
128 TUGboat, Volume 20 (1999), No. 2

Interacting pdfTEX, PERL and ConTEXt

Gilbert van den Dobbelsteen

Abstract

PERL, pdfTEX, and ConTEXt are extremely useful in
the production of large documents which also need
a lot of interaction. This article resulted from a job
I did for a good friend, yielding over 2000 pages of
PDF output.

The power here is to use the right tool for the
right job. Almost everything created for this job
could be done in TEX, but since I am just a ‘Ben
Lee User’, I use different tools to get the job done.
So it is not a matter of which tool is the best for the
job, but more like Which tool is best for the person

using the tool.

1 Introduction

A few months ago, a good friend (let’s call him
Bart, because that’s his name) had a problem. He
had taken on a job where he needed to create an
interactive document consisting of over a thousand
paragraphs. All texts needed to be clickable, and as
a result a poster should pop-up with the same text,
but artistically enhanced. The texts originated from
the loesje association and so did the posters.

I advised him to take a look at adobe acro-

bat. He did, and he had already made a framework
with some buttons and clickable links. He started
calculating, and decided this was too much work.
Every link had to be manually created, and since
each poster-text had about three to four categories,
this meant drawing over 5000 clickable areas by hand
in acrobat. Though loesje has many volunteers,
you can’t give them such a boring job. It would
simply kill the relaxed atmosphere, normally hang-
ing around loesje.

So I told him that he could probably use some
programming tool to automate things. Since Bart
is dyslectic (it is very difficult for him to read words
from paper or screen), he is unable to do classical
software engineering jobs, so in the end I volunteered
to do the job for him.

I usually write small documents, which aren’t
larger then 100 pages, but I was very sure TEX is
capable of doing larger ones. Interactive programs
usually have big problems dealing with large files
and many pages, but since TEX is batch oriented I
knew this wasn’t going to be a problem.

This article, based on a paper presented at the meeting
of 1–3 May 1999 in Bachotek, Poland, appeared in the
GUST Biuletyn, 12 (1999), pp. 64–69, and appears here by
permission.

2 About LOESJE

loesje is an association of people who design strong
texts for different applications. Some text-categories
are: Elections, Politics, Year 2000 problems, Astrol-
ogy, Economy, Stock exchange, Christmas, Nature,
Animals, Poetry, Religion, School, Health-care, et
cetera.

These texts are put onto posters and flyers and
you can see them anywhere around the Netherlands.
You can also buy post-cards and other stuff.

The main idea is to trigger people to think
about what is going on. A typical text from loesje:

Year 2000: Suppose the end of the world is near

and God forgot to make a backup

The loesje association has been around since
1983, and throughout the years they have created
1350 different texts.

To celebrate their 15-year existence, they de-
cided to create a CD-ROM with all their posters on
it, and with a nice catalogue, where you can browse
the texts category-wise or chronologically.

3 How things got started

I had to define some structure before I could begin.
In the beginning of loesje they used markers and
pencils to create posters by hand, and reproduced
them with a large xerox machine. So those posters
weren’t available in a digital format. They started
using computers many years later, so much of the
material was only available on paper.

To assure quality and consistent presentation
they decided to scan all posters. loesje has a
Scanjet 2 and lots of volunteers. The scanner
was old and the compressed TIFF output generated
TIFF files with errors, so they had to fall back to
uncompressed TIFF.

After a few weeks Bart came to me with 10 CDs
full of uncompressed TIFF bitmaps. Each file was
4Mb in size consisting of a 600DPI A4 scan of each
poster. This started to terrify me. My computer had
about 3Gb of free disk space, which was definitely
not enough for ten CDs of data. How to proceed?
I knew that I needed the files in PNG format for
inclusion in pdfTEX. So I decided to convert all files
to PNG with the ImageMagick tools. This took 8
hours of computer time and in the end I discovered
the dimensions where lost in the resulting PNG-
file. After investigating the originals I concluded
the dimensions weren’t present there either.

Since the PNG format is compressed, and the
monochrome scans are very large, the total size
reduced from 10 CDs to 1

6
th CD. This was a

manageable amount of data.

TUGboat, Volume 20 (1999), No. 2 129

3.1 Texts and categories

Besides the scanning of the actual posters, I needed
the actual texts that were on the posters.

One text-file contains the lines of text for each
poster. To keep things simple, loesje keyed in all
the data. A typical entry looks like this:

N199312C Actual text, perhaps

sevaral lines

long [3\7\13]

The above means: The file N199312C.PNG is
the actual poster containing this text, the year is
1993, the month is December (12) and this is the
third poster (C) in that month. The poster falls in
three categories: 3, 7 and 13.

The resulting typeset layout should observe the
new- and empty lines in the files.

To convert the category numbers to actual cat-
egory names there was another text file: cat.txt.
This file looked something like this:

Alien

9 Common

10 Astrology

11 Space

Future

72 Common

73 Dreams/ideals

74 Plans

75 2002

The above means: The main category ‘Alien’
contains the subcategories: Common (9), Astrology
(10), and Space (11). The main category ‘Future’
contains the subcategories: Common (72), Dreams/
ideals (73), Plans (74), and 2002 (75).

These files are fairly easy to scan with PERL.
The scanning code is just a screen or two. After
each text definition is scanned, a PERL object is
constructed with the following attributes:

Year The year of the poster.

Month The month of the poster.

Categories An array containing the category
numbers for this particular poster.

Text The actual text.

All the poster objects are put into a hash (a
key-value pair array) where the key is the unique
poster number (like N199312C).

After the scanning and building of the hash is
complete the output-files are constructed.

4 Using different tools

I am a tool-guy. I use whatever tool that I know
could do the job easily. The advantage here is

obvious: the right tool for the right job gets the work
done more quickly. There’s also a disadvantage: I
usually do not know the exact ins-and-outs of a tool.
I know little of TEX, in fact the way TEX ‘thinks’
is definitely not my way. I see TEX as an enhanced
M4 macro-processor, with weird syntax, nice output
and unlimited possibilities.

Do not blame me for my limited vision of this
powerful typesetting engine, it is just the way I
work with it. My macros are not nice and I usually
overlook powerful features, but they get the job done
I hope. As I write macros (in any language, be it
TEX or PERL) I experiment until the result is what
I want. If the used tool can’t do the job for me
(usually because I am too stupid to find the right
keywords) then I’ll try another tool until the results
are satisfactory.

The same story holds for PERL. If a take a
look at the packages that come with PERL I am
amazed by the possibilities. You can even write web-
servers in PERL with just a few lines of code. I used
PERL before to convert structured text documents
to PDF and HTML with everything cross-linked and
it is definitely a very powerful tool for doing system
stuff like messing with files, directories and contents
of files.

PERL and TEX have something in common:
both are a bit weird, though PERL looks more like
a conventional programming language to me. To
achieve things in both tools, you can use several
mechanisms and language constructs. This is better
accepted in the PERL world than in the TEX world. I
sometimes overhear conversations about TEX where
people are trying to convince each other that their
way is the best way to do it. I do not believe in such
a concept. The best way to achieve things is the way
that generates the most fun and gets the job done.

5 PERLing it away

This section should definitely not be read by any
advanced TEX user and specifically any ConTEXt
user. That’s because they would claim that all this
structurizing I did could easily be done from within
ConTEXt. Okay, I admit that is very true, and Con-
TEXt does support a lot of usable stuff for me. The
only problem is that I don’t know them well enough.

Using PERL to scan the files was easy. Gener-
ating the output however was more difficult.

I first needed to know what kind of browsing
these loesje guys would need. They wanted two
things:

1. Chronological. You can browse through the
poster-texts sorted on date. Below should be a
button-bar with the available years, and above

130 TUGboat, Volume 20 (1999), No. 2

that a button-bar with the months in that year.
Each poster-text will be included once.

2. Categorial. It is similar to the chronological but
organized by main- and subcategories.

So I decided to use a section/subsection mech-
anism as found in LATEX.

A sample of the output:

\\YEAR{1993}

\\MONTH{January}

\startposter{N199312C}

Hi there, this is some poster text

\stopposter

The macros \startposter and \stopposter

should do all the work (I’ll come back to those later).

6 Using ConTEXt to do the layout

Many of you probably know ConTEXt as a very pow-
erful program for creating interactive documents. If
you don’t believe me, try it for yourself. The trou-
ble with ConTEXt is finding the right way to do it.
There are usually several.

Almost all of the features found in the PDF

specifications can be used. In some aspects ConTEXt
defines more functionality than PDF has to offer.
The whole concept behind ConTEXt is well thought-
out and Hans Hagen is a true wizard when it comes
to functionality and completeness. If you have a
nice generic package or add-on, Hans is willing to
integrate it in ConTEXt given the time. Modularity
in ConTEXt is something weird, because the package
is large and monolithic. In fact the basic services in
ConTEXt are rather limited when it comes to ‘I want
to write an article’. But once you get the hang of
it you discover that customizing things is a breeze,
compared to whatever I’ve ever encountered in TEX
miracle land. You do not need to know a lot about
TEX (which is definitely a big plus) and it usually
works the way you expect. And if you’re not certain
about the correctness of the output, you simply turn
on the visual debugger,1 and you can actually see

where you forgot that extra percent sign, yielding
that unwanted space.

6.1 Defining the layout

Take a look at figure 1. It is the basic layout. All
the screens in the product are similar to this one, so
I designed a basic layout to create this.

Defining the layout is simple. You first setup
the papersize:

1 Editor’s note: This debugger is neat stuff—
see the article by Hans Hagen in TUGboat 19(3)
(September 1998), pp. 311ff.

juni - 1998

VORIGE

VOLGENDEVOLGENDE

TERUG

ZOEKENN

HOOFD MENU

STOPPENSTOPPEN

januari februari maart april mei juni juli september oktober november december

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Bezuinigingen is iets voor mensen die niet met teveel geld
uitgeven kunnen omgaan

De minister stoelendans, want de bingo van 4 jaar geleden is
niet zo'n succes gebleken

Windows 98, we rammen het glas eruit en snuiven de frisse
buitenlucht

Gerucht, Bill Gates eet alleen maar spruitjes als ze in de
reclame zijn

Het zwarte gat van cyberspace, is iemand ooit alleen geweest
in glasvezels en bits, verdwalen op het world wide web, alsof
je daar ook vrienden hebt die na een dagje niks, 's kijken waar
je bleef

Sex op internet, zowel de muis besturen als dat andere kan ik
alleen maar met rechts
het broertje van

Figure 1: Basic layout

\setuppapersize

[S6]

The S6 means: Screen based papersize. It is
similar to A4, except that the width is 600pt and
the height is 450pt. ConTEXt sets up margins and
automatically calculates the text-area. For screen-
based layout, there’s one thing for sure: Whatever
ConTEXt calculates, it is never what you want. (It
works fine for paper-based output.)

So now let’s setup the areas to be used:

\setuplayout

[topspace=24pt,

header=0pt,

footer=0pt,

bottomdistance=10pt,

bottom=28.8pt,

topdistance=8pt,

top=10pt,

backspace=12pt,

margin=0pt,

edgedistance=12pt,

rightedge=110pt,

height=fit,

width=fit]

What does this all mean?

• There is 24pt of space on the top, before the
text-area begins.

• There is no header text (above the text) or
footer text (below the text). These are usually
used to put in page numbers of chapter head-
ings. I don’t need them for screen-layout.

• There is bottom-text below the text-area; its
height is 28.8pt. There is also top-text above
the text, height 10pt.

• There are no margins.

TUGboat, Volume 20 (1999), No. 2 131

• The distance from the text-area to the edge is
12pt. The width of the right edge is 110pt.

• And finally we say: ‘Dear ConTEXt, I do not
know what the width and height of the text-
area should be, so calculate them based on the
given settings’.

That’s about it. After that you can verify what
you have done by saying: \showframe. ConTEXt
then draws some frames where you defined them, so
you can actually see what is going on. See figure 2.

paperheight 15.81345cm 450.0pt \paperheight

paperwidth 21.0846cm 600.0pt \paperwidth

printpaperheight 29.69577cm 845.04684pt \printpaperheight

printpaperwidth 21.0846cm 600.0pt \printpaperwidth

topspace 0.84338cm 24.0pt \topspace

backspace 0.42169cm 12.0pt \backspace

height 13.39574cm 381.2pt \makeupheight

width 15.95401cm 454.0pt \makeupwidth

textheight 13.39574cm 381.2pt \textheight

textwidth 15.95401cm 454.0pt \textwidth

top 0.35141cm 10.0pt \topheight

topdistance 0.28113cm 0.0pt \topdistance

header 0.0cm 0.0pt \headerheight

headerdistance 0.0cm 0.0pt \headerdistance

footerdistance 0.0cm 0.0pt \footerdistance

footer 0.0cm 0.0pt \footerheight

bottomdistance 0.35141cm 0.0pt \bottomdistance

bottom 1.01205cm 28.8pt \bottomheight

leftedge 0.0cm 0.0pt \leftedgewidth

leftedgedistance 0.0cm 0.0pt \leftedgedistance

leftmargin 0.0cm 0.0pt \leftmarginwidth

leftmargindistance 0.0cm 0.0pt \leftmargindistance

rightmargindistance 0.0cm 0.0pt \rightmargindistance

rightmargin 0.0cm 0.0pt \rightmarginwidth

rightedgedistance 0.42169cm 0.0pt \rightedgedistance

rightedge 3.86551cm 110.0pt \rightedgewidth

bodyfontsize 12.0pt \globalbodyfontsize

line 2.8ex \normallineheight

height .72 \strutheightfactor

depth .28 \strutdepthfactor

topskip 1.0 \topskipfactor

maxdepth 0.4 \maxdepthfactor

Figure 2: Empty layout

The resulting PDF file still has a problem
though: the layout is OK, but the page size is still
A4. To overcome this you say:

\setupinteractionscreen

[option=max,

width=fit,

height=fit]

This more or less means: Open the document
in full-screen, and make the width and height fit to
the calculated values.

6.2 Defining backgrounds

I have now defined a simple white page, so let’s en-
hance it with background colors and graphics. If you
do this the traditional way, by drawing something in
the output routine, before you actually shipout the
page you will have a problem: The resulting file will
contain the graphics images on each and every page.
That is not very efficient, since the background im-
ages are a total of 73Kb. If you multiply that by the
number of pages (about 800) you will get a pdf file
of 60 Megabytes. All of this while you know for sure
that PDF supports something that’s called objects

to do the job properly.

Luckily you don’t have to worry about that.
You simply use and include as many figures as you
like. If ConTEXt sees you’ve actually used the figure
before, it won’t include it again. It will simply
creates a reference to the figure. So each figure is
included only once.

First we define a background color for the entire
page:

\setupbackground

[page]

[background=color,

backgroundcolor=pagebackgroundcolor]

So what is pagebackgroundcolor you might
ask. Well:

\definecolor

[pagebackgroundcolor]

[r=.9, g=.9, b=.9]

Easy ha? You can probably guess how to
define CMYK colors. The right edge has a similar
background color, but with a little different setup:

\setupbackgrounds

[text][rightedge]

[background=color,

backgroundcolor=edgebackgroundcolor]

So now for the picture in the text-area. This is
a bit more difficult, because this works with overlay
techniques:

\defineoverlay

[world]

[{\externalfigure

[world]

[width=\overlaywidth,

height=\overlayheight]}]

\setupbackgrounds

[text][text]

[background={color,world},

backgroundcolor=textbackgroundcolor]

What’s this? We are defining two backgrounds
here, a color, and a picture that comes from the file
world.eps. The order of specification defines the
overlaying. I do not know if there are any limits
here but knowing Hans there is probably no real
limit to the number of backgrounds you can stack
upon each other.

Also note the sizing of the image. The image is
a bitmap converted to an .eps file (using CorelDraw)
and has some transparency. You only need to get
the aspect ratio of the .eps file correct, and Con-
TEXt automatically scales the image to the width
and height of the text area.

132 TUGboat, Volume 20 (1999), No. 2

6.3 Defining the right-edge navigation bar

The navigation bar on the right contains many
buttons stacked above each other. The normal
command to do this is \button. But since the
buttons have backgrounds I needed to define the
backgrounds first. The trick is this: You first define
what you want to have, put it all in a box and then
you say to ConTEXt:

\setuptexttexts

[edge]

[][\ButtonList]

This means: The content of the left edge is
empty, and the right edge contains \ButtonList.

\ButtonList is defined as follows (some but-
tons are left out here to save some space):

\def\ButtonList{%

\hbox to \rightedgewidth{\vbox to \vsize

{\midaligned{\previousbutton}\par

\midaligned{\nextbutton}\par

...

\vfill

\midaligned{\stopbutton}\par

\vfill

\midaligned{\PrevNextBar}\par

\vss}}}

To define a button:

\def\previousbutton{%

\button

[frame=off,

width=104bp,

height=25bp,

background=previous]

{}

[previouspage]}

There is no frame around the button, because
I supplied a picture. The button contains no text
(the empty braces {}), and when someone presses
the button, the previous page should be displayed.
All buttons are created this way.

Now there is one little speciality here: the
\PrevNextBar command. When a series of texts
is displayed, and they don’t fit on a single screen, a
button automatically appears indicating that there
is more to see in this series. Now I wanted those
buttons to be smart: On the first page you only see
a button to go to the next page, and in the last
page of a series you only see a button to go to the
previous page. The pages in between (if any) have
both buttons enabled.

Again ConTEXt helps me out here. There is
something called sub-page numbering. I setup sub-
page numbering by series, and when placing the

buttons I ask ConTEXt how many pages there are
in this series. Based on that, and the current sub-
page number, I include the correct buttons:

\def\PrevNextBar%

{\ifnum\nofsubpages>1

% all right, we need some buttons

% here

\ifnum\subpageno=1

% This is the first page so only

% include the right button

\framed

[frame=off,

width=\arrowwidth,

height=25bp]{}\hss

\arrowrightbutton%

\else\ifnum\subpageno=\nofsubpages

% This is the last page, so only

% include the left button

\arrowleftbutton\hss

\else

% We are somewhere in between

% include both buttons

\arrowleftbutton\hss

\arrowrightbutton%

\fi\fi

\else

% No sub pages, so no buttons

\framed

[frame=off,

height=25bp,

width=\rightedgewidth]

{}

\fi}

Now that’s a nice trick, isn’t it?

6.4 Defining the bottom navagation bar

The bottom navigation bar is a bit more difficult,
since it contains data from the actual data-file itself.
Since all years and months are placed in lists, I can
easily extract that information and put it anywhere
I want. I only provide the details here, the actual
commands to setup texts in the bottom area are
similar to the right-edge button bar. It consists of
two vboxes, a box for the months and one for the
years.

\def\YearMonthList{%

\vbox to \bottomheight{%

\vbox{%

\placelist

[MONTH]

[variant=none,

criterium=YEAR,

command=\SIMPLE,

TUGboat, Volume 20 (1999), No. 2 133

before=\strut]

\vss}%

\vss

\vbox{%

\placelist

[YEAR]

[variant=none,

criterium=all,

command=\SIMPLE,

before=\strut]

\vss}}}

\def\SIMPLE#1#2#3{#2}

At first this didn’t do the job, because all years
were on a separate line. I guess the \placelist

results in a lot of vboxes, and these are stacked
vertically by TEX. By adding the \strut the
problem was over. This is probably not the preferred
solution, but I can’t write an email to Hans every
time I am in trouble.

As you can see I didn’t provide any commands
for specifying the interaction and high-lighting. This
is what ConTEXt automatically does for me.

7 Results and some samples

Take a look at the figures. Figure 3 shows the main
screen of the categories.

Overig / Communicatie

VORIGE

VOLGENDEVOLGENDE

TERUG

ZOEKENN

HOOFD MENU

STOPPENSTOPPEN

Aktie Bekende personen Buitenaards Economie Feest Klassiekers/evergreens Natuur Oorlog
Overig Persoonlijk Politiek Religie School Toekomst Vakantie Vervoer Wereld Werk Zorg

Absurditeiten Algemeen Beeld Fris Historisch Muziek PoÈezie Sport Criminaliteit Huiswerk
Communicatie Drugs

TV, zet 'm eens op de trein naar Antwerpen maart 1996

De telecommunicatie expert zoekt vergeefs kontakt met z'n
dochtertje december 1987

Vroeger zag God alles, maar ik denk dat ie tegenwoordig net
als iedereen zapt juni 1996

Millenniumprobleem, stel je voor, morgen vergaat de wereld
en God heeft vergeten een backup te maken december 1997

Gegevens koppelen >>Hallo mevrouw Loesje<< riep de
receptionist door de telefoon nog voor ik iets kon zeggen
december 1997

Sinterklaas, de Joop van den Ende voor de kleine kinderen
november 1989

Hoe rood is de Vara,
blauw juni 1988

Figure 3: A category screen

Figure 4 is an actual poster.

8 Conclusion

Well, what can I say? ConTEXt saved me a lot of
time, and the remaining time creating the product
was fun to spend. I have only covered some basic is-
sues here; there are several other commands needed
to get things going.

Figure 4: An actual poster

Using the example files provided by ConTEXt
gave me a good idea of the possibilities. Though the
example presentations do not look like this product,
they serve as good examples of what is possible.

I liked the tooling very much. It is easy to
generate TEX documents from PERL, and ConTEXt
is pretty relaxed in using such documents.

You have probably discovered that the included
graphics are in Dutch. Most of the words are what
you expect them to be, so I expect this is not a big
problem.

⋄ Gilbert van den Dobbelsteen

Papaverstraat 130

7514 XH Enschede

Netherlands

gilbert@login-bv.com

