
104 TUGboat, Volume 20 (1999), No. 2

Fonts

METAFONT: Practical and Impractical
Applications

Bogus law Jackowski

The First Steps

This article is intended to be an introduction to
problems related to preparing fonts for the TEX
system using METAFONT. Many details will be
omitted, hence the reader may find quite a large
number of intentional or inevitable inexactitudes.
I believe, however, that the crucial points can be
illustrated by a good number of simple examples.

One should not expect to become a METAFONT

expert after reading this article. I will be
satisfied if the presented material turns out to be
comprehensive enough to teach what METAFONT

is, how to use it in simple cases, and in which cases
it is most promising to use it.

I assume that the reader knows the TEX system
a bit, e.g., what is the name of its author (hint: the
same as the name of the author of METAFONT),
what DVI files are, how to process documents, what
drivers are, etc. In short, I assume that the question
“what is TEX” does not require an answer. Instead,
I will try to answer the question:

What is all that METAFONT ?

First, however, one should ask “What is a font?”
For TEX, a font is a collection of data stored in
a metric file (TFM). TEX examines it in order to
find character codes, the dimensions of characters
(height, width and depth), kerns to be inserted
automatically between some characters (implicit
kerns), etc.

Note that TEX does not care about the shape
of characters— only drivers are interested in that.
Commonly, the shapes of the characters are stored
as bitmaps in PK files or— rarely— in GF files.
Bitmaps are not obligatory. If PostScript is
involved, outline (Type 1) fonts can be used.
Nevertheless, Tomas Rokicki, the author of one
of the most popular PostScript driver, dvips, and
the author of PK coding says that bitmaps are
usually more efficient. On the other hand, storing
a lot of bitmaps of various sizes for various output
devices leads quite soon to storage problems.

A cure is to employ METAFONT for generating
the required fonts on the fly. The process of
generating the set of bitmaps for a single font of the
Computer Modern family on a PC computer with a
486 processor takes a few dozens of seconds. Since
the Computer Modern family consists of about
ninety fonts, the time needed for the generation of
the complete set of fonts is several minutes, which
is negligible in comparison with the time needed to
prepare a document using TEX.

METAFONT is not merely a program for
generating bitmaps. In fact, it is a programming
language, resembling AWK, BASIC, C or Pascal. The
main difference is that METAFONT is equipped
with special tools (data structures and operations)
facilitating the description of graphic objects and
assembling them into a TEX font. I will focus on
these two aspects: first, the graphic capabilities of
METAFONT, and second, employing METAFONT for
generating fonts. This, hopefully, should answer the
question posed in the title of this section.

Whenever convenient, the practical aspects
of using METAFONT will be briefly considered.
Briefly— because it does not make much sense
to theorize about practice; moreover, METAFONT

is very simple to use and a few minutes with a
moderately experienced METAFONT user is usually
enough to master running the program.

How to run METAFONT ?

The description of a graphic object in the
METAFONT lingo consists of a series of statements
(instructions) to be interpreted and executed
consecutively. METAFONT performs calculations
and generates the bitmaps of the processed graphic
objects (characters) in the form of a GF file
(generic file) and a TFM file (TEX font metric file).
Additionally, a LOG file is created which contains
the information about the run and messages issued
by METAFONT during the run.

The programmers’ tradition is that we should
start with a dull and trivial example. It is a bad
custom not to respect tradition, so let’s assume that
we have prepared the following program (a percent,
as in TEX, begins a comment; a semicolon, as in
Pascal, ends a statement):
message "This is a trivial program.";
end

TUGboat, Volume 20 (1999), No. 2 105

Invoking METAFONT
1 in the following way

(please note the name “plain”, known from TEX):
mf386 \&plain foo.mf

will result in producing neither GF nor TFM file; only
the LOG file will appear in the current directory.
The LOG file reads:
This is METAFONT (mf386),

Version 2.718 [4b]
(preloaded base=plain 95.11.10)

13 SEP 1996 13:13
**\&plain foo.mf
(foo.mf
This is a trivial program.)

The message
This is a trivial program.

will appear also on the screen.
Now, let us consider a bit more realistic

program named, say, REC.MF:
beginchar(48, % ASCII code of character

2cm#, % width of character
1cm#, % height of character
0cm# % depth of character
);

fill unitsquare xscaled 2cm yscaled 1cm;
endchar;

A moderate knowledge of a programming language
(or even plain English) and a moment of thought
is sufficient to find out what character will be
generated: obviously, a rectangle of dimensions
2 cm× 1 cm. The meaning of the statements used
in the above program will be explained later.

This time METAFONT should be invoked
differently, since now the resolution of the output
device, for which the bitmap is meant, is essential.
In the following example
mf386 \&plain \mode=hplaser; input rec.mf

the formula mode=hplaser is responsible for setting
the resolution.2 More precisely, the variable, mode,
receives the value of the symbol hplaser which
is set to an appropriate value during the process
of generating the base (plain); the value of mode
is used by the macro mode_setup, which tells
METAFONT that a bitmap for a Hewlett-Packard

1 Throughout the booklet, Eberhard Mattes’s im-
plementation of METAFONT for MS DOS, mf386, is
referred to in examples.

2 The backslash \ preceding the formula causes
METAFONT to change the mode of the interpretation
of command-line parameters: starting at the backslash,
METAFONT expects to encounter statements written in
its own lingo.

laser printer of resolution 300× 300 pixels per inch
is to be generated.

Three files will be created this time:
REC.300GF, REC.TFM, and REC.LOG. REC.300GF
(PC DOS abbreviates its name to REC.300) contains
the description of the bitmap; REC.TFM contains
information that the font consists of one character
of code ASCII 48 and that the dimensions of the
character are 2 cm× 1 cm; and REC.LOG contains
text which is a little more elaborate than the
previous example:
This is METAFONT (mf386),

Version 2.718 [4b]
(preloaded base=plain 95.11.10)

13 SEP 1996 13:13
**\&plain \mode=hplaser; input rec.mf
(rec.mf [48])
Font metrics written on rec.tfm.
Output written on rec.300gf
(1 character, 520 bytes).

If the TEX installation at our site is equipped
with drivers which can read GF files, the character
generated a moment ago can now be printed. In
order to do this, one should place the file REC.TFM
in a directory searched by TEX, and, moreover, the
file REC.300GF in a directory searched by the driver.
The respective TEX program might look as follows:
\font\f rec\f0\end

If the installed TEX drivers do not accept GF
files, they are bound to accept PK files, hence it
suffices to convert the file REC.300GF to REC.PK.
This can be done with the help of the program
GFTOPK, belonging to the standard TEX distribution:
gftopk rec.300 c:\pxl\300\rec.pk

(c:\pxl\300\ is a hypothetical name of the
directory, where the PK files of resolution 300× 300
pixels per inch are to be collected.) The conversion
GF → PK is always advantageous, as the PK files are
more efficiently compressed.

It should be stressed that the presented method
of generating the font REC is fairly universal. In
particular, the fonts of the Computer Modern family
can be generated using exactly the same scheme.
The somewhat troublesome operation of copying
the resulting files to appropriate directories need
not be performed manually. In Eberhard Mattes’s
package, emTeX, one can find the program named
MFJOB which neatly performs this part of job. In
fact, MFJOB is devised to control the overall process
of font production.

106 TUGboat, Volume 20 (1999), No. 2

METAFONT as a Programming Language

Now that we are warmed up, let’s look at some
elements of the METAFONT lingo. Hopefully, the
chosen subset is representative— I believe that the
presented fragment will enable the reader to imagine
the omitted part of the language. I apologize in
advance for a virtual vagueness I am unable to
avoid.

Variables

The notion of a METAFONT variable is somewhat
peculiar. For the purpose of this article, however,
it is enough to know that variables can be used in
much the same way as in Pascal or C, except that
the set of admissible characters is broader: besides
letters (capital and small letters are distinguished)
and digits, the name of a variable can contain such
characters as a hash, an apostrophe, an exclamation
mark, a question mark, a dollar sign, a tilde, etc.

The declaration of variables is not obligatory.
Using an undeclared variable makes METAFONT

interpret it as a variable of the numeric type
(see the section “Numbers”). All variables are
assigned initially a value “undefined”, which is
not the same as “not defined”. This feature
distinguishes METAFONT from other computer
languages which either do not initialise variables
by default (C, Pascal) or assign them a null value
(AWK). It can be assumed that every programmer
hunted fiercely at least once for a variable which
was not assigned an initial value — it is really
a tremendous task. From this point of view,
METAFONT is safe, since a programmer can check
from within a program (see the section “Logical
values”) whether a variable is initialised or not. As
we shall see soon, it is not the only advantage of
having this seemingly exotic possibility.

Units

Now, the time is ripe to explain a strange dualism
of the units occurring in the program REC.MF: both
cm# and cm appear. At a glance one may consider
it to be a bug, but it is not a bug. On the contrary,
the dualism is an important feature of METAFONT

programs, and in order to understand them one
should be aware of the source and the consequences
of the dualism.

Well, the units followed immediately by
a # denote quantities independent of resolu-
tion, so-called sharp units. In fact, they
are variables which are assigned values in
the plain format: pt#=1, cm#=28.45276,

mm#=2.84528, dd#=1.07001, bp#=1.00375, pc#=12,
cc#=12.84010, and in#=72.27. The user is expected
not to change them. Their change— METAFONT

does not prevent this —may likely cause havoc.
Observe that the unit values are expressed in

points, hence a more appropriate name would be
point units. In agreement with tradition, however,
I will let the name sharp units stand.

All sharp units have their “hashless” coun-
terparts, pixel units : pt, cm, mm, dd, bp, pc, cc,
and in. Similar to the sharp units, they are
numeric variables. They express the number of
pixels falling into the interval of a respective length.
In our example (recall that the resolution was set
to 300× 300 pixels per inch) the values of the pixel
units are: pt=4.1511, cm=118.11055, mm=11.81102,
dd=4.4417, bp=4.16667, pc=49.81314, cc=53.30035,
and in=300. They are computed when executing
mode_setup.

The metric files, i.e., the TFM files, contain
sharp values, whereas pixel units should be used for
drawing curves and filling areas. This simple trick
facilitates the construction of METAFONT programs
(provided some discipline is obeyed), since the
programs become, in fact, resolution-independent.
The following program:

1. mode_setup;
2. beginchar(48, 56.90552, 28.45276, 0);
3. fill unitsquare
4. xscaled 236.2211 yscaled 118.11055;
5. endchar;
6. end

is, in principle, equivalent to the program REC.MF,
but it has at least two drawbacks: first, it is
significantly less intelligible; secondly, if a change
of resolution is required, the fourth line of the
program should be changed which would necessitate
computing the respective values manually—who
wants to do that?

Assigning values to variables

A METAFONT variable can be assigned a value in
one of two ways: either by the use of an assignment
symbol := (as in Pascal), or by the use of an
equality symbol, e.g., 2+x=3*y. One can easily
see that the two ways are not equivalent, as the
statement 2+x:=3*y appearing in a Pascal program
would yield a translation error.

The former assignment method is common to
all programming languages (only the assignment
symbol may vary from language to language), and
therefore it does not require thorough explanation.
On the other hand, the latter method is so

TUGboat, Volume 20 (1999), No. 2 107

important, especially in the context of numerical
calculations, that we shall dwell a bit longer on this
subject.

In many cases, it is more natural and convenient
to describe a graphic object, or a part of it, in terms
of certain relationships rather than in terms of
specific values, resulting from these relationships.
If the relationships lead to an algebraic system of
linear equations, METAFONT is well-suited to deal
with such tasks— there is no necessity of solving
the system by hand. The problem of finding an
intersection point of two straight lines may serve as
a characteristic example of such a task. The solution
involves both METAFONT-specific equations as well
as expressions with undefined values, as we shall see
in the section “Vectors”.

Data Types and the Relevant Operations

Logical (also called Boolean) values. META-
FONT, like most programming languages, provides
two logical constants: true and false. The logical
expressions can be formed with relational symbols
(<, =, >, etc.), logical operators (and, or, not, etc.)
and braces, e.g., (1<0) or (true<false). The
logical expressions appear primarily in conditional
and loop statements (see sections “Conditional
statements” and “Iterative statements”).

A logical variable can be declared using the
instruction boolean; e.g., boolean a,b,c means
that the names a, b, and c represent the logical
variables from this point.

As has already been mentioned, METAFONT

can check whether a given expression has a definite
value. For this purpose the operators known and
unknown can be used syntactically preceding the
expression. The value of the expression known b
immediately after the declaration of b is, obviously,
false. (What is the value of the expression
known (known x)?)

Furthermore, METAFONT provides for checking
the type of an expression. In particular,
the expression should be preceded with the
operator boolean in order to check whether a
given expression is of the logical type, e.g.,
boolean(true and false). In general, the same
operator can be used both for declaring a variable
and for checking the type of an expression.

Strings. A sequence of characters not exceed-
ing a single line, surrounded by a pair of
double quotes denotes a string (text), e.g.,
"this is a string aka text". Strings are mainly
used for communication between the program and

the surrounding world— we have already seen one
example. Another place where one-character strings
may appear is the statement ligtable (see section
“Statement ligtable”).

Obviously, the instruction string is meant for
declaring string variables.

Numbers. METAFONT, unlike typical program-
ming languages, does not distinguish between
integer and real (floating point) numbers. All
variables that can take numeric values are uniformly
declared by the instruction numeric. The fraction
part of a number is always separated by a period
(recall that in TEX both a period and a comma are
admissible), and the integer part of a real number
can be omitted, e.g.: 1234, .61804, 3.14159, etc.

METAFONT accepts typical expressions like
1+x, abs(x), x*y/2, x-round(x), etc. Even more,
it allows for omitting a times operator between
a number and an expression, e.g., instead of
2*(x+3*y) one can use a shorter form 2(x+3y),
which is very convenient in practice.

Rational fractions are treated as numbers,
i.e., the expression 1/2x will be interpreted by
METAFONT as 1

2x, not as 1
2x .

METAFONT offers a set of geometry-oriented
algebraic operations. Among others, Pythagorean
addition and subtraction,

√
x2 + y2 and

√
x2 − y2,

are available. These operations, very useful in the
process of creating graphic objects, are denoted by
++ and +-+, respectively. They represent binary
(infix) operators, i.e., one uses them in expressions
like x++y or x+-+y.

Yet another METAFONT-specific operation is
mediation between points (“of-the-way” function),
especially useful in the context of expressing
relations between points on a plane. Instead of
saying (1-t)*x+t*y, one can simply say t[x,y],
where t can be an arbitrary expression. In
particular, t can be a variable.

With this notation, METAFONT differs from
AWK or Pascal. Typically, x[2,5] denotes a variable
with two indices, x2,5 in mathematical notation. For
METAFONT, it is a linear expression yielding 2 for
x=0 and 5 for x=1; in other words, the formula
x[2,5] is equivalent to 3x+2. The variable with
two subscripts should be represented in METAFONT

as x[2][5], which is also a convention accepted by
Pascal. There is virtually no limit for the number
of indices in METAFONT.

A somewhat peculiar numeric quantity, what-
ever, is predefined in plain. Formally, it is a
parameterless function yielding a numeric undefined

108 TUGboat, Volume 20 (1999), No. 2

value. The question arises: what is such a fancy
constant for? The answer will soon emerge. . .

Vectors. As a program designed to operate on
a plane, METAFONT is equipped with pairs of
numbers that can be interpreted as points or vectors
of a Cartesian plane. The notation is intuitive and
simple: given two numeric values (expressions) x
and y, the formula (x,y) represents the expression
of type “pair”. The instruction pair can be used
for declaring pair variables and for checking the
type of expressions.

There are two functions, specific for this
data type, taking a pair expression as an
argument and returning a numeric value, namely,
xpart and ypart. Their meaning is obvious:
xpart((x,y)) = x, ypart((x,y)) = y.

Five useful vectors are predefined in plain:
origin = (0, 0), right = (1, 0), left = (−1, 0),
up = (0, 1), and down = (0,−1).

Pairs of the form (x〈anything〉,y〈anything〉),
where 〈anything〉 denotes a valid ending part of a
name (suffix), can be abbreviated to z〈anything〉;
e.g., one can write z123 or z’ instead of
writing (x123,y123) or (x’,y’), respectively. In
particular, formulas (x,y) and z are equivalent,
provided x and y are numeric variables, which is
usually the case, unless a mad user defines them
otherwise. It should be noted that it is not a
built-in convention— the notation is due to a smart
definition of the symbol z.

The operation of mediation, described in the
section “Numbers”, can also be applied to vectors.
In this case—the interpretation is self-suggesting—
t[z1,z2] denotes a point, belonging to the segment
with endpoints z1 and z2, such that the segment is
divided by this point in the proportion t : (1− t).
For example, 1/2[z1,z2] denotes the midpoint
of the segment, 0[z1,z2] denotes the point z1,
1[z1,z2] denotes the point z2.

A truly useful paradigm of METAFONT

programming can now be demonstrated: given
points z1, z2, z3, and z4 such that the line
determined by z1, z2 and the line determined by
z3, z4 are not parallel, find the point where the
two lines cross. The natural METAFONT solution is
elegant, although perhaps somewhat surprising:
z5=whatever[z1,z2]=whatever[z3,z4]

Indeed, it is the demanded solution, since—
according to what has already been said—
whatever[z1,z2] denotes a certain point belonging
to the line drawn through the points z1 and z2;
similarly, whatever[z3,z4] denotes a certain point
belonging to the line drawn through the points the

z3 and z4. Therefore, the point z5 belongs to both
lines.

Actually, the foregoing formula is interpreted
by METAFONT as a system of linear equations
which, under the stated assumptions, has a unique
solution, z5.

Affine transformations. Besides the pairs of
numbers, METAFONT provides also 6-tuples, repre-
senting affine (linear) transformations of a plane.
Affine transformations convert squares into paral-
lelograms:

A METAFONT user need not be initiated into
the mysteries of mathematics in order to use
transformations efficiently. Operations with self-
explanatory names, such as shifted, rotated,
slanted, xscaled, yscaled, and similar names,
suffice in most cases.

The following objects can be subject to affine
transformations: vectors, paths, pens (see below)
and, of course, transformations.

For example, if a path p is to be translated
horizontally by 2 cm, the following construction can
be used:
p shifted (2cm,0)

Similarly,
z0 rotated 55

denotes the counter-clockwise rotatation of the
vector z0 by 55 degrees (a positive angle denotes a
counter-clockwise rotation);
p xscaled 2 yscaled 2

denotes the magnification of the path p by factor 2
(in this case, a simpler form can be applied:
p scaled 2);
p reflectedabout (z1,z2)

denotes the mirror symmetric image of the path p
about the line drawn through the points z1 and z2;
and so on.

TUGboat, Volume 20 (1999), No. 2 109

The user can declare transform variables using
the instruction transform. In order to use
such a variable, the following construction can
be used: 〈object〉 transformed 〈transformation〉,
e.g., z0 transformed A, where A is a variable of
type transform.

METAFONT also provides access to all nu-
meric components of a transformation, namely,
there are six functions xxpart, xypart, yxpart,
yypart, xpart, and ypart which for a given
transformation yields the respective components.
A less experienced user need not bother about
transform variables and their components— they
appear comparatively seldom in applications.

Pens. We now know almost enough to draw a
simple picture, except for one METAFONT tool—
pens. Let’s pass immediately to an example without
going into theoretical details:

1. pickup pencircle scaled 1cm;
2. draw (0,0);
3. pickup pensquare scaled 1cm rotated 45;
4. draw (2cm,0);

Typical parts of a METAFONT program, such as
mode_setup, beginchar, etc., have been omitted,
as they are unimportant here.

The first line contains the instruction
pickup pencircle which tells METAFONT use a
circular pen, 1 cm in diameter; the second line tells
METAFONT to use the currently chosen pen to draw
a “dot” in the origin of the coordinate system.
Similarly, the final two lines instruct METAFONT

to put a “square dot” at the point (2 cm, 0). The
resulting figure is admittedly trivial, nonetheless, it
is a good starting point:

Paths. It is nearly impossible to imagine a graphic
system without objects corresponding to planar
curves. Obviously, METAFONT provides objects of
this kind, called paths. They are declared using the
instruction path. Each path consists of segments
being third-order arcs, known as Bézier curves.
Such a segment is determined uniquely by four
points z0, z′0, z

′
1, and z1 (z′0 and z′1 are called control

points); for t ∈ 〈0, 1〉 the intermediate points of a
Bézier curve are given by the following formula:
z0 (1 − t)3 + 3z′0 t(1− t)2 + 3z′1 t

2(1 − t) + z1 t
3

As in the case of affine transformations, a budding
METAFONT user can ignore all intricate subtleties
of mathematics connected with Bézier curves. It

is the simplicity of the foregoing formula that is
important here. Worth mentioning is also the
parametrization of Bézier curves (the parameter t
is sometime referred to as “time”): as t increases
from 0 to 1, the formula yields coordinates, in order,
of all points belonging to the curve. For t = 0 and
t = 1, the formula returns the coordinates of the
edges, z0 and z1, respectively. Some of METAFONT

path operations, e.g., the operation subpath, refer
to the parameter t (see below).

One of the most striking capabilities of
METAFONT is its skill at interpolating.3 The
excellent and efficient interpolation mechanism is
undoubtedly one of the best features of METAFONT.
To see how it works, let’s assume that a curve
is to be drawn through the points z0 = (0, 0),
z1 = (0, 2 cm), z2 = (2 cm, 1 cm), z3 = (4 cm, 2 cm),
and z4 = (4 cm, 0). If no additional constraints
are imposed, such a task can be expressed in
METAFONT as follows:
draw z0..z1..z2..z3..z4

The operation “horizontal colon” causes METAFONT

to employ its interpolation methods, trying to join
Bézier arcs as smoothly as possible. The result you
can see in the following figure (the grid was added
in order to facilitate the readings of the coordinates
of nodes).

According to my experience, I would suggest
that the designers of commercial graphic systems
consult the source code of METAFONT in order to
improve the interpolation involved in their systems.

The process of interpolation can be controlled
by imposing constraints. One such constraint is to
force the direction at a given node. To do this, an

3
METAFONT’s interpolation machinery was worked

out by John D. Hobby and was published in his thesis
at Stanford University. His idea was to keep the overall
curvature of the resulting curve constant, if possible. It
turns out that the human eye is extremely sensitive to
the changes of curvature, hence the human inclination
to perceive curves with smoothly changing curvatures
as aestethically pleasing.

110 TUGboat, Volume 20 (1999), No. 2

appropriate vector should be added in curly braces
at chosen nodes in a path formula, e.g.:
draw z0{right}..z1..z2..z3..{right}z4

(recall that right denotes the vector (1,0)). The
local change of constraints causes seemingly the
global change of the shape of the curve:

In fact, the disturbance is nearly local. More
precisely, it vanishes exponentially when going away
from the point of change. If the curve consisted
of a greater numbers of nodes, the effects of the
disturbance would be imperceptible only a few
nodes away from its source.

Besides the “horizontal colon”, there are
also other path operations. Frequently, the
“double-dash” operator, representing a straight-line
connection, is used. For example, the formula
draw z0{right}..z1--z2--z3..{right}z4

results in

The “double-dash” operator causes the neighbour-
ing segments to be calculated independently as if
they were disconnected. The control points of
straight-line segments defined in such a way fulfill
the relation z′0 = 1

3 [z0, z1], z′1 = 2
3 [z0, z1]; in other

words, the control points and the endpoints are
equidistant.

If a smooth connection of straight lines and
arcs is required, the “triple-dash” operator can be
used:
draw z0{right}..z1---z2---z3..{right}z4

which yields the following change of the curve:

This method, however, has one drawback. Namely,
the control points of segments marked by the triple
dash almost coincide with the edges of the segments.
METAFONT does not see anything particular in
such a singularity. If, however, exporting to other
systems is intended, the usage of the triple dash
should be discouraged, unless the user is aware of
what is being done. A safer method is to supply
the direction at the nodes explicitly and to apply
the double dash; in such a case the respective path
formula would take the form:
z0{right}..{z2-z1}z1--z2--z3{z3-z2}..

{right}z4

The Bézier straight-line segments are “tidy”and the
shape of the curve stays almost intact. (Check it.)

The paths considered so far did not form a closed
contour. In order to convert an open curve into
a closed contour, the path should be ended by the
operation cycle. Closed contours are important
as they can not only be drawn but also can be
darkened with the operator fill:
fill z0..z1..z2..z3..z4..cycle

The resulting figure is displayed below:

TUGboat, Volume 20 (1999), No. 2 111

More about paths. A reverse operation to
joining segments is, in a sense, an operation
that pulls a fragment out of a path. This can
be accomplished in METAFONT by the use of
the operator subpath. The previously mentioned
notion of the parametrization of Bézier curves is
crucial here. The notion was formulated for single
segments. Its generalization for multisegment paths
is straightforward: nodes are numbered from 0
upwards. As the parameter t takes on (real)
values from i− 1 through i, the corresponding
point traverses the path from the node i− 1 to the
node i. Assume that two numbers, u and v, are
given; the fragment of a path p corresponding to
the interval (u, v) can be expressed in METAFONT

lingo as
subpath (u,v) of p

Referring to our previous example, the statement
draw subpath (.5,3.5) of

(z0..z1..z2..z3..z4)

results in

The operation subpath always produces non-cyclic
paths, even if the operand forms a closed contour.

Although the path operations we have seen
so far suffice for most applications, there exists a
general path construction, enabling a fastidious user
to shape curves arbitrarily:
draw z0 .. controls z0’ and z1’ .. z1

The construction z0 .. controls z0’ and z1’ .. z1
corresponds precisely to the formula given at the
beginning of the section “Paths”. For example, the
figure

can be generated by the following short program
z0=(0,0);
z0’=(5cm,3cm);
z1’=(-1cm,3cm);
z1=(1cm,3cm);
draw z0 .. controls z0’ and z1’ .. z1

A few handy paths have been predefined in
the plain format. Two of them are particularly
useful: unitsquare, i.e., a square of the side length
equal to 1 and the lower left corner coinciding
with the origin of the coordinate system (cf.
example REC.MF) and fullcircle, i.e., a circle
whose diameter is equal to 1 and whose centre lies
at the origin of the coordinate system. Both are,
obviously, cyclic paths.

Supplementary path operations. Furthermore,
there are a few path operations characterizing
a point on a path. Two of them, point and
direction, are most frequently used. The operation
point yields coordinates of the point of a curve
corresponding to the value of a given parameter t.
The operation direction returns a vector parallel
to the direction of the path at a point corresponding
to a given time t. A sample code illustrating the
usage of these operations is given below:
z0=point t of p;
z1=z0
+1mm*(unitvector(direction t of p)

rotated 90);
z2=z0
+1mm*(unitvector(direction t of p)

rotated -90);

Point z0 lies, obviously, on the path p; pont z1 lies
1mm to the left (with respect to the path direction)
of point z0; and point z2 lies 1 mm to the right of
point z0.

There is also a dual operation to direction,
namely, the operation directiontime. It returns a
real number t such that for a given vector d and
a given path p the equality direction t of p = d
holds. For example, the value of the expression
directiontime up of ((0,0){right}..

{left}(0,1))

is 0.5, which could easily be guessed.
We have already dealt with the problem of

finding a common point of two straight lines.
METAFONT is prepared for performing a more
general task. Namely, there exists an operation
intersectiontimes which finds a crossing point
for two arbitrary paths. Assume that two paths, p1
and p2, are given. The equation
(t1,t2) = p1 intersectiontimes p2

112 TUGboat, Volume 20 (1999), No. 2

defines two numbers, t1 and t2 such that
point t1 of p1 ≈ point t2 of p2

(the approximate equality is unavoidable due to
rounding errors).

If paths do not touch each other, the result
of the operation intersectiontimes is (−1,−1);
if there are several points where they touch each
other, the operation yields the first feasible point.

Arrays. Variables of all types can be declared as
indexed arrays. In order to do this, the name
declared should be followed by one or more pairs of
square brackets, e.g.,
transform T[][]; pair d[];

Now, you can say T[i+j][k] (provided i, j
and k are numeric), d[0], or even d[1.5], as
METAFONT allows for indexing with real numbers
(they are not rounded), etc. If the index expression
is a number only, the square brackets can be
omitted, i.e., d[0] is equivalent to d0, T[1][2] is
equivalent to T1 2, z[0]’ is equivalent to z0’, and
so on. This convention is METAFONT-specific.

Numeric arrays need not be declared. The first
occurrence of a variable, say, q0 causes an implicit
declaration numeric q[].

At last, the description of data types and the related
operations has come to an end. We are a few paces
from sensible applications. One important subject,
however, has not been treated yet— statements.

Statements

We have already seen a lot of statements,
e.g., message, fill, draw, beginchar, endchar,
mode_setup, to mention some of them. The
program can be built out of such primary statements
in three ways: (1) statements can be executed
sequentially, one after the other —to mark this
a semicolon is used; (2) one among several
statements can be performed, provided a certain
condition holds —these are conditional statements,
or conditions; (3) a given statement can be repeated
as long as a certain condition holds —these are
iterative statements, or loops.

First, some primary statements will be
described, followed by conditional and iterative
statements, and then we will deal with a more
elaborate example.

The statements beginchar and endchar. Both
statements have already appeared (see example
REC.MF). Needless to say, statements of this kind
should be present in any language devised for
rendering fonts. The details of their behaviour are

somewhat complex, but fortunately, we can slide
over this subject, as from the practical point of view
they are not essential.

The statement beginchar assigns values to
METAFONT’s internal variables charcode, charwd,
charht, and chardp according to the values passed
as parameters to the statement (four comma-
separated numbers enclosed by braces). They refer
to the ASCII code and to the width, height, and
depth of the character, respectively. The dimensions
should be given in sharp units. Furthermore, the
variables w, h, and d receive the values corresponding
to charwd, charht, and chardp, but expressed in
pixel units. When programming characters, these
variables come in handy.

The parameterless instruction endchar ends
the code for a given character. Once METAFONT

reads this statement, the values of charcode,
charwd, charht, and chardp are written out to
the TFM file, and the bitmap of the character is
written to the GF file. Next, variables such as x,
y (and hence z; see section “Vectors”) w, h, and d
are initialised, therefore the user need not bother
about the values assigned previously when dealing
with subsequent characters.

Both beginchar and endchar are defined in
the plain format, thus a fastidious user can adjust
them to meet particular needs.

The statements fill, draw, and erase. So far,
we have become familiar with the statements fill
and draw; the operator erase prepended to any of
them causes painting in white rather than in black.

The following example demonstrates the results
of the usage of the operations fill and erase fill:

The above figure was obtained by the following
program:

1. mode_setup;
2. beginchar("0",3cm#,2cm#,0);
3. pair c; c=(.5w,.5h); % centre of
4. % the character
5. path q; % a unit square with a centre
6. % coinciding with the origin
7. % of the coordinate system
8. q=unitsquare shifted (-.5,-.5);
9. fill q xscaled w

10. yscaled h shifted c;
11. erase fill q xscaled .9w

TUGboat, Volume 20 (1999), No. 2 113

12. yscaled .9h shifted c;
13. fill q xscaled .8w
14. yscaled .8h shifted c;
15. erase fill q xscaled .7w
16. yscaled .7h shifted c;
17. fill q xscaled .6w
18. yscaled .6h shifted c;
19. erase fill q xscaled .5w
20. yscaled .5h shifted c;
21. fill q xscaled .4w
22. yscaled .4h shifted c;
23. erase fill q xscaled .3w
24. yscaled .3h shifted c;
25. fill q xscaled .2w
26. yscaled .2h shifted c;
27. erase fill q xscaled .1w
28. yscaled .1h shifted c;
29. endchar;
30. end

Actually, it is a “naive” version of the program.
An improved version appears in the section entitled
“Iterative statements”.

The statement ligtable. This statement has
more to do with a font as a whole rather than
with the shapes of individual characters. The
general form of the statement ligtable is by far
too complex to be described here entirely— we shall
confine ourselves to the definition of kerns. Kerns
are tiny spaces, possibly negative, inserted when the
room between a pair of characters is optically either
too small or (more frequently) too large. Kerns
defined by the statement ligtable are presumably
known to the TEX user as implicit kerns. The
information about implicit kerns is written to a TFM
file at the end of METAFONT’s run.

It should be emphasized that kerns are vital for
the final appearance of the font. Improper kerning
can spoil a font even if the character shapes are
masterfully designed.

A typical example of a word in which kerns are
required is the word “WAY”. The letters in both
pairs, “WA” and “AY”, would be too far from each
other without kerning:

rather thisWAY than thisWAY
Here you have an excerpt from the ligtable

program for the font CMR10.
1. k#:=-5/18pt#; kk#:=-5/6pt#;
2. kkk#:=-10/9pt#;
3. ligtable "F": "V": "W":
4. "o" kern kk#, "e" kern kk#,
5. "u" kern kk#, "r" kern kk#,

6. "a" kern kk#, "A" kern kkk#,
7. "K": "X":
8. "O" kern k#, "C" kern k#,
9. "G" kern k#, "Q" kern k#;

10. ligtable "A": "R":
11. "t" kern k#, "C" kern k#,
12. "O" kern k#, "G" kern k#,
13. "U" kern k#, "Q" kern k#,
14. "L":
15. "T" kern kk#, "Y" kern kk#,
16. "V" kern kkk#, "W" kern kkk#;

The first two lines of the excerpt defines three
degrees of kerning to be used subsequently. One-
letter strings followed by a colon refer to the
left-hand sides of kern pairs, whereas one-letter
strings followed by the operator kern refer to the
right-hand sides of kern pairs. The right-hand
sides are to be paired with all preceding left-hand
sides. Such a notation allows for specifying a great
number of kern pairs in a compact and legible way,
e.g., the first ligtable statement specifies 38 kern
pairs. (Why? How many kern pairs specifies the
second ligtable statement?) The kerns under
consideration read kkk# for “WA” and kk# “AY”.
(Check it in TEX.)

It is the information produced by ligtable
statements that is responsible for the size of TFM
files, hence the kern pairs that are unlikely to occur,
e.g., “yY”, should be avoided. Incidentally, the
pairs “Av” and “Aw” are absent from the kern
pairs of the Computer Modern family, which I am
inclined to consider a drawback.

Finally, let’s quote Donald E. Knuth’s admo-
nition concerning the adjustment of the amount of
kerning:

Novices often go overboard on kerning.
Things usually work out best if you kern
by at most half of what looks right to
you at first, since kerning should not
be noticeable by its presence (only by its
absence). Kerning that looks right in a logo
or in a headline display often interrupts
the rhythm of reading when it appears in
ordinary textual material.

The METAFONT book, p. 317

The statements end and bye. These statements,
similar to TEX’s \end and \bye, trigger last-minute
actions. Among others, the information about
kerns is being written to the TFM file. Afterwards,
METAFONT closes the process of data processing.
As in TEX, both statements can be thought of as
synonyms.

114 TUGboat, Volume 20 (1999), No. 2

Conditional statements. The simplest condi-
tional statement has the following form:

if 〈logical expression〉 : 〈statement〉 fi
which means that 〈statement〉 is to be executed
if and only if 〈logical expression〉 takes on the
value true. The symbol 〈statement〉 stands not
necessarily for a primary statement; it can be an
arbitrarily complex construction, involving loops,
conditions and their sequences.

A more general form, often indispensable, is:
if 〈logical expression〉: 〈statement1〉
else: 〈statement2〉 fi

In this case, 〈statement1〉 is performed if 〈logical
expression〉 holds, and 〈statement2〉 otherwise.

The moral is that METAFONT’s conditions
differ mainly in syntax from those of Pascal or C,
while the semantics are equally straightforward.

Iterative statements. The reason for using such
statements has already appeared: in the example
demonstrating the usage of the operation erase, a
series of almost identical statements occurs, except
that the numbers occurring in the statements vary.
Iterative statements are suitable in such cases.
METAFONT’s for statement, syntactically similar to
the statement for of Algol 60 (who remembers it?),
allows for the replacement of the lines 9–28 of the
mentioned example by a more compact code:

1. for i:=10 step -2 until 2:
2. fill q
3. xscaled (1/10i*w)
4. yscaled (1/10i*h)
5. shifted c;
6. erase fill q
7. xscaled (1/10(i-1)*w)
8. yscaled (1/10(i-1)*h)
9. shifted c;

10. endfor

The meaning of the code can be explained as
follows: i is a local variable which takes on values
starting from 10 with step −2 until the value 2 is
reached, i.e., the “looped” statement (lines 2–9) is
performed for i=10, i=8, i=6, i=4, and i=2.

The code can be compacted further by using a
conditional statement:

1. for i:=10 downto 1:
2. if odd i: erase fi fill q
3. xscaled (1/10i*w) yscaled (1/10i*h)
4. shifted c;
5. endfor

The operation downto is equivalent to step -1 un-
til; the expression odd i yields true if i is an odd
number and false otherwise.

Loops are useful not only as a means of
abbreviating programs; first of all, they enhance the
expressive power of a language and thus facilitate
the modifications of programs. In order to obtain
the following figure

a simple cosmetic change of the recent version of
the program is needed:

1. for i:=20 downto 1:
2. if odd i: erase fi fill q
3. xscaled (1/20i*w) yscaled (1/20i*h)
4. shifted (1/20i*c);
5. endfor

Imagine how long the code would be without a loop
and how laborious the respective change would be.

The description of conditional and iterative
statements is far from being complete. Our
knowledge, however, is sufficient to understand
the examples I am about to demonstrate.

Examples

The title of this article suggests that the first
example should bear a stamp of practicality.
Needless to say, the truly practical applications
are infested with obscure details. Therefore the
following example, the font OK, should be regarded
as a model of reality rather than reality itself.

Font OK. The font OK contains only two letters,
namely, K and O. The font is admittedly simple.
This does not mean that it cannot serve as an ample
example. On the contrary, it turns out that the
detailed description of this simple font is surprisingly
long. It is by no means a drawback of METAFONT —
just that the task of font design is intrinsically
difficult. The complexity of METAFONT programs
is a derivative of the complexity of the task.

The font OK, like the fonts of the Computer
Modern family, consists of a parameter file
(primary), OK10.MF, and a driver file (secondary, to
be input), OK.MF. The parameter file defines a set of
numeric quantities, specific for a given nominal size
(10 pt), whereas the driver file defines in a generic
way the shapes of characters.

The magnified letters O and K of the font OK
are shown below:

TUGboat, Volume 20 (1999), No. 2 115

Notice the nodes marked with 0, 1, 1’, etc. They
correspond to the variables z0, z1, z1’, . . ., z11,
respectively. To show them in action, both programs
are presented in extenso. The reader is supposed
to decide which parts of the code are worth reading
and which can be skipped.

Let’s peep at the file OK10.MF:
1. s#:=10pt#; % nominal font size
2. u#:=1/18s#; % unit width
3. h#:=3/4s#; % height of letters
4. marg#:=u#; % sidebar size
5. o#:=1/50s#; % top and bottom overshoot
6. % of the letter ‘‘O’’
7. alpha:=5; % angle of the torsion
8. % of the inner and outer
9. % edges of the letter ‘‘O’’

10. stem#:=3u#; % thicknes of the arm
11. % of the letter ,,K’’
12. input ok

The first two lines are presumably obvious.
Doubts may arise at the third line: why does the
height of letters differ from the font size? There
is no rule for that. Usually the size of a font is
roughly the same as the overall height of a brace.
Although the font OK does not contain a brace,
it was intended to be used with the font CMR10 in
which letters are roughly 7 points tall.

Line 4 defines the distance between the glyph
of a character and the side edges of a character.
The width of a character is usually a bit greater
than the width of its glyph. In the case under
consideration, the letters would touch each other
in the word OK if the variable marg# was assigned

a null value. Note that, in general, left and right
sidebars need not be equal.

Line 5 sets the amount of a so-called overshoot.
This quantity is necessary for achieving the optical
balance between the heights of rounded and square
letters. The reason behind this is a well known
optical illusion. Namely, a square and a circle of
the same height are not perceived as being equal, a
circle is seemingly smaller:

0
How to compensate for this illusion? Don’t expect
it to be a trivial task. An expert in the realm of
computer fonts, Peter Karow (URW), says:

These and other optical effects can only
be properly and correctly considered by
experienced type designers. In future all
technicians should bear this fact in mind.
Let us hope that we have seen the last of
those “computer typefaces in 3 hours.”

Digital Formats for Typefaces, p. 26
Line 7 defines the asymmetry of the inner and

outer contours of the letter O. It is the matter of a
designer’s taste whether such an asymmetry is at all
needed. In the font OK the value of 5 degrees has
been arbitrarily assumed, but there are no profound
reasons to stick to this value.

Eventually, the thickness of the arms of the
letter K is determined in line 10.

Altogether, there are seven parameters—
pretty few in comparison with the sixty two
parameters of the Computer Modern family. But,
on the other hand, surprisingly many for such a
nearly trivial example.

The parameters allow for generating a broad
variety of alterations. In particular, the font
designer can obtain effects which cannot be
achieved by simple non-uniform scaling. Let’s set,
e.g., u#:=1/24s# and stem#:=2u#. Compare the
resulting light narrow font (left) with the original
one (centre) and with the original font narrowed by
factor 0.75 (right):

OK OK OK
A careless change of parameters may lead to

surprising and/or unwanted results, e.g., setting
u#:=1/4s# causes a hardly acceptable effect:
OK.

The last line of the file OK10.MF contains the
statement input ok. METAFONT’s input statement
works essentially in the same way as TEX’s \input
statement: after reading it, METAFONT switches
to the file OK.MF and continues to interpret the

116 TUGboat, Volume 20 (1999), No. 2

program. Following METAFONT, let’s also switch to
the file OK.MF. The METAFONT code becomes now
somewhat tougher, therefore the reader is supposed
to be armed with patience.

The two initial lines of the file read:
1. mode_setup;
2. define_pixels(stem,marg,o);

We are already acquainted with mode_setup.
The statement define_pixels remains unknown
thus far, but its meaning can easily be deduced.
Actually, it assigns values to the implicitly declared
variables stem, marg, and o. Obviously, the values
are expressed in pixel units and correspond to the
values of stem#, marg#, and o#, respectively.

The subsequent lines contain the description of
the letter O:

3. beginchar("O",15u#,h#,0);
4. z1=(marg,1/2h);
5. z1’=z1+9/8stem*
6. (right rotated -alpha);
7. z2=(1/2w,h+o);
8. z2’=z2+1/2stem*
9. (right rotated (-90-alpha));

10. z3=(w-marg,1/2h);
11. z3’=z3+9/8stem*
12. (right rotated (180-alpha));
13. z4=(1/2w,-o);
14. z4’=z4+1/2stem*
15. (right rotated (90-alpha));
16. fill z1..z2..z3..z4..cycle;
17. erase fill z1’..z2’..z3’..z4’..cycle;
18. endchar;

Note the intense usage of the variables w and h
(cf. section “Statements beginchar and endchar”).
Observe also that the first of the four parameters
passed to beginchar is not a number. Instead, it
is a one-letter string. METAFONT accepts such a
variant, presuming that the ASCII code of the letter
is meant, 79 in this case.

The next three lines prepare two auxiliary
variables to be used in the program for the letter K.

19. pair K’, K’’; % vectors determining
20. % the angle between the
21. % arms of the letter ‘K’
22. K’=unitvector(1,1);
23. K’’=unitvector(4/5,-1);

The operation unitvector, occurring in
lines 22–23, computes a vector of length 1, parallel
to the vector passed as an argument. Usually, it
is more convenient to formulate relations without
paying attention to the length of vectors (in this
case K’ = (1/

√
2, 1/
√

2), K’’ = (4/
√

41,−5/
√

41),

admittedly ugly formulas, aren’t they?), but in
order to control distances between elements of a
graphic object, unit-length vectors come in handy.

Now, a relatively complex program for the
letter K ensues:

24. beginchar("K",0,h#,0);
25. % the width will be computed soon...
26. forsuffixes $:= ,#:
27. stem$’=11/12stem$;
28. z0$=(marg$+2/3stem$,3/5h$);
29. z1$=whatever[z0$,z0$+K’];
30. x1$=marg$+stem$;
31. z2$=whatever[z0$,z0$+K’];
32. z3$+whatever*K’=z2$+stem$’*
33. (K’ rotated -90);
34. y2$=y3$=h$;
35. z7$=whatever[z0$,z0$+K’’];
36. x7$=marg$+stem$;
37. z6$=whatever[z0$,z0$+K’’];
38. z5$+whatever*K’’=z6$+stem$’*
39. (K’’ rotated 90);
40. y5$=y6$=0;
41. endfor
42. charwd:=x5#+.5marg#;
43. z4=whatever[z3,z3+K’]=
44. whatever[z5,z5+K’’];
45. z8=(marg+stem,0);
46. z9=(marg,0);
47. z10=(marg,h);
48. z11=(marg+stem,h);
49. fill for i:=1 upto 11:
50. z[i]-- endfor cycle;
51. endchar;

The main source of the complexity is a peculiar
principle underlying the construction of the letter:
if the thickness and the directions of the arms
are given, the width cannot be imposed, but has
to be calculated. In this case, the width is
controlled by the rightmost point of the letter K,
i.e., by z5. The width is set only in line 42.
It is assigned a value of the x-coordinate of the
point z5 increased by the value of the variable
marg# (cf. also sections “Vectors” and “Statements
beginchar and endchar”).

The tricky part is the loop in line 26. It works
as follows: its body (lines 27–40) is performed
twice; the control variable of the loop, $, is replaced
by an empty suffix during the first pass, whereas
during the second pass it is replaced by a hash. In
other words, during the first pass the body will be
interpreted as

TUGboat, Volume 20 (1999), No. 2 117

stem’=11/12stem;
z0=(marg+2/3stem,3/5h);
z1=whatever[z0,z0+K’];

...

and during the second pass as
stem#’=11/12stem#;
z0#=(marg#+2/3stem#,3/5h#);
z1#=whatever[z0#,z0#+K’];

...

The second pass is necessary to compute the
coordinates of z5 in sharp units. Actually, the
statement mode_setup defines the variable hppp
(horizontal pixels per point), and one might try to
compute z5# as equal to z5/hppp. This, however,
is wrong, as the value of z5# would then depend
on a given resolution due to rounding errors. The
employed trick ensures that the TFM file is resolution-
independent.

In order to understand the code in details, an
unaided study is unavoidable. Therefore, we’ll go
no further into the matter, merely pointing out the
characteristic features of the code.

The problem of finding a point where two
straight lines cross (see section “Vectors”) occurs
several times here, hence the intense usage of
equations and of the construction whatever[...].
Another interesting element is the loop in lines 49-
50. It is used inside a path expression. It is a
METAFONT-specific feature. Typical programming
languages do not allow for using loops in expressions,
while METAFONT accepts such constructions. For
example, the statement
message decimal(for i:=1 upto 100:

+i endfor)

will result in writing to the screen and to the LOG
file the value 5050, i.e., the sum

∑100
i=1 i. Actually,

the for loop can be thought of as a macro (TEX
users are supposed to be familiar with the notion of
macros), expanding in this case to +1+2+3 . . . +100,
and that’s the point. The operation decimal
converts the numerical result to a decimal string
representation, i.e., to "5050".

The file OK.MF ends with the following sequence
of statements:

52. ligtable "K" : "O" kern -3/2u#;
53. font_size s#;
54. font_slant 0;
55. font_normal_space 6u#;
56. font_normal_stretch 3u#;
57. font_normal_shrink 2u#;
58. font_quad 18u#; % 18u#=s#
59. bye

An extremely simple form of the statement
ligtable appears in line 52. The first line defines
one implicit kern to be inserted between K and O.
The next six lines define six basic font parameters.
Lines 54–58 can be accessed in TEX as \fontdimen
registers, namely, \fontdimen1, \fontdimen2,
\fontdimen3, \fontdimen4, and \fontdimen6,
respectively (see The TEXbook, p. 433). The
font size, also called design size, presents a little
puzzle to TEX users: how to access a font size in a
TEX program? (Hint: it is not \fontdimen0.) TEX
makes use of the design size of a font when the font
is declared using an at clause. For example, the
statement
\font\f ok10 at 20pt

informs TEX that the font OK10 should be loaded at
doubled size, as the design size of the font is 10pt
(see the first line of the file OK10.MF). A number
appearing in a font name is traditionally equal to
the design size of a font, but it is not advisable to
rely on this information. In fact, TEX ignores it
completely.

Our font in miniature is ready. The miniature,
however, turned out to be fairly complex. I would
consider my goal to be reached (at least partially),
if the reader is not surprised to learn that the
manual for the Computer Modern family is about
six hundred pages long.

Solving systems of linear algebraic equations.
In the handbooks of elementary algebra one can
find exercises like this: given a system of linear
equations:

a+ b+ c = 1
a+ 2b+ 3c = 1

3a+ 5b+ 9c = 1
find numbers a, b, and c. It turns out that
METAFONT is well-suited for solving algebraic
problems of this kind. It just suffices to copy
verbatim the equations:

1. a+b+c=1; a+2b+3c=1; 3a+5b+9c=1;
2. showvariable a,b,c;

Running METAFONT on this program results in the
following message:
a=0
b=2
c=-1

The message is due to the statement showvariable.
The statement message might have been used
as well, but then numbers should be converted
to strings using the operation decimal (see the
previous two pages).

118 TUGboat, Volume 20 (1999), No. 2

Solving such problems using METAFONT does
not seem too practical, unless help in doing a child’s
homework is needed. . . Nonetheless, METAFONT’s
talents are not to be ignored. It is worth
mentioning that thousands of equations do not
frighten METAFONT.4 Matrices of this form arise
as a result of discretization of partial differential
equations. The right-hand sides of the equations
were chosen in such a way that the exact solution
was given by xi = 1

10 i. The average square
error was about 0.025 for n = 1000, about 0.65
for n = 2000, and about 4.95 for n = 4000;
maximal errors were about 0.036, 1.00, and 6.87,
respectively. The calculations lasted 40′′, 3′ 10′′,
and 13′ 45′′, respectively (an IBM PC compatible,
486 processor). It shows the strength and the
weakness of METAFONT’s numerical machinery.

My intention was to show a genuinely
impractical application. Eventually, the reader
is to decide whether I hit the target. Note,
however, that a neat example of a METAFONT

calculator can be found in The METAFONTbook
(the program expr.mf, p. 61). D. E. Knuth admits,
that he occasionally uses METAFONT as a pocket
calculator— why not follow the master? After
all, calculators can solve also systems of linear
equations. . .

Recreational applications. Finally, let’s have a
look at two examples of figures that can be produced
using METAFONT. This time, only the results will
be presented, otherwise the reader might be bored
stiff.

4 A few details for math-oriented users: sys-
tems of linear equations defined by matrices [ai,j],
i = 1, 2, . . . , n, j = 1, 2, . . . , n, such that ai,i = 4,
ai,j = −1 for i − j = 1 or i− j = 25, ai,j = 0, were

tested for n = 1000, 2000, 4000.

I borrowed the idea of winding the number
π around a circle from Alan Hoenig. The fractal
“branches” were published in “PostScript Language
Journal”, 2, No. 4. Translation from PostScript to
METAFONT and back is an instructive and thus an
advisable exercise, indeed.

One might call such applications “applications
of amusement”. I would reply that amusement is
no sin. On the contrary, it is often truly inspiring,
perhaps even more than serious applications can
ever be.

0123456789ABThe End
� Bogus law Jackowski

BOP s.c., ul. Piastowska 70,
Gdańsk, Poland

B.Jackowski@gust.org.pl

TUGboat, Volume 20 (1999), No. 2 119

