a lot of interaction. This article resulted from a job
I did for a good friend, yielding over 2000 pages of
PDF output.

The power here is to use the right tool for the
right job. Almost everything created for this job
could be done in TEX, but since I am just a ‘Ben
Lee User’, I use different tools to get the job done.
So it is not a matter of which tool is the best for the
job, but more like Which tool is best for the person

using the tool.

1 Introduction

A few months ago, a good friend (let’s call him
Bart, because that’s his name) had a problem. He
had taken on a job where he needed to create an
interactive document consisting of over a thousand
paragraphs. All texts needed to be clickable, and as
a result a poster should pop-up with the same text,
but artistically enhanced. The texts originated from
the loesje association and so did the posters.

I advised him to take a look at adobe acro-

bat. He did, and he had already made a framework
with some buttons and clickable links. He started
calculating, and decided this was too much work.
Every link had to be manually created, and since
each poster-text had about three to four categories,
this meant drawing over 5000 clickable areas by hand
in acrobat. Though loesje has many volunteers,
you can’t give them such a boring job. It would
simply kill the relaxed atmosphere, normally hang-
ing around loesje.

So I told him that he could probably use some
programming tool to automate things. Since Bart
is dyslectic (it is very difficult for him to read words
from paper or screen), he is unable to do classical
software engineering jobs, so in the end I volunteered
to do the job for him.

I usually write small documents, which aren’t
larger then 100 pages, but I was very sure TEX is
capable of doing larger ones. Interactive programs
usually have big problems dealing with large files
and many pages, but since TEX is batch oriented I
knew this wasn’t going to be a problem.

This article, based on a paper presented at the meeting
of 1–3 May 1999 in Bachotek, Poland, appeared in the
GUST Biuletyn, 12 (1999), pp. 64–69, and appears here by
permission.

2 About LOESJE

loesje is an association of people who design strong
texts for different applications. Some text-categories
are: Elections, Politics, Year 2000 problems, Astrol-
ogy, Economy, Stock exchange, Christmas, Nature,
Animals, Poetry, Religion, School, Health-care, et
cetera.

These texts are put onto posters and flyers and
you can see them anywhere around the Netherlands.
You can also buy post-cards and other stuff.

The main idea is to trigger people to think
about what is going on. A typical text from loesje:

Year 2000: Suppose the end of the world is near

and God forgot to make a backup

The loesje association has been around since
1983, and throughout the years they have created
1350 different texts.

To celebrate their 15-year existence, they de-
cided to create a CD-ROM with all their posters on
it, and with a nice catalogue, where you can browse
the texts category-wise or chronologically.

3 How things got started

I had to define some structure before I could begin.
In the beginning of loesje they used markers and
pencils to create posters by hand, and reproduced
them with a large xerox machine. So those posters
weren’t available in a digital format. They started
using computers many years later, so much of the
material was only available on paper.

To assure quality and consistent presentation
they decided to scan all posters. loesje has a
Scanjet 2 and lots of volunteers. The scanner
was old and the compressed TIFF output generated
TIFF files with errors, so they had to fall back to
uncompressed TIFF.

After a few weeks Bart came to me with 10 CDs
full of uncompressed TIFF bitmaps. Each file was
4Mb in size consisting of a 600DPI A4 scan of each
poster. This started to terrify me. My computer had
about 3Gb of free disk space, which was definitely
not enough for ten CDs of data. How to proceed?
I knew that I needed the files in PNG format for
inclusion in pdfTEX. So I decided to convert all files
to PNG with the ImageMagick tools. This took 8
hours of computer time and in the end I discovered
the dimensions where lost in the resulting PNG-
file. After investigating the originals I concluded
the dimensions weren’t present there either.

Since the PNG format is compressed, and the
monochrome scans are very large, the total size
reduced from 10 CDs to 1

6
th CD. This was a

manageable amount of data.

TUGboat, Volume 20 (1999), No. 2 129

3.1 Texts and categories

Besides the scanning of the actual posters, I needed
the actual texts that were on the posters.

One text-file contains the lines of text for each
poster. To keep things simple, loesje keyed in all
the data. A typical entry looks like this:

N199312C Actual text, perhaps

sevaral lines

long [3\7\13]

The above means: The file N199312C.PNG is
the actual poster containing this text, the year is
1993, the month is December (12) and this is the
third poster (C) in that month. The poster falls in
three categories: 3, 7 and 13.

The resulting typeset layout should observe the
new- and empty lines in the files.

To convert the category numbers to actual cat-
egory names there was another text file: cat.txt.
This file looked something like this:

Alien

9 Common

10 Astrology

11 Space

Future

72 Common

73 Dreams/ideals

74 Plans

75 2002

The above means: The main category ‘Alien’
contains the subcategories: Common (9), Astrology
(10), and Space (11). The main category ‘Future’
contains the subcategories: Common (72), Dreams/
ideals (73), Plans (74), and 2002 (75).

These files are fairly easy to scan with PERL.
The scanning code is just a screen or two. After
each text definition is scanned, a PERL object is
constructed with the following attributes:

Year The year of the poster.

Month The month of the poster.

Categories An array containing the category
numbers for this particular poster.

Text The actual text.

All the poster objects are put into a hash (a
key-value pair array) where the key is the unique
poster number (like N199312C).

After the scanning and building of the hash is
complete the output-files are constructed.

4 Using different tools

I am a tool-guy. I use whatever tool that I know
could do the job easily. The advantage here is

obvious: the right tool for the right job gets the work
done more quickly. There’s also a disadvantage: I
usually do not know the exact ins-and-outs of a tool.
I know little of TEX, in fact the way TEX ‘thinks’
is definitely not my way. I see TEX as an enhanced
M4 macro-processor, with weird syntax, nice output
and unlimited possibilities.

Do not blame me for my limited vision of this
powerful typesetting engine, it is just the way I
work with it. My macros are not nice and I usually
overlook powerful features, but they get the job done
I hope. As I write macros (in any language, be it
TEX or PERL) I experiment until the result is what
I want. If the used tool can’t do the job for me
(usually because I am too stupid to find the right
keywords) then I’ll try another tool until the results
are satisfactory.

The same story holds for PERL. If a take a
look at the packages that come with PERL I am
amazed by the possibilities. You can even write web-
servers in PERL with just a few lines of code. I used
PERL before to convert structured text documents
to PDF and HTML with everything cross-linked and
it is definitely a very powerful tool for doing system
stuff like messing with files, directories and contents
of files.

PERL and TEX have something in common:
both are a bit weird, though PERL looks more like
a conventional programming language to me. To
achieve things in both tools, you can use several
mechanisms and language constructs. This is better
accepted in the PERL world than in the TEX world. I
sometimes overhear conversations about TEX where
people are trying to convince each other that their
way is the best way to do it. I do not believe in such
a concept. The best way to achieve things is the way
that generates the most fun and gets the job done.

5 PERLing it away

This section should definitely not be read by any
advanced TEX user and specifically any ConTEXt
user. That’s because they would claim that all this
structurizing I did could easily be done from within
ConTEXt. Okay, I admit that is very true, and Con-
TEXt does support a lot of usable stuff for me. The
only problem is that I don’t know them well enough.

Using PERL to scan the files was easy. Gener-
ating the output however was more difficult.

I first needed to know what kind of browsing
these loesje guys would need. They wanted two
things:

1. Chronological. You can browse through the
poster-texts sorted on date. Below should be a
button-bar with the available years, and above

130 TUGboat, Volume 20 (1999), No. 2

that a button-bar with the months in that year.
Each poster-text will be included once.

2. Categorial. It is similar to the chronological but
organized by main- and subcategories.

So I decided to use a section/subsection mech-
anism as found in LATEX.

A sample of the output:

\\YEAR{1993}

\\MONTH{January}

\startposter{N199312C}

Hi there, this is some poster text

\stopposter

The macros \startposter and \stopposter

should do all the work (I’ll come back to those later).

6 Using ConTEXt to do the layout

Many of you probably know ConTEXt as a very pow-
erful program for creating interactive documents. If
you don’t believe me, try it for yourself. The trou-
ble with ConTEXt is finding the right way to do it.
There are usually several.

Almost all of the features found in the PDF

specifications can be used. In some aspects ConTEXt
defines more functionality than PDF has to offer.
The whole concept behind ConTEXt is well thought-
out and Hans Hagen is a true wizard when it comes
to functionality and completeness. If you have a
nice generic package or add-on, Hans is willing to
integrate it in ConTEXt given the time. Modularity
in ConTEXt is something weird, because the package
is large and monolithic. In fact the basic services in
ConTEXt are rather limited when it comes to ‘I want
to write an article’. But once you get the hang of
it you discover that customizing things is a breeze,
compared to whatever I’ve ever encountered in TEX
miracle land. You do not need to know a lot about
TEX (which is definitely a big plus) and it usually
works the way you expect. And if you’re not certain
about the correctness of the output, you simply turn
on the visual debugger,1 and you can actually see

where you forgot that extra percent sign, yielding
that unwanted space.

6.1 Defining the layout

Take a look at figure 1. It is the basic layout. All
the screens in the product are similar to this one, so
I designed a basic layout to create this.

Defining the layout is simple. You first setup
the papersize:

1 Editor’s note: This debugger is neat stuff—
see the article by Hans Hagen in TUGboat 19(3)
(September 1998), pp. 311ff.

juni - 1998

VORIGE

VOLGENDEVOLGENDE

TERUG

ZOEKENN

HOOFD MENU

STOPPENSTOPPEN

januari februari maart april mei juni juli september oktober november december

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Bezuinigingen is iets voor mensen die niet met teveel geld
uitgeven kunnen omgaan

De minister stoelendans, want de bingo van 4 jaar geleden is
niet zo'n succes gebleken

Windows 98, we rammen het glas eruit en snuiven de frisse
buitenlucht

Gerucht, Bill Gates eet alleen maar spruitjes als ze in de
reclame zijn

Het zwarte gat van cyberspace, is iemand ooit alleen geweest
in glasvezels en bits, verdwalen op het world wide web, alsof
je daar ook vrienden hebt die na een dagje niks, 's kijken waar
je bleef

Sex op internet, zowel de muis besturen als dat andere kan ik
alleen maar met rechts
het broertje van

Figure 1: Basic layout

\setuppapersize

[S6]

The S6 means: Screen based papersize. It is
similar to A4, except that the width is 600pt and
the height is 450pt. ConTEXt sets up margins and
automatically calculates the text-area. For screen-
based layout, there’s one thing for sure: Whatever
ConTEXt calculates, it is never what you want. (It
works fine for paper-based output.)

So now let’s setup the areas to be used:

\setuplayout

[topspace=24pt,

header=0pt,

footer=0pt,

bottomdistance=10pt,

bottom=28.8pt,

topdistance=8pt,

top=10pt,

backspace=12pt,

margin=0pt,

edgedistance=12pt,

rightedge=110pt,

height=fit,

width=fit]

What does this all mean?

• There is 24pt of space on the top, before the
text-area begins.

• There is no header text (above the text) or
footer text (below the text). These are usually
used to put in page numbers of chapter head-
ings. I don’t need them for screen-layout.

• There is bottom-text below the text-area; its
height is 28.8pt. There is also top-text above
the text, height 10pt.

• There are no margins.

TUGboat, Volume 20 (1999), No. 2 131

• The distance from the text-area to the edge is
12pt. The width of the right edge is 110pt.

• And finally we say: ‘Dear ConTEXt, I do not
know what the width and height of the text-
area should be, so calculate them based on the
given settings’.

That’s about it. After that you can verify what
you have done by saying: \showframe. ConTEXt
then draws some frames where you defined them, so
you can actually see what is going on. See figure 2.

paperheight 15.81345cm 450.0pt \paperheight

paperwidth 21.0846cm 600.0pt \paperwidth

printpaperheight 29.69577cm 845.04684pt \printpaperheight

printpaperwidth 21.0846cm 600.0pt \printpaperwidth

topspace 0.84338cm 24.0pt \topspace

backspace 0.42169cm 12.0pt \backspace

height 13.39574cm 381.2pt \makeupheight

width 15.95401cm 454.0pt \makeupwidth

textheight 13.39574cm 381.2pt \textheight

textwidth 15.95401cm 454.0pt \textwidth

top 0.35141cm 10.0pt \topheight

topdistance 0.28113cm 0.0pt \topdistance

header 0.0cm 0.0pt \headerheight

headerdistance 0.0cm 0.0pt \headerdistance

footerdistance 0.0cm 0.0pt \footerdistance

footer 0.0cm 0.0pt \footerheight

bottomdistance 0.35141cm 0.0pt \bottomdistance

bottom 1.01205cm 28.8pt \bottomheight

leftedge 0.0cm 0.0pt \leftedgewidth

leftedgedistance 0.0cm 0.0pt \leftedgedistance

leftmargin 0.0cm 0.0pt \leftmarginwidth

leftmargindistance 0.0cm 0.0pt \leftmargindistance

rightmargindistance 0.0cm 0.0pt \rightmargindistance

rightmargin 0.0cm 0.0pt \rightmarginwidth

rightedgedistance 0.42169cm 0.0pt \rightedgedistance

rightedge 3.86551cm 110.0pt \rightedgewidth

bodyfontsize 12.0pt \globalbodyfontsize

line 2.8ex \normallineheight

height .72 \strutheightfactor

depth .28 \strutdepthfactor

topskip 1.0 \topskipfactor

maxdepth 0.4 \maxdepthfactor

Figure 2: Empty layout

The resulting PDF file still has a problem
though: the layout is OK, but the page size is still
A4. To overcome this you say:

\setupinteractionscreen

[option=max,

width=fit,

height=fit]

This more or less means: Open the document
in full-screen, and make the width and height fit to
the calculated values.

6.2 Defining backgrounds

I have now defined a simple white page, so let’s en-
hance it with background colors and graphics. If you
do this the traditional way, by drawing something in
the output routine, before you actually shipout the
page you will have a problem: The resulting file will
contain the graphics images on each and every page.
That is not very efficient, since the background im-
ages are a total of 73Kb. If you multiply that by the
number of pages (about 800) you will get a pdf file
of 60 Megabytes. All of this while you know for sure
that PDF supports something that’s called objects

to do the job properly.

Luckily you don’t have to worry about that.
You simply use and include as many figures as you
like. If ConTEXt sees you’ve actually used the figure
before, it won’t include it again. It will simply
creates a reference to the figure. So each figure is
included only once.

First we define a background color for the entire
page:

\setupbackground

[page]

[background=color,

backgroundcolor=pagebackgroundcolor]

So what is pagebackgroundcolor you might
ask. Well:

\definecolor

[pagebackgroundcolor]

[r=.9, g=.9, b=.9]

Easy ha? You can probably guess how to
define CMYK colors. The right edge has a similar
background color, but with a little different setup:

\setupbackgrounds

[text][rightedge]

[background=color,

backgroundcolor=edgebackgroundcolor]

So now for the picture in the text-area. This is
a bit more difficult, because this works with overlay
techniques:

\defineoverlay

[world]

[{\externalfigure

[world]

[width=\overlaywidth,

height=\overlayheight]}]

\setupbackgrounds

[text][text]

[background={color,world},

backgroundcolor=textbackgroundcolor]

What’s this? We are defining two backgrounds
here, a color, and a picture that comes from the file
world.eps. The order of specification defines the
overlaying. I do not know if there are any limits
here but knowing Hans there is probably no real
limit to the number of backgrounds you can stack
upon each other.

Also note the sizing of the image. The image is
a bitmap converted to an .eps file (using CorelDraw)
and has some transparency. You only need to get
the aspect ratio of the .eps file correct, and Con-
TEXt automatically scales the image to the width
and height of the text area.

132 TUGboat, Volume 20 (1999), No. 2

6.3 Defining the right-edge navigation bar

The navigation bar on the right contains many
buttons stacked above each other. The normal
command to do this is \button. But since the
buttons have backgrounds I needed to define the
backgrounds first. The trick is this: You first define
what you want to have, put it all in a box and then
you say to ConTEXt:

\setuptexttexts

[edge]

[][\ButtonList]

This means: The content of the left edge is
empty, and the right edge contains \ButtonList.

\ButtonList is defined as follows (some but-
tons are left out here to save some space):

\def\ButtonList{%

\hbox to \rightedgewidth{\vbox to \vsize

{\midaligned{\previousbutton}\par

\midaligned{\nextbutton}\par

...

\vfill

\midaligned{\stopbutton}\par

\vfill

\midaligned{\PrevNextBar}\par

\vss}}}

To define a button:

\def\previousbutton{%

\button

[frame=off,

width=104bp,

height=25bp,

background=previous]

{}

[previouspage]}

There is no frame around the button, because
I supplied a picture. The button contains no text
(the empty braces {}), and when someone presses
the button, the previous page should be displayed.
All buttons are created this way.

Now there is one little speciality here: the
\PrevNextBar command. When a series of texts
is displayed, and they don’t fit on a single screen, a
button automatically appears indicating that there
is more to see in this series. Now I wanted those
buttons to be smart: On the first page you only see
a button to go to the next page, and in the last
page of a series you only see a button to go to the
previous page. The pages in between (if any) have
both buttons enabled.

Again ConTEXt helps me out here. There is
something called sub-page numbering. I setup sub-
page numbering by series, and when placing the

buttons I ask ConTEXt how many pages there are
in this series. Based on that, and the current sub-
page number, I include the correct buttons:

\def\PrevNextBar%

{\ifnum\nofsubpages>1

% all right, we need some buttons

% here

\ifnum\subpageno=1

% This is the first page so only

% include the right button

\framed

[frame=off,

width=\arrowwidth,

height=25bp]{}\hss

\arrowrightbutton%

\else\ifnum\subpageno=\nofsubpages

% This is the last page, so only

% include the left button

\arrowleftbutton\hss

\else

% We are somewhere in between

% include both buttons

\arrowleftbutton\hss

\arrowrightbutton%

\fi\fi

\else

% No sub pages, so no buttons

\framed

[frame=off,

height=25bp,

width=\rightedgewidth]

{}

\fi}

Now that’s a nice trick, isn’t it?

6.4 Defining the bottom navagation bar

The bottom navigation bar is a bit more difficult,
since it contains data from the actual data-file itself.
Since all years and months are placed in lists, I can
easily extract that information and put it anywhere
I want. I only provide the details here, the actual
commands to setup texts in the bottom area are
similar to the right-edge button bar. It consists of
two vboxes, a box for the months and one for the
years.

\def\YearMonthList{%

\vbox to \bottomheight{%

\vbox{%

\placelist

[MONTH]

[variant=none,

criterium=YEAR,

command=\SIMPLE,

TUGboat, Volume 20 (1999), No. 2 133

before=\strut]

\vss}%

\vss

\vbox{%

\placelist

[YEAR]

[variant=none,

criterium=all,

command=\SIMPLE,

before=\strut]

\vss}}}

\def\SIMPLE#1#2#3{#2}

At first this didn’t do the job, because all years
were on a separate line. I guess the \placelist

results in a lot of vboxes, and these are stacked
vertically by TEX. By adding the \strut the
problem was over. This is probably not the preferred
solution, but I can’t write an email to Hans every
time I am in trouble.

As you can see I didn’t provide any commands
for specifying the interaction and high-lighting. This
is what ConTEXt automatically does for me.

7 Results and some samples

Take a look at the figures. Figure 3 shows the main
screen of the categories.

Overig / Communicatie

VORIGE

VOLGENDEVOLGENDE

TERUG

ZOEKENN

HOOFD MENU

STOPPENSTOPPEN

Aktie Bekende personen Buitenaards Economie Feest Klassiekers/evergreens Natuur Oorlog
Overig Persoonlijk Politiek Religie School Toekomst Vakantie Vervoer Wereld Werk Zorg

Absurditeiten Algemeen Beeld Fris Historisch Muziek PoÈezie Sport Criminaliteit Huiswerk
Communicatie Drugs

TV, zet 'm eens op de trein naar Antwerpen maart 1996

De telecommunicatie expert zoekt vergeefs kontakt met z'n
dochtertje december 1987

Vroeger zag God alles, maar ik denk dat ie tegenwoordig net
als iedereen zapt juni 1996

Millenniumprobleem, stel je voor, morgen vergaat de wereld
en God heeft vergeten een backup te maken december 1997

Gegevens koppelen >>Hallo mevrouw Loesje<< riep de
receptionist door de telefoon nog voor ik iets kon zeggen
december 1997

Sinterklaas, de Joop van den Ende voor de kleine kinderen
november 1989

Hoe rood is de Vara,
blauw juni 1988

Figure 3: A category screen

Figure 4 is an actual poster.

8 Conclusion

Well, what can I say? ConTEXt saved me a lot of
time, and the remaining time creating the product
was fun to spend. I have only covered some basic is-
sues here; there are several other commands needed
to get things going.

Figure 4: An actual poster

Using the example files provided by ConTEXt
gave me a good idea of the possibilities. Though the
example presentations do not look like this product,
they serve as good examples of what is possible.

I liked the tooling very much. It is easy to
generate TEX documents from PERL, and ConTEXt
is pretty relaxed in using such documents.

You have probably discovered that the included
graphics are in Dutch. Most of the words are what
you expect them to be, so I expect this is not a big
problem.

⋄ Gilbert van den Dobbelsteen

Papaverstraat 130

7514 XH Enschede

Netherlands

gilbert@login-bv.com

134 TUGboat, Volume 20 (1999), No. 2

NetBibTEXing

Robert Tolksdorf

1 Introduction

BibTEX is the format of choice for cataloging and
referring to literature with currently highest impor-
tance for scientific references. It defines a standard
format for keeping meta-information on published
material, a language to process these, and an imple-
mentation of the processor, the bibtex program.

Usually, the user collects bibliographic informa-
tion in local BibTEX databases manually. With the
widespread availability of the Internet, more and
more bibliographic collections have been made avail-
able online via the Web. With the immense growth
of the number of entries available, the need for ser-
vices that help in locating reference information has
increased.

An example is the “The Collection of Com-
puter Science Bibliographies” at http://liinwww.

ira.uka.de/bibliography. It collects over 1200
bibliographies that contain more than 940000 ref-
erences and provides a search service on this data.
The collections are well maintained by their respec-
tive authors and show a high timeliness.

In this article, we describe the design and imple-
mentation of NetBibTEX, a system that uses such
a service online to retrieve bibliographic references
based on a special kind of citations in a LATEX doc-
ument.

2 Overview

Figure 1 gives an overview on the files and proces-
sors involved. NetBibTEX contains a style-file that
allows the inclusion of netcitations in the document
source. Similar to a normal \cite, they require a
bibliographic key, but also describe the reference by
keywords for names fields, such as

\netcite{robert:lcs}{title=Coordination

Laura,author=Robert Tolksdorf,year=1998}

The author will later interactively select a reference
retrieved from the net based on this description—
the netreference. For each netcitation, an entry in
a special .nbb-file is generated that contains the in-
formation marked up with XML:

<netbibqueries value="Version 1.0">

<bibquery value="robert:lcs">

<title value="Coordination Laura"/>

<author value="Robert Tolksdorf"/>

<year value="1998"/>

</bibquery>

</netbibqueries>

bibtex

processor

aux File

with citations

bbl File

 with

references

local .bib

references

LaTeX

Processor

.tex File

Document

Source

Complete

dvi File

.nbq file

with

netcitations

netbib

processor

netbib.bib with

netreferences

.nba

Aliases

Web services

Figure 1: Overview of NetBibTEX

The choice of XML-format is motivated by the avail-
ability of the language WebL, a scripting language
that allows easy extraction of information from
XML/HTML marked up documents (?). We use it
to implement the netbib processor. It performs a
query to Web-services that collect bibliographic ref-
erences for each netcitation. From the answers re-
trieved, it extracts the netreferences and asks the
user to select one as shown in figure 2.

Each selected entry is written into netbib.bib.
In addition, the key used in the netcitation has to
be mapped to the actual key in the netreference.
NetBibTEX provides a document style bibalias

that allows the definition of aliases for bibliographic
keys. netbib generates an .nba file that contains
the appropriate definitions:

% Generated BibTeX key aliases by netbib

\bibalias{robert:lcs}{SCP::Tolksdorf1998}

With these mechanisms the queries from netcita-
tions are matched by netreferences. These are stored
in the generated bibliography and their keys are
aliased with the keys used in the netcitations. Three
LATEX and one BibTEX runs are needed to produce
the final, complete document.

TUGboat, Volume 20 (1999), No. 2 135

grunge tolk 3 (~/bibalias): webl netbib.webl netbibtest

@Article{SCP::Tolksdorf1998,

title = "Laura---{A} service-based coordination language",

author = "Robert Tolksdorf",

pages = "359--381",

journal = "Science of Computer Programming",

month = jul,

year = "1998",

volume = "31",

number = "2--3",

references = "\cite{PPOPP::AghaC1993} \cite{ACMTCS::BirmanSS1991}

\cite{TOPLAS::BowmanDP1993}

\cite{ACMTCS::CarrieroG1986}

\cite{CACM::GelernterC1992}",

}

Accept this entry for citation "robert:lcs"?y

Figure 2: Selecting a reference found in the net

3 User interface

The user interface of NetBibTEX is very small—
there is one LATEX macro for netcitations and the
netbib program.

3.1 Netcitations

A document using NetBibTEX has to include the
package netbib with \usepackage{netbib}. It
provides the macro \netcite, includes generated
aliases at the start of the document and final-
izes the generation of the .nbq at the end of
the document. In addition, it changes the be-
havior of \bibliography to include the generated
netbib.bib.

To use a netcitation in a document, one uses
\netcite{〈bibkey〉}{〈query〉} as in the example
above. 〈bibkey〉 is a bibliographic key for a refer-
ence, identical to the ones used with \cite. 〈query〉
describes the reference by a comma-separated list of
keyword queries to fields. Note that this format is
defined by NetBibTEX and is mapped to specific
queries for Web-services by the netbib program.
The fields defined are:

• author: The author of the cited work

• title: The title of the cited work

• year: The year of publication of the cited work

• key: The whole citation

In addition, two flags can be used in the query:

• word: Consider only complete words exactly

• case: Distinguish upper- and lowercase

Note the condition in this description: If the Web-
service used by netbib does not provide the respec-
tive searching options, then the flags are ignored.

NetBibTEX will try to construct a “good”
query to various services and favors conjunction of
given keywords for the fields in order to narrow the
set of possible matches as much as possible. The
system could be extended to further control that
behavior.

For each service used by NetBibTEX, a special
routine has to be programmed that maps the net-
query into a specific query to the respective Web
service using the specific query syntax there. In
the initial netbib.webl script, we demonstrate this
for three services in the functions queryGibbens,
queryPPA, and queryCSBibColl.

The extraction of BibTEX entries from the re-
sults of the queries is also dependent on the ser-
vices used. In the three cases implemented, we pose
queries that result in a single HTML page with a
list of possible matches. It contains references in
BibTEX syntax enclosed by the <PRE> tag in all three
cases. The WebL function Elem returns a set of
page fragments, each being one of the preformatted
BibTEX entries.

Depending on the services used, the extraction
could be implemented in a different manner. One
could also program conversation routines if citation
services return other formats than BibTEX.

Administrators of bibliographic collections can
contribute to NetBibTEX by programming a re-
spective query and extraction routine, or by doc-
umenting the syntax of their queries and the format

136 TUGboat, Volume 20 (1999), No. 2

of the output in detail. E-mails with information
on extending NetBibTEX with further services are
highly appreciated by the author.

3.2 Interactive selection of netreferences

After writing out the queries for netcitations in the
.nbq file, the netbib processor can perform a search
on the Web for matching references. It is imple-
mented in the scripting language WebL, which is an
interpreter written in Java.

We have chosen Java as the underlying exe-
cution mechanism to implement platform indepen-
dence of netbib. The current drawbacks in execu-
tion time are not relevant for netbib, as its speed
is dominated by the external Web services that look
for references and by the network latency.

In order to use WebL, you need a Java virtual
machine and the WebL interpreter available free (in-
cluding sources) at http://www.compaq.com/WebL.
Follow the respective instructions for installation of
WebL.

Assuming that there is some script webl in-
stalled that starts Java with the main class of
webl.jar, the NetBibTEX processor is started for
a document 〈document〉.tex with
webl netbib.webl 〈document〉

The program starts to extract the netcitations
and searches for netreferences. For each one, the
user is asked as in figure 2 whether to accept it.

The GUI shown is very clumsy and not very
convenient to use. We will put an extended ver-
sion with a graphical interface for the selection of
references at the Web site mentioned below. Its im-
plementation involves specific techniques to access
Java-classes from WebL that are of no interest here.

The retrieval of netreferences is rather slow and
the selection of a matching one can be very tedious if
the query is not very precise and the service offered
a long list of references.

In order to avoid unnecessary queries, the
netbib-style put a

tag <known/> into each bibquery for which a
netreference has already been retrieved. This is de-
tected by testing whether the key used in the netc-
itation is an alias for a netreference. By using the
option -a for the netbib program, this tag is ignored
and all netcitations are (re-)processed.

4 Outlook

NetBibTEX is both expandable and dependent with
respect to Web services that offer to search bib-
liographies and output results in BibTEX format.
The implementation shown in the appendix might
well lead to unpredictable results due to changes
in URLs or forms. At http://www.cs.tu-berlin.
de/~tolk/netbib you can find the homepage of
NetBibTEX that includes the latest versions of the
system.

⋄ Robert Tolksdorf
Technische Universität Berlin
Fachbereich 13, Informatik
FLP, FR 6-10
Franklinstr. 28/29
D-10587 Berlin
Germany
tolk@cs.tu-berlin.de

http://www.cs.tu-berlin.de/~tolk

136 TUGboat, Volume 20 (1999), No. 2

A The Implementation

NetBibTEX consists of the two LATEX stylefiles bibalias.sty and netbib.sty, and the WebL
Script netbib.webl that are documented below.

A.1 bibalias.sty

First, we introduce ourselves.

\ProvidesPackage{bibalias}

\bibalias For a key k1 which is an alias for a key k2, we define a label ba@k1 that expands to k2.

\newcommand{\bibalias}[2]{\@newl@bel{ba}{#1}{#2}}

\@citex Citations are expanded into the respective labels in the \@citex macro. The individual references
are extracted from the comma-separated list in the second parameter and processed as @citeb.
The first lines of the macro are copied directly from latex.ltx.

\def\@citex[#1]#2{%

\let\@citea\@empty \@cite{\@for\@citeb:=#2\do

{\@citea\def\@citea{,\penalty\@m\ }%

\edef\@citeb{\expandafter\@firstofone\@citeb\@empty}%

TUGboat, Volume 20 (1999), No. 2 137

Here we test whether the key is an alias for another one.

\@ifundefined{ba@\@citeb}{}%

Yes, it is an alias. We replace the content of \@citeb with the alias.

{\typeout{\@citeb\space is an alias for \@nameuse{ba@\@citeb}}%

\global\edef\@citeb{\@nameuse{ba@\@citeb}}}%

Note that we do not support aliased aliases here. The remainder of @citex is again a copy of the
original LATEX-code.

\if@filesw\immediate\write\@auxout{\string\citation{\@citeb}}\fi

\@ifundefined{b@\@citeb}{\mbox{\reset@font\bfseries ?}%

\G@refundefinedtrue

\@latex@warning

{Citation ‘\@citeb’ on page \thepage \space undefined}}%

{\hbox{\csname b@\@citeb\endcsname}}}}{#1}}

A.2 netbib.sty

First, we introduce ourselves.

\ProvidesPackage{netbib}

We depend on bibalias for aliasing the keys of netcitations to the actual ones found in the net
and keyval from the standard LATEXgraphics bundle for dealing keyword-value lists.

\RequirePackage{bibalias}

\RequirePackage{keyval}

We now define the allowed set of keywords and their processing. When \setkey parses a list, it
handles the keywords defined here and processes them by the commands in the third argument
of \define@key. For each keyword, we write out a tag.

\define@key{netbib}{author}{\nb@writevaluetag{author}{#1}}

\define@key{netbib}{title}{\nb@writevaluetag{title}{#1}}

\define@key{netbib}{year}{\nb@writevaluetag{year}{#1}}

\define@key{netbib}{key}{\nb@writevaluetag{key}{#1}}

\define@key{netbib}{word}[true]{nb@writetag{word}}

\define@key{netbib}{case}[true]{\nb@writetag{case}}

\nb@queryfile refers to the .nbq file that contains the netcitations in XML markup.

\newwrite\nb@queryfile

\immediate\openout\nb@queryfile=\jobname.nbq

The following four handy macros write out XML tags.

\def\nb@writetag#1{\protected@write\nb@queryfile{}{\string<#1/>}}%

\def\nb@writevaluetag#1#2{\protected@write\nb@queryfile{}{\string<#1 value="#2"/>}}%

\def\nb@openvaluetag#1#2{\protected@write\nb@queryfile{}{\string<#1 value="#2">}}%

\def\nb@closetag#1{\protected@write\nb@queryfile{}{\string</#1>}}%

The XML startsymbol for our .nbq files is <netbibqueries>, thus we generate such a tag im-
mediately and close it at the end of the document.

\nb@openvaluetag{netbibqueries}{Version 1.0}

\AtEndDocument{\nb@closetag{netbibqueries}}

\netcite \netcite is used with a key in the first argument and a keyword-value list in the second argument.
\setkeys processes the keyword list and thus generates several tags. We encapsulate them with
a tag-pair <bibquery value="key">. If there is already an alias for the citation key, then we
generade a tag <known/> in the .nbq file to avoid unnecessary network queries. The final \cite
will later cite an alias to a netreference, or generate a LATEX message.

\def\netcite#1#2{%

138 TUGboat, Volume 20 (1999), No. 2

\nb@openvaluetag{bibquery}{#1}%

\setkeys{netbib}{#2}%

\@ifundefined{ba@#1}{}{\nb@writetag{known}}

\nb@closetag{bibquery}%

\cite{#1}}

\bibliography \bibliography has to include the generated netbib.bib for the netcitations. We redefine it
to extend its argument appropriately and then leave the work to the original macro that we
remember in \oldbibliography.

\let\oldbibliography\bibliography

\def\bibliography#1{%

\ifx#1\relax \oldbibliography{netbib,#1}

\else \oldbibliography{netbib}

\fi}

netbib generates an .nba file that contains the alias definitions for the netcitations. It has to be
read at the beginning of the document.

\AtBeginDocument{\@input{\jobname.nba}}

A.3 netbib.webl

1 // import some modules

import Url, Str, Files;

// if elem!=nil return the value attribute, nil otherwise

5 var valueOrNil = fun(elem)

if (elem!=nil and Size(elem)>0) then return elem[0].value else return nil end;

end;

// if elem is empty, return nul

10 var trueOrNil = fun(elem)

if (Size(elem)>0) then return elem else return nil end;

end;

// This service knows named fields - we construct the respective and-separated query

15 var queryCSBibColl = fun(author,title,year,key,word,case)

var andString="", query="", case="off", partial="on";

if (author!=nil) then query="au="+author; andString=" and " end;

if (title!=nil) then query=query+andString+"ti="+title; andString=" and " end;

if (year!=nil) then query=query+andString+"yr=="+year; andString=" and " end;

20 if (key!=nil) then query=query+andString+"text="+key; andString=" and " end;

// the advanced query that we use here does not support case and word

var result=PostURL("http://liinwww.ira.uka.de/waisbib",

[. database="local/bibliography", convert="bibtex", directget="1",

sortmode="score", text=query, maxhits="170" .]);

25 return Elem(result,"pre");

end;

// This service uses only keywords for the search

var queryGibbens = fun(author,title,year,key,word,case)

30 var query="", type="substr";

if (author!=nil) then query=author+" " end;

if (title!=nil) then query=query+title+" " end;

if (year!=nil) then query=query+year+" " end;

if (key!=nil) then query=query+key+" " end;

35 // case handling is unspecified by the service, words are handled

if (word!=nil) then type="exact" end;

var result=PostURL("http://www.statslab.cam.ac.uk/cgi-bin/bibsearch.pl",

TUGboat, Volume 20 (1999), No. 2 139

[. header="~richard/misc/biblio/header", footer="~richard/misc/biblio/footer",

files="~richard/misc/biblio/rjg.bib", term=query, field="all", type=type .]);

40 return Elem(result,"pre");

end;

// This service uses named fields and expects a query starting with "find"

var queryPPA = fun(author,title,year,key,word,case)

45 var query="find ", andString="";

if (author!=nil) then query=query+"author "+author+" "; andString=" and " end;

if (title!=nil) then query=query+andString+"title "+title; andString=" and " end;

if (year!=nil) then query=query+andString+year; andString=" and " end;

if (key!=nil) then query=query+andString+key; andString=" and " end;

50 // word is ignored by netbib - we do not construct wildcards, case is ignored by the service

var result=PostURL("http://wwwslap.cern.ch/cgi-bin/collective/bibsearch2.pl",

[. query=query, output="BibTeX" .]);

return Elem(result,"pre");

end;

55
// entries is a pieceset with each piece containing a bibtex record. select shows each to

// the user and prompts for a selection. This one is returned, or nil if nothing was selected

var select = fun(entries,key)

every entry in entries do

60 every t in PCData(entry) do Print(Text(t)) end; // write out the record

Print("\nAccept this entry for citation \""+key+"\"?");

var answer=ReadLn(); // ask for a selection

if (answer=="Y" or answer=="y") then return(entry) end // return, if this one is accepted

end;

65 return nil; // if no entry was selected, return nil

end;

PrintLn("This is netbib, Version 1.0");

70 // Process the command line

var fileName;

var queryAll=(ARGS[1]=="-a"); // check for -a option

if queryAll then fileName=ARGS[2] else fileName=ARGS[1] end;

75 // The names of the generated bibliography and aliases files

var entriesFile = "netbib.bib", aliasesFile = fileName+".nba", queryFile = fileName+".nbq";

// Write out information to them

if (queryAll) then

80 Files_SaveToFile(entriesFile,"% Generated BibTeX entries by netbib\n");

Files_SaveToFile(aliasesFile,"% Generated BibTeX key aliases by netbib\n");

else

Files_AppendToFile(entriesFile,"% Generated BibTeX entries by netbib\n");

Files_AppendToFile(aliasesFile,"% Generated BibTeX key aliases by netbib\n");

85 end;

// Read in the query file and extract all netcitations as a pieceset

var queries = Elem(Files_LoadFromFile(queryFile,"text/xml"),"bibquery");

90 // The list of wrapper methods to query Web-services

var services = [queryGibbens, queryPPA, queryCSBibColl];

var selection, entries;

// process all netcitations

95 every query in queries do

// If it has no matching netreference yet, or everything is reprocessed

140 TUGboat, Volume 20 (1999), No. 2

if (trueOrNil(Elem(query,"known"))==nil or queryAll) then

selection= nil;

PrintLn("Searching netreference for "+query.value);

100 // Query services until a netreference is selected

while (selection==nil) and (Size(services)>0) do

PrintLn("Quering a service");

entries = (First(services))(valueOrNil(Elem(query,"author")),

valueOrNil(Elem(query,"title")),

105 valueOrNil(Elem(query,"year")),valueOrNil(Elem(query,"key")),

trueOrNil(Elem(query,"word")), trueOrNil(Elem(query,"case")));

services=Rest(services);

selection = select(entries,query.value);

if (selection!=nil) then

110 // extract BibTeX key from selection

var bibkey=Str_Match(Text(PCData(selection)[0]),‘^(\s|\S)*@\S*\{\s*(.*),(\s|\S)*‘)[2];

// alias the key used in \netcite to the one from the net

Files_AppendToFile(aliasesFile, ‘\bibalias{‘+query.value+‘}{‘+bibkey+‘}‘+"\n");

// writeout entry into netbib.bib

115 every t in PCData(selection) do Files_AppendToFile(entriesFile,Text(t)) end;

end;

end;

end;

end

Cartoon

by Roy Preston

TUGboat, Volume 20 (1999), No. 2 141

Hints and Tricks

‘Hey — it works!’

Jeremy Gibbons

Welcome to ‘Hey — it works!’, a column devoted
to (LA)TEX and META tips, tricks and techniques.
Any short and elegant TEX-related items are warmly
received.

In this issue, as usual, we have three articles.
One is my own, and provides a macro for margin
notes that you can switch on and off. The sec-
ond is by Andreas Scherer, and shows how to draw
smooth graphs using METAPOST’s graph package.
The third is by Ramón Casares, and demonstrates
how to disable TEX’s rule for deciding whether a ‘.’
ends a sentence.

Last issue (Vol. 19, No. 4) we had an article by
Christina Thiele showing how to produce ornamen-
tal rules out of ordinary symbols, using \cleaders.
The final paragraph demonstrated how to alternate
two symbols, but to get an odd number of symbols
properly laid out involved switching to \leaders in-
stead of \cleaders, with the result that the rule is
no longer centred within the requested width:

‘×÷×÷×÷×÷× ’

Barbara Beeton responded to point out that it is
not hard to recentre the rule: first trim its width to
the actual printed width, and then ‘manually’ centre
this trimmed rule within the requested width:

\def\bordertwo#1#2#3{{%

\setbox1=\hbox{#1}%

\setbox2=\hbox{#1#2}%

\dimen0=#3\advance\dimen0 by -\wd1

\divide\dimen0 by \wd2

\multiply\dimen0 by \wd2

\leavevmode

\hbox to #3{\hfil#1\hbox to \dimen0

{\leaders\hbox{#2#1}\hfil}\hfil}%

}}

This generates

‘ ×÷×÷×÷×÷× ’

instead.

⋄ Jeremy Gibbons

CMS, Oxford Brookes University

Gipsy Lane, Headington

Oxford OX3 0BP, UK

jgibbons@brookes.ac.uk

http://www.brookes.ac.uk/

~p0071749/

1 Switchable marginal notes

I often find it convenient, when working on the draft
of an article, to annotate it in the margin with re-
minders of facts to check, corrections to make and
so on. Of course, this is what LATEX’s \marginpar

macro is for. However, I would also like to be able
to switch off the annotations, for example when I
am distributing the draft article to an audience for
whom the annotations are inappropriate or irrele-
vant. I don’t want to have to edit the document
to remove the annotations one by one; that’s just
too much trouble. To solve this problem I wrote a
simple macro for ‘switchable marginal notes’.

The following definitions should be put into a
style file, say margnote.sty:

\newif\ifmarginnotes \marginnotestrue

\def\marginnotestyle

{\scriptsize\itshape\raggedright}

\def\marginnote#1{%

\@bsphack

\ifmarginnotes

\marginpar{\marginnotestyle#1}%

\fi

\@esphack}

Then marginal notes can be used by including

\usepackage{margnote}

in the document preamble.
The first line defines the marginal note switch.

Marginal notes are turned on by default, but they
can be turned off simply by saying

\marginnotesfalse

after the \usepackage declaration. (They can even
be turned off and on mid-document.)

The second section specifies the style of marginal
notes; by default, they are in a smaller size, italic,
and set ragged right, but this can be changed by
using \renewcommand.

The remainder of the file defines the marginal
note macro itself. This takes a single argument, the
text of the note, and sets it using \marginpar if
marginal notes are turned on. For example,

\marginnote{This is a marginal note.}

produces the note in the margin here. The macros This is a

marginal

note.
\@bsphack and \@esphack are internal to LATEX;
they ensure that an entity like a marginal note or
label definition does not introduce any extra space
into a paragraph, independently of whether or not
it is attached to a word.

⋄ Jeremy Gibbons

Oxford Brookes University

jgibbons@brookes.ac.uk

142 TUGboat, Volume 20 (1999), No. 2

2 Smoothing augmented paths in

METAPOST

The user manual of the METAPOST graph package
states that neighbouring points of a path created
with the augment macro are connected by straight
line segments. Depending on the application, it may
be more suitable to draw a smooth curve through the
set of points on the path, using the ‘..’ operator.
This can be achieved easily.

Let the input be an external data file hiw.data
containing several pairs of coordinates, each pair on
a separate line:

1 1

2 2

3 6

4 9

The following METAPOST code creates a (jagged)
path by calling augment as the third argument to
the gdata routine:

input graph;

beginfig(1);

draw begingraph(5cm, 3cm);

path p;

gdata("hiw.data", c,

augment.p(c1, c2););

gdraw p dashed evenly;

gdraw (point 0 of p

for i = 1 upto length p:

.. point i of p

endfor);

pickup pencircle scaled 3pt;

for i = 0 upto length p:

gdraw point i of p;

endfor;

pickup defaultpen;

endgraph;

endfig;

end.

This path is gdrawn the first time as a dashed
line, depicting the default behaviour of augment.
The “Hey, it works!” effect is achieved in the next
four lines by gdrawing a (temporary) smooth version
of the same path. This is done directly as an argu-
ment to gdraw; no new variables are needed. Note
how this is done in a simple for loop running over
the points of the paths, applying the ‘..’ operator
in between.

Together with the control points displayed as
heavy dots, the result of this code is shown in the
following picture.

1 2 3 4

2

4

6

8

METAPOST automatically scales the x- and y-axes,
adds a frame (whose size was set in the begingraph

command), and attaches tick marks and labels.
METAPOST’s graph package will not generate

cyclic paths, but nevertheless a similar approach can
be used to draw a smooth version of a cyclic polygon:

draw (for i = 0 upto (length p - 1):

point i of p ..

endfor cycle);

⋄ Andreas Scherer

Rochusstraße 22–24

52062 Aachen, Germany

andreas.scherer@pobox.com

3 Every point a period

The rule used by TEX to decide whether a point
is a period ending a sentence (so it will stretch the
following space) or is just indicating an abbreviation
is, for a simple mind like mine, too complicated.
And it fails more frequently than expected when my
text is full of ugly acronyms. So I have devised an
alternative scheme.

Basically the idea is that every point is a period
ending a sentence, so when I want to use a point in
any other circumstance I have to protect the space
that follows it, if any. If I want this space to be
breakable then the solution is to write a backslash
between the point and the space, that is ‘.\ ’. If, on
the other hand, I want this space to be unbreakable
then the solution is to write a tilde between the point
and the space, that is ‘.~ ’. Easy, isn’t it?

The code to achieve this is as follows:

\count255=‘A

\loop

\sfcode\count255=1000

\ifnum\count255<‘Z\advance\count255 1

\repeat

\def~{\nobreak\ \ignorespaces}

Note that I have appended a \ignorespaces to the
tie mark definition (so in fact a space after a tilde is
ignored).

⋄ Ramón Casares

Telefónica de España

r.casares@computer.org

TUGboat, Volume 20 (1999), No. 2 143

Abstracts

Les Cahiers GUTenberg

Contents of Issue 31 (December 1998)
and Issue 32 (May 1999)

Issue 31

This issue of the Cahiers was set in Apolline, by Jean-
François Porchez. For more information about font
variations across the Cahiers series, see the end of this
column.

Jacques André, Éditorial; pp. 3–4
The editor begins by stating that each issue of

the Cahiers has its own look. That of the current
one has been affected by the following keywords:
“Delay”, “Regular” [i.e., non-thematic], “Correc-
tions”, and “Technique”. Each factor is then ex-
amined in turn, with each benefitting from Jacques’
characteristic wry humour.

It should be noted that the article by Esperet and Girou
is complemented by an article by André and Girou which
appeared in TUGboat 20,1 (1999), pages 8–14.

Philippe Esperet and Denis Girou,
Coloriage du pavage dit “de Truchet” [Coloring of
“Truchet tiles”]; pp. 5–18

Three years ago, an algorithmic problem on
tiling of a plane was set as a contest puzzle. After
presenting various aspects to the puzzle, we give the
main answers received. The winner was Rouben Ter
Minassian. [Author’s abstract]

The abstract does not allude to the fact that there are a
good number of colour images of various Truchet ‘tiles’
included! Solutions showing three different approaches
are provided: one based on PostScript, one on META-
POST, and one using PSTricks. As with all articles in
the Cahiers, this one can be had as a downloadable file
from the GUTenberg website (see new address at the end
of this column).

Denis Roegel, Anatomie d’une macro
[Anatomy of a macro]; pp. 19–27

This article provides a detailed explanation of a
macro to calculate prime numbers. It also provides
us with an opportunity to highlight some lesser-
known TEXnical concepts.

[Author’s abstract]

While the explanations may be in French, the macro in
its entirety is just a collection of the same old English
control sequences we’ve all come to . . . look sideways
at . . . as we move along to something else . . . ;-)).
The blow-by-blow account of what’s happening is what
makes this particular presentation quite interesting . . .

Daniel Taupin, ltx2rtf : envoi de documents
LATEX aux usagers de Word [ltx2rtf: sending
LATEX documents to Word users]; pp. 28–37

The ltx2rtf compiler translates LATEX source
files into RTF, a format available in many text
editors, notably Microsoft Word. Originally written
by Fernando Dorner and Andreas Granzer, students
in Vienna (Austria), the initial version can be found
on CTAN under the name latex2rtf. During
the period 1997–98, we corrected and adapted the
original version to run with LATEX2ε, under the
name ltx2rtf. The distribution is mainly intended
for use under MS-DOS Win95 and Win 3.11, but the
program, written in standard C, can be compiled on
any UNIX system with a CGG compiler.

[Author’s abstract, with corrections]

The author’s conclusion is worth noting:

Just as it is not the purpose of dvips to allow compos-
itors to replace LATEX with PostScript, ltx2rtf is not
intended to have people abandon LATEX in favour of
Word. Its sole purpose is to facilitate the transmission
of properly formatted documents to people whose only
viewing and/or printing tools are those provided by
Microsoft. By doing so, it greatly expands the poten-
tial group of recipients of files originating in LATEX.

Sophie Brissaud, La lecture angoissée ou la mort
du correcteur [Painful reading or, death of the
proofreader]; pp. 38–44

This paper was first published at the ATypI
conference at Lyons, in October 1998. The author
reminds us that proofreading ought to be done only
by professionals. She claims that it would be a pity
if proofreaders were to disappear.

[Author’s abstract]

The article is followed by a response from Jacques André,
editor of the Cahiers.

Jacques André, Petite histoire des signes de
correction typographique [A brief history of
proofreaders’ marks]; pp. 45–59

The history of the most important proofreaders’
marks is shown. These marks are as old as printing.
This fact is a sure indication that typographical
quality has always been a major preoccupation
of printers and that proofreaders are the genuine
guarantors of the written language.

[Author’s abstract]

Issue 32:
“Journées GUTenberg 1999”, Lyon

The issue includes papers presented at the recent
GUTenberg annual meeting, which looked at both the
specific and the general issues of TEX usage today. The
specific subset of papers on ‘TEX and XML’ is reserved

144 TUGboat, Volume 20 (1999), No. 2

for Cahiers 33/34, a double issue. The papers outside
that set are included here.

This issue was set in ITC New Baskerville, with
Gill Sans for \sf and Letter Gothic for \tt. Of special
interest are the sample pages of SMF Baskerville, a math
font by Yannis Haralambous.

Thierry Bouche, Éditorial : TEX à
l’approche du IIIe millénaire : état des lieux
et perspectives [Editorial: As we approach the
third millennium . . .]; pp. 3–4

The editor muses over the redirection of
TEX’s efforts from purely paper-based to the ever-
expanding electronic permutations for displaying
text and math. The articles in the issue are similarly
quite broad in range, from beautiful typesetting
(books, fonts, screen displays) to ever-improving
tools (CDs and packages for French-language mate-
rials) to access TEX’s capabilities, with a fair-sized
detour to the world of musical notation.

As for the more specific focus of TEX and XML,
the theme of GUTenberg’s annual meeting, readers
will find the conference papers in the next Cahiers,
a double issue (no. 33/34).

Yannis Haralambous, Une police mathématique
pour la Société mathématique de France : le SMF

Baskerville [A math font for the French Math
Society: SMF Baskerville]; pp. 5–20

The author describes in detail the evolu-
tion and design issues involved with creating a
math Baskerville to work with the well-known text
Baskerville. The introduction moves quickly but
surely over what is becoming well-known ground,
in terms of what is currently available as fully de-
veloped math fonts and current strategies to ex-
pand the repertoire of workable and aesthetically
acceptable combinations of math and text fonts.
The paper then moves through a brief history of
the Baskerville font, and provides information on
where the various commercial components can be
acquired— this is not free-ware! And finally, the
details dear to a font designer’s heart, including a
set of figures to compare a half-page of mathematics
published by the Presses Universitaires de France
with the same material set in SMF Baskerville, and
closing with over 5 pages of Baskerville math, using
examples from testmath.tex, an AMS test file.

Note: A reminder that another approach, that of com-
bining elements from various fonts to arrive at a work-
able math font, was described in a recent issue of TUG-

boat. See Thierry Bouche, “Diversity in Math Fonts,”
TUGboat 19,2 (1998), pages 121–135. As well, in the
same issue, on pages 176–187, Alan Hoenig described
“Alternatives to Computer Modern Mathematics”. The
number of viable alternatives to the very complete CMR

math fonts is rapidly expanding and everyone who works
in mathematics typesetting should be heartened by all
this activity.

Hàn Th´̂e Thành, Améliorer la typographie de
TEX [Improving TEX’s typography]; pp. 21–28

This paper describes an attempt to improve
TEX’s typeset layout in pdfTEX, based on the ad-
justment of interword spacing after the paragraphs
have been broken into lines. Instead of changing
only the interword spacing in order to justify text
lines, we also slightly expand the fonts on the line
as well in order to minimise excessive stretching
of the interword spaces. This font expansion is
implemented using horizontal scaling in PDF. When
such expansion is used conservatively, and by em-
ploying appropriate settings for TEX’s line-breaking
and spacing parameters, this method can improve
the appearance of TEX’s typeset layout.

[Author’s abstract]

This is a translation (by Thierry Bouche) of the original
paper, first presented at TUG’98 in Torún, Poland
(August 1998). The article appeared in TUGboat 19,3
(1998), pages 284–288, where it was called “Improving
TEX’s Typeset Layout”.

Laurent Guillopé, Statique et dynamique de
documents mathématiques [Static and dynamic
aspects of mathematics documents]; pp. 29–34

Various prototypes intended to examine a set
of mathematics criteria are described. Even if none
meet the contradictory requirements for this sort of
numerical display, definite progress can, neverthe-
less, be noted.

Keywords: databank, reader, formula, mathe-
matics, PDF, HTML, Internet

[Translation of French résumé]

A translation of the final paragraph of the introduction
might help clarify things a little:

This article is placed in the midst of the general
framework of opposition between the static (books)
and the dynamic (electronic representations). TEX, as
lingua franca in the mathematical research community
(amongst others) plays a pivotal role. And yet, it
rapidly falls away in the face of the contradictory
constraints of such displays; it is the resolution of these
contradications which interests us here. Initial choices,
preferred constraints, these yield quite different results.

José Grimm, Le rapport d’activité de l’Inria
[Inria activity reports]; pp. 35–45

This article focusses on production of Inria’s
activity reports, starting with a collection of some
80 different LATEX documents, and then printed
in 9 hardcopy volumes (totally some 2,294 A4-
sized pages), translated into HTML via latex2html

(3,131 web pages). Three document classes are used,

TUGboat, Volume 20 (1999), No. 2 145

along with three bibliography styles and two perl

scripts. [Translation of author’s résumé]

Of interest to anyone involved in very large-scale docu-
ment production from multiple sources, and destined for
multiple displays.

Fabrice Popineau, fpTEX : teTEX pour Win32
[fpTEX: teTEX for Win32]; pp. 47–61

The article provides an extensive overview of
this port of teTEX for Windows machines, pro-
viding TEX users— and more particularly, TEX in-
stallers— with details on choices and decisions made
regarding the development of the fpTEX distribu-
tion.

This article is a precursor to the paper which will be
presented at TUG99, entitled “fpTEX: A teTEX-based
distribution for Windows”.

Daniel Flipo, Francisation d’un format LATEX :
nouveautés [Adapting a LATEX format for French:
updates]; pp. 63–70

TEX distributions based on Web2C v.7.x (teTEX
for UNIX, fpTEX for Windows, CMacTEX for Mac),
in conjunction with the revised mltex.sty package
by Bernd Raichle, have considerably simplified the
development and use of LATEX formats adapted for
French-language applications. This report aims to
examine some of the new possibilities.

[Translation of author’s résumé]

René Bastian, Figurations et notations de l’objet
musical [Musical representation and notation];
pp. 71–90

Instead of giving a ‘History of solutions’ that
composers have chosen to use, regarding musical
notation, we will begin by highlighting a few extreme
modes of notiation and then examine how some
solutions, which appeared reasonable at the time,
never got off the ground. This will be followed by
a proposal for a grammar of musical exchange, one
which might serve as a link between contemporary
concerns and the traditional stock of notational
symbols. [Translation of author’s résumé]

−− ∗ −−

Articles from Cahiers issues can be found in Post-
Script format at the following site (note the new

address):

http://www.gutenberg.eu.org/pub/gut/

publications/publis.html

About the Cahiers

Font use over the years. The GUTenberg group
are currently producing issue 33/34. I’ve been doing
these summaries since issue 12 (!). And in all this
time, I have been quite blind to the fact that CMR is
not the default font of choice. So, just for the record,
here’s a list of the main text fonts used in previous
issues of the Cahiers — just one more reason to find a
few copies (now available as downloadable .pdf files
from their website) and see what a lot of Apolline

or Stone looks like!
Most issues carry an explicit Colophon but I’d

like to thank Jacques André for filling the gaps in
this listing.

32 ITC New Baskerville, with Gill Sans
for the \sf and Letter Gothic for \tt;
several pages of SMF Baskerville

31 Apolline
30 Stone
28/29 CMR

27 Adobe Palatino
26 Adobe Palatino
25 Adobe Minion Multi Master
24 Adobe Palatino
23 CMR

22 Adobe Garamond
21 CMR

20 Mainly Univers, with some parts of
Lucida and Omega

19 CMR

1–18 16 of these in Times

Change in website address. Another bit of news:
the GUTenberg website has changed (noted in issue
no. 31): www.gutenberg.eu.org/pub. Jacques tells
me that GUTenberg intends to have all its publica-
tions on the website; to date, all of the Lettres are
there, and the Cahiers start with issue no. 14.

[Compiled by Christina Thiele]

1999

Aug 8 – 13 SIGGRAPH 99, Los Angeles, California.
For information, visit
http://www.siggraph.org/s99/.

Aug 15 – 19 TUG’99—The 20th annual meeting of
the TEX Users Group, “TEX Online—
Untangling the Web and TEX”,
University of British Columbia,
Vancouver, Canada. The Web page,
http://www.tug.org/tug99/, is updated
regularly.

Aug 23 TUGboat 20 (3), deadline for reports and
news items.

Aug 30 –
Sep 2

15th International Unicode Conference,
San Jose, California.
For information, visit http://

www.unicode.org/unicode/iuc15/.

Aug 30 –
Sep 3

Seybold San Francisco/Publishing 99,
San Francisco, California.
For information, visit http://

www.seyboldseminars.com/Events.

Sep 4 –
Oct 17

ABeCeDarium: A traveling juried
exhibition of contemporary artists’
alphabet books by members of the
Guild of Book Workers, appearing
at the Vida Ellison Gallery, Denver
Public Library, Denver, Colorado.
Sites and dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.

Sep 13 – 14 EGUTH’99: First meeting of the
Spanish-speaking TEX Users Group
(CervanTEX), Universidad Politécnica
de Madrid, Spain. For information, visit
http://feynman.faii.etsii.upm.es/

~eguth99.

Sep 12 – 13 UK-TUG Autumn meeting and

10th AGM: TEX/LATEX and their
relationship to SGML/HTML/XML,
London, UK. For information, contact
uktug@mail.rhbnc.ac.uk.

Sep 19 DANTE, 21st meeting, Heidelberg
University, Germany. For information,
contact dante@dante.de.

146 TUGboat, Volume 20 (1999), No. 2

Calendar

Sep 20 – 23 EuroTEX ’99, the XIth European
TEX Conference, “Paperless TEX”,
Ruprecht-Karls University,
Heidelberg, Germany. Tutorials
will precede and follow the main
conference. For information, visit
http://uk.tug.org/EuroTeX-99/.

Sep 23 – 24 H2PTM99, the 5th Conference on
Hypertexts and Hypermedia: Products,
Tools, Methods, Saint Denis, Paris,
France. For information, visit http://

www.labart.univ-paris8.fr/~conf99/.

Oct 7 – 10 ATypI ’99, Association
Typographique Internationale,
Boston, Massachusetts. For information,
visit http://www.atypi.org/.

Oct 22 – 24 The 24th Annual Conference of the
American Printing History Association,
“A Century of Book Design in Europe
and America: Printing, Practitioners,
and Presses”, The Grolier Club, 47
East 60th Street, New York, New
York. For more information, visit
http://wally.rit.edu/cary/apha.html.

Nov 3 –
Dec 17

ABeCeDarium: A traveling juried
exhibition of contemporary artists’
alphabet books by members of the
Guild of Book Workers, appearing at the
Denison Library, Scripps College,
Claremont, California. Sites and
dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Nov 8 TUGboat 20 (4), deadline for technical
submissions.

Nov 22 TUGboat 20 (4), deadline for reports and
news items.

Dec 6 – 9 XML 99, Philadelphia, Pennsylvania.
For information, visit
http://www.gca.org/conf/conf1996.htm.

Status as of 30 June 1999

For additional information on TUG-sponsored events listed above, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

Additional type-related events and news items are listed in the Sans Serif Web pages,
at http://www.quixote.com/serif/sans.

2000

Feb 7 TUGboat 21 (1), deadline for technical
submissions.

Feb 7 – 11 Seybold Seminars Boston/
Publishing 2000, Boston, Massachusetts.
For information, visit http://

www.seyboldseminars.com/Events.

Feb 21 TUGboat 21 (1), deadline for reports and
news items.

Mar 8 – 10 DANTE 2000 and 22nd meeting,
Technische Universität
Clausthal-Zellerfeld, Germany.
For information, contact
dante2000@dante.de.

Apr 11 TUGboat 21 (2), deadline for technical
submissions.

May 9 TUGboat 21 (2), deadline for reports and
news items.

Jun 16 – 18 TypeCon 2000, Westborough,
Massachusetts. For information, visit
http://tjup.truman.edu/sota/.

Jun 22 – 24 TypoMedia 2000, “Future of
Communication”, Mainz, Germany.
Linotype’s design conference;
for information, visit
http://www.typomedia.com.

Jul 23 – 28 SIGGRAPH 2000, New Orleans,
Louisiana. For information, visit
http://www.siggraph.org/calendar/.

Aug 12 – 18 TUG2000— The 21st annual meeting of
the TEX Users Group, “TEX enters a
new millennium”, Wadham College,
Oxford, UK. For information, visit
http://tug2000.tug.org/.

Aug 28 –
Sep 1

Seybold San Francisco/
Publishing 2000, San Francisco,
California. For information, visit
http://www.seyboldseminars.com/Events.

Sep 12 TUGboat 21 (3), deadline for reports and
news items.

Sep 13 – 15 DDEP: Digital Documents and
Electronic Publishing (successor to
EP98) and WEPT: Week on Electronic
Publishing and Typography, Munich,
Germany. For information, visit
http://www.irisa.fr/ep98.

Sep 19 TUGboat 21 (4), deadline for technical
submissions.

Oct 17 TUGboat 21 (4), deadline for reports and
news items.

TUGboat, Volume 20 (1999), No. 2 147

TUGboat, Volume 20 (1999), No. 2 147

Late-Breaking News

Production Notes

Mimi Burbank

”We’re late! We’re late!” . . . 1

One of the more
daunting aspects of pro-
ducing a journal is get-
ting all of the mate-
rial together in a timely
fashion. My job literally
ends up being “mushing
files together to get a
contiguous set of pages
which add up to some
multiple of 8 or 16.” For
this issue, promised ma-
terial did not appear in
a timely fashion, there
were various problems
with reviewers and then
everyone began getting

ready to go to TUG ’99. I seem to be just “full”
of excuses . . .

Any issue that deals with fonts, and includes
multiple graphics always presents some kind of chal-
lenge in terms of production. Often it involves a
comedy of errors but I always consider the actual
production of TUGboat to be my “Continuing Ed-
ucation”.

The article by Bogus law Jackowski (page 104)
required additional fonts, and METAFONT sources
were provided by the author.

Output. The final camera copy was prepared at
SCRI using the TEX Live 4 setup, which is based
on the Web2c TEX implementation version 7.3 by
Karl Berry and Olaf Weber. PostScript output,
using outline fonts, was produced using Radical
Eye Software’s dvips(k) 5.85, and printed on an HP
LaserJet 4000 TN printer at 1200dpi.

Coming In Future Issues The next issue will
contain the proceedings of the TUG ’99 Annual
Meeting, held in Vancouver, BC.

⋄ Mimi Burbank

SCRI, Florida State University,

Tallahassee, FL 32306 – 4130

mimi@scri.fsu.edu

1 The image comes from http://www.disneyclipart.

com/Movies/Alice_in_Wonderland/White_Rabbit/.

Institutional
Members

American Mathematical Society,

Providence, Rhode Island

CNRS - IDRIS,

Orsay, France

College of William & Mary,

Department of Computer Science,

Williamsburg, Virginia

CSTUG, Praha, Czech Republic

Florida State University,

Supercomputer Computations

Research, Tallahassee, Florida

Hong Kong University of

Science and Technology,

Department of Computer Science,

Hong Kong, China

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

ICC Corporation,

Portland, Oregon

Institute for Advanced Study,

Princeton, New Jersey

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Iowa State University,

Computation Center,

Ames, Iowa

Kluwer Academic Publishers,

Dordrecht, The Netherlands

KTH Royal Institute of

Technology, Stockholm, Sweden

Los Alamos National Laboratory,

University of California,

Los Alamos, New Mexico

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czechoslovakia

Max Planck Institut

für Mathematik,

Bonn, Germany

New York University,

Academic Computing Facility,

New York, New York

Princeton University,

Department of Mathematics,

Princeton, New Jersey

Space Telescope Science Institute,

Baltimore, Maryland

Springer-Verlag Heidelberg,,

Heidelberg, Germany

Stanford University,

Computer Science Department,

Stanford, California

148 TUGboat, Volume 20 (1999), No. 2

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University of Canterbury,

Computer Services Centre,

Christchurch, New Zealand

University College, Cork,

Computer Centre,

Cork, Ireland

University of Delaware,

Computing and Network Services,

Newark, Delaware

Universität Koblenz–Landau,

Fachbereich Informatik,

Koblenz, Germany

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

University of Texas at Austin,

Austin, Texas

Università degli Studi di Trieste,

Trieste, Italy

Uppsala University,

Computing Science Department,

Uppsala, Sweden

Vanderbilt University,

Nashville, Tennessee

Vrije Universiteit,

Amsterdam, The Netherlands

Information about these services can be obtained

from:

TEX Users Group

1466 NW Naito Parkway, Suite 3141

Portland, OR 97209-2820, U.S.A.

Phone: +1 503 223-9994

Fax: +1 503 223-3960

Email: office@tug.org

URL: http://www.tug.org/

consultants.html

North America

Hargreaves, Kathryn

135 Center Hill Road,
Plymouth, MA 02360-1364;
(508) 224-2367; letters@cs.umb.edu

I write in TEX, LATEX, METAFONT, MetaPost, PostScript,
HTML, Perl, Awk, C, C++, Visual C++, Java,
JavaScript, and do CGI scripting. I take special care
with mathematics. I also copyedit, proofread, write
documentation, do spiral binding, scan images, program,
hack fonts, and design letterforms, ads, newsletters,
journals, proceedings and books. I’m a journeyman
typographer and began typesetting and designing in 1979.
I coauthored TEX for the Impatient (Addison-Wesley, 1990)
and some psychophysics research papers. I have an MFA in
Painting/Sculpture/Graphic Arts and an MSc in Computer
Science. Among numerous other things, I’m currently doing
some digital type and human vision research, and am a
webmaster at the Department of Engineering and Applied
Sciences, Harvard University. For more information, see:
http://www.cs.umb.edu/ kathryn.

Loew, Elizabeth

President, TEXniques, Inc.,
675 Massachusetts Avenue, 6th Floor,
Cambridge, MA 02139;
(617) 876-2333; Fax: (781) 344-8158
Email: loew@texniques.com

Complete book and journal production in the areas of
mathematics, physics, engineering, and biology. Services
include copyediting, layout, art sizing, preparation of
electronic figures; we keyboard from raw manuscript or

tweak TEX files.

TUGboat, Volume 20 (1999), No. 2 151

TEX Consulting & Production Services

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585
Email: Ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and ßC++. Database and corporate
publishing. Extensive references.

Outside North America

DocuTEXing: TEX Typesetting Facility

43 Ibn Kotaiba Street,
Nasr City, Cairo 11471, Egypt
+20 2 4034178; Fax: +20 2 4034178
Email: main-office@DocuTeXing.com

DocuTEXing provides high-quality TEX and LATEX
typesetting services to authors, editors, and publishers.
Our services extend from simple typesetting and technical
illustrations to full production of electronic journals. For
more information, samples, and references, please visit our
web site: http://www.DocuTeXing.com or contact us by
e-mail.

