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Abstract

TEX has lasted longer than many other computer software technologies.
This article reviews some of the history of TEX and METAFONT, how they

have come to be used in practice, and what their impact has been on document
markup, the Internet, and publishing.

TEX has several design deficiencies that limit its use and its audience. We
look at what TEX did right, and with 25 years of hindsight, what it did wrong.

We close with some observations about the challenges ahead for electronic
representation of documents.
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Foreword

Some of the material in this article may seem old
hat to veteran TEX users, but I am writing it with
the intention that it can also be read by people who
are unfamiliar with TEX and METAFONT, but are
nevertheless interested in learning something about
the design and history of those programs.

Introduction

The TUG 2003 Conference at the Waikoloa Beach
Marriott Hotel on the northwest coast of Hawaii (the
Big Island) celebrated the 25th anniversary of TEX
and METAFONT, and the 24th anniversary of the
TEX Users Group. It was amusing to discover that
TEX already had a commercial presence there: see
Figure 1.

Donald Knuth enjoys finding numerical pat-
terns, so I looked for some in connection with this
meeting. The year 2003 contains the first two
primes, and two zeros. Two is the base of most
computer number systems, and 2003 is also the
first prime in this millenium. In base 2, 2003 =
11 111 010 0112 and 25 = 11 0012: their five low-
order bits are mirror images of each other. The

number 25 is 52, or (third prime)
(oddest prime of all)

.

1 Some historical highlights

Document production by humans goes back a rather

Figure 1: The TEX drive-in has two locations on
the Big Island, one in Honokaa in the northeast,
and one in Pahala, near the south center. It is
noted for malasadas, a puffy hole-less donut,
brought to Hawaii by Portuguese agricultural
workers. One Web site reports that “Tex sells
more malasadas than some McDonald’s outlets sell
hamburgers.”

long way, as shown in Tables 1 and 2. Although
paper was invented about 6000 years ago, it was not
until the middle of the 19th Century that wood pulp
became the primary source of paper, and it took
a few decades longer for paper to become widely
available at low cost.

Gutenberg’s invention predated Columbus’ dis-
covery of the Western World by just 40 years, and
made large-scale book production practical. Before
Gutenberg, each book was copied by hand; after
Gutenberg, literacy was no longer restricted to a
privileged class, and societal progress was poised for
a huge leap forward.

It took about 30 years after the invention of
digital computers for the first effective document
formatting and typesetting systems to be developed.
TEX and METAFONT were first implemented during
Donald Knuth’s 1977–78 sabbatical year. They were
written in the SAIL1 programming language, which
was available only on DEC-10 and DEC-20 computers
with PDP-10 CPUs. In 1978 or 1979, I had the
good fortune to hear a talk that he gave at Xerox
PARC about TEX, and I realized immediately that
older document production systems, like IBM’s ATS,

1 Stanford Artificial Intelligence Lab/Language
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Table 1: Notable historical events BC (before
computers).

Year Event
4000 BCE Egyptians invent papyrus from

woven reeds
105 Ts’ai Lun invents bark/hemp/

rags-based paper in China
1009 First European paper mill, in

Xativa, Spain
1411 First paper mill in Germany
1452 Johannes Gutenberg invents

movable type
1680 First paper mill in New World,

in Culhuacan, Mexico
1690 First paper mill in English

colonies, near Philadelphia
1798 Nicholas Robert invents first

paper-making machine, in
France

1850–1879 Paper from wood pulp perfected
1889–1900 Economical mass-produced

paper

DEC’s runoff, and my own document, would be
obsolete as soon as TEX were widely available. We
had a DEC-20 at Utah, so we had early access to the
Stanford software.

The excitement that TEX and METAFONT gen-
erated among Donald Knuth’s colleagues, and at the
American Mathematical Society, led to a redesign
and reimplementation of both in Pascal, released in
1982, and tweaked a bit in 1989. At the time, the
only other widely-implemented programming lan-
guages were Fortran and Cobol, neither particularly
suitable for writing typesetting software. Neverthe-
less, there was at least one early implementation of
the SAIL version of METAFONT in Fortran [48], with
the goal of producing fonts for Burmese.

By the late 1980s, the C programming language
was becoming widely available: it became an ISO

Standard in 1989. While C has a number of draw-
backs, it has many fewer limitations than Pascal. A
successful manual translation of TEX from Pascal to
C by Pat Monardo at the University of California,
Berkeley, about 1990, encouraged a collaborative
effort on the Web2C translation system. Web2C rec-
ognizes just the subset of Pascal used in TEX, META-
FONT, and their associated utility programs, and
translates it to C. Today, most implementations are
based on the C translations, but the original Pascal
source code remains definitive. System-dependent
changes to the software are handled through change

Table 2: Notable historical events AC (after
computers).

Year Event
1940s First digital computers
1968–1973 Niklaus Wirth invents Pascal

language
1969–1970 Dennis Ritchie invents C

language
1970s roff, script, runoff, document
1975–1978 eqn (B. W. Kernighan and

L. Cherry)
1976 nroff and troff (J. Ossanna),
1978 bib and refer (M. Lesk)
1977–1978 classic TEX and METAFONT in

SAIL (D. Knuth)
1978–1980 Scribe (B. Reid)
1979 tbl (M. Lesk)
1981 pic (B. W. Kernighan)
1982 ideal (C. Van Wyk)
1982 ‘final’ TEX and METAFONT in

Pascal
1983–1985 LATEX (L. Lamport)
1984 BibTEX (O. Patashnik)
1984 PostScript (Adobe Systems)
1986 grap (J. Bentley and B. W.

Kernighan)
1989 ‘new’ TEX and METAFONT

(8-bit characters et al.)
1989–1991 HTML and HTTP at CERN

(T. Berners-Lee)
1990 METAPOST (J. Hobby)
1991 World-Wide Web at CERN

1993 xmosaic browser (NCSA:
M. Andreeson)

1993 PDF (Adobe Systems)
1994 LATEX2ε (F. Mittelbach et al.)
1994 Ω (Y. Haralambous and

J. Plaice) and Λ
1995–2000 WeBWork (University of

Rochester)

1996 PDFTEX (Hán Thé̂ Thánh)
1997 ε-TEX (P. Breitenlohner et al.)
1998 NT S (K. Skoupý)
2000 XMLTEX (D. Carlisle)
2001 JadeTEX (S. Rahtz)
2002 Donald Knuth celebrates

1,000,000th
2 birthday

2003 ant (ant is not TEX:
A. Blumensath) (OCaml: 24K
lines)

2003 Nottingham font conversion
project (D. Brailsford)
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files that the tools tangle and weave, or their C
equivalents, ctangle and cweave, turn into revised
source code and documentation.

Karel Skoupý’s NT S is a reimplementation of
TEX in Java with the goal of improving modular-
ization, and making possible experiments with new
ideas in typesetting. Achim Blumensath’s ant (for
ant is not TEX ) system has similar goals, but is
done in the high-level OCaml language. Most of the
coding of Ω, the extension of TEX for Unicode, is
being done in C++, effectively a superset of C, and
now about as widely available as C.

Although the Bell Laboratories’ typesetting
systems did not influence TEX very much, and were
not available outside their development environment
at the time that Knuth began his work on TEX
and METAFONT in 1977, he was certainly aware of
them [38, Chapter 2]. The Unix small-is-beautiful
software-design methodology was similarly inappli-
cable on other operating systems, so TEX and META-
FONT are each monolithic programs, of about 20,000
lines of prettyprinted Pascal code each. While rela-
tively large programs at the time, they are dwarfed
today by code projects that run to millions (e.g.,
GNU C compiler and library) and tens of millions
(most modern operating systems) of lines.

What has set TEXware apart from most other
software projects is the high degree of stability and
reliability. Knuth attributes this to his development
of literate programming2 [55, 39, 37], which is so
nicely illustrated in the TEX and METAFONT pro-
gram source code [30, 32].

2 What we’ve accomplished

While TEX users are substantially outnumbered by
users of desktop-publishing systems, TEX’s open
markup and document longevity, and its ability
to handle mathematical and music markup, and
scripts in many languages, and its possibility of
identical output on all platforms from desktops to
supercomputers, has ensured its continued use in
some fields. In this section, we examine some of its
achievements.

2.1 Books and journals

More than a hundred books have been published
about TEX and METAFONT,3 and many thousands
of books, and numerous journals, have been pub-
lished with TEX acting behind the scenes as the
typesetting engine.

2 http://www.math.utah.edu/pub/tex/bib/

index-table-l.html#litprog.
3 http://www.math.utah.edu/pub/tex/bib/

index-table-t.html#texbook3.
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Figure 2: TUGboat publication statistics.

At least four journals, TUGboat, Electronic

Publishing—Origination, Dissemination, and De-

sign, Markup Languages: Theory & Practice, and
Serif, have been devoted to typography, markup,
and fonts; the bar charts in Figure 2 illustrate the
activity in the first of these.

Today, many journals in computer science,
mathematics, and physics use LATEX markup for
author-submitted manuscripts. Sometimes, that
material is converted by publishers into SGML or
XML markup that TEX then typesets.

Several major publishers, including Addison-
Wesley, Elsevier, Oxford, and Springer, have used
TEX in book production.

Importantly for researchers, TEX markup has
become a de facto standard in several technical
fields, and because it requires nothing more than
plain ASCII, it can even be used in e-mail messages.

2.2 Software archives

There are huge archives of TEXware in the CTAN

(Comprehensive TEX Archive Network) collections,
with three master hosts,4 and about 75 mirror sites
around the world. TUGboat issues have at least
twice been accompanied by CD-ROM copies of the
CTAN archives.

The existence of many mirror sites makes it
hard to document CTAN activity, but the logs from
just two of the master hosts record about 275,000

4 ftp://ftp.dante.de, ftp://ftp.tex.ac.uk, and ftp:

//tug.ctan.org.
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hits per week over the last seven years, from over a
million Internet hosts.

In mid-2003, the CTAN archives contained
nearly 80,000 files in about 6,000 directories, with
close to 3,000,000 lines of class and style files. To
put these numbers into perspective, Knuth’s origi-
nal plain.tex is only 1235 lines, and manmac.tex,
which supplies additional macros needed for type-
setting the TEXbook [29], is only 715 lines. Knuth’s
Computer Modern fonts are programmed in about
260 files, but the CTAN archives now hold nearly
6500 other METAFONT font programs. Wonderful,
and skilled, volunteers did all of the rest of the
work!

2.3 Document archives

The rapid spread of the Internet led Paul Ginsparg
in the early 1990s to create the Los Alamos archive
of current research in high-energy physics. This
archive is now hosted at Cornell University,5 and
access statistics show that at times, the archive
has had more than a million hits a week. For
many physics researchers, the archive, not print
journals, is the current literature. Ginsparg was
awarded a prestigious MacArthur Fellowship (worth
US$500,000) in 2002 for this work.

The success of the physics archive has led to
creation of similar projects in mathematics, nonlin-
ear sciences, computer science, and quantitative bi-
ology, all reachable from links from the main archive
Web site. Related efforts include the Networked
Computer Science Technical Reference Library (NC-

STRL)6 and the Open Archives Initiative.7 Col-
lectively, these archives contains several hundred
thousand research papers, most written in LATEX or
TEX markup.

2.4 Bibliography archives

In 1991, I began to record bibliographic data for my
books and journals in BibTEX markup. This evolved
into the TEX Users Group Bibliography Project8

covering the literature of much of computer sci-
ence, electronic document production, and numer-
ical mathematics. In 1995, we started the BibNet
Project9 with the more limited goal of recording
complete publication bibliographies for leading re-
searchers in numerical mathematics.

5 http://arxiv.org/.
6 http://www.ncstrl.org/.
7 http://www.openarchives.org/.
8 http://www.math.utah.edu/pub/tex/bib/

index-table.html, http://www.math.utah.edu/pub/tex/

bib/idx/, and http://www.math.utah.edu/pub/tex/bib/

toc/.
9 http://www.math.utah.edu/pub/bibnet/.

These collections now amount to more than
366,000 bibliographic entries in about 540 separate
bibliographies, each of which is accompanied by
additional files for spell checking, indexing, and
typesetting the complete bibliographies. Because
the data has been collected from many sources and
extensively checked, it has considerably higher qual-
ity than most other collections. All BibTEX files
are prettyprinted, sorted, ordered, checksummed,
and documented with a consistent comment header.
Where possible, bibliographic entries contain hyper-
text links to the source of the data, and to online
electronic documents.

In my department at Utah, the bibsearch10

utility provides very fast access to these collec-
tions, plus another 203,000 in mathematical biology,
187,000 in computer science from the Digital Bibli-
ography and Library Project (DBLP) at Universität
Trier, Germany, and more than 1,261,000 in com-
puter science from the world-wide computer science
bibliography archive at Universität Karlsruhe. The
two projects hosted at Utah are mirrored daily to the
Karlsruhe archive. Archive statistics at Karlsruhe
record about 300,000 hits per month, and at Utah,
about 21,000 per month.

Both the American Mathematical Society
MathSciNet database11 and the European Mathe-
matical Society E-Math database12 now offer search
results in BibTEX markup.

The bibliography-archive work is supported by
about 137,000 lines of code in the awk programming
language, about 15,000 lines of code in Emacs Lisp,
several thousand lines of Unix shell scripts, and
several tens of thousands of lines of C code. Notable
standalone tools in the collection include bibcheck,
bibclean, bibdup, bibextract, bibjoin, bib-

label, biblex, biborder, bibparse, bibsearch,
bibsort, bibsplit, bibunlex, citefind, citesub,
and citetags.

Many journal publishers now provide Web sites
with publication data for recent issues. The JSTOR

Project13 provides complete coverage of all issues of
about 360 journals in science and the humanities; it
has allowed the preparation of complete bibliogra-
phies for the American Mathematical Monthly back
to the first issue in 1894.

The increasing availability of publication data
on the Web has made it feasible to develop tools

10 http://www.math.utah.edu/pub/mg/mg-1.3x/

bibsearch/.
11 http://www.ams.org/mathscinet/.
12 http://www.emis.de/ZMATH/ and http://zb.msri.org/

ZMATH/.
13 http://www.jstor.org/.
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for automatic conversion of such data, which tends
to be quite similar across all journals from a single
publisher. An essential tool for this work has been
the HTML prettyprinter, html-pretty,14 which al-
lows fast, rigorous, and highly-reliable conversion of
HTML documents to a standard layout of markup.
Simpler tools, usually written in awk, can readily
process that data to produce rough BibTEX markup
that can be further cleaned up in a pipeline of some
of the other tools listed above. A certain amount of
manual cleanup is still required, notably bracing of
proper nouns in document titles, but the bulk of the
work has been done completely automatically.

Although the individual bibliographic and
HTML tools are freely available, the Web page con-
version software is not: it tends to require frequent
maintenance as whimsy overtakes good sense at
publisher Web sites, and in any event, is really
needed only at the site doing the HTML-to-BibTEX
conversion work.

I have collaborated with several publishers and
journal editors, so that these BibTEX archives re-
ceive prominent links from their journal Web sites,
and so that I get prompt notification of the appear-
ance of new journal issues. In extremely favorable
cases, the BibTEX data can be available about ten
minutes after a journal issue announcement.

This bibliographic activity is a substantial ef-
fort on my part, but the reward is that the entire
Internet community gets quick access to the data.
Also, BibTEX, LATEX, and TEX get free advertising
in communities that might be entirely unaware of
them, and I can at last find material in the thou-
sands of journal issues on my own shelves.

BibTEX markup is extremely flexible, even if
the associated style-file language is somewhat ar-
cane. Publisher interest in XML markup led to the
BibTEXML project at the Swiss Federal Institute of
Technology (ETH) in Zürich, Switzerland, which has
developed software for conversion between XML and
BibTEX markup of bibliographic data; at the time
of writing, the project Web site is not accessible.
Because XML is not extensible at the document
level, such a conversion is not as simple as it might
first appear.

3 What did TEX do right?

Twenty-five years is a very long time in the rapidly-
developing computing industry, and it is appropriate
to look back over the use of TEX in that time, and
comment on its successes, and its failures.

While a list of such points is necessarily a

14 http://www.math.utah.edu/pub/sgml/.

matter of personal opinion, I believe that it is
worthwhile to enumerate the ones that I have found
significant. Although I concentrate mainly on TEX,
some of the remarks should be interpreted to include
the associated utilities that I call TEXware.

3.1 Open software

The most important done-right feature of TEX is
that it is an open-source literate program. Without
quibbling over the exact meaning of open source,
the essential point is that anyone can use TEX
for any purpose, commercial or noncommercial, as
long as they don’t change the non-system-dependent
parts of it without changing its name. One of the
TUG 2003 conference speakers, Ajit Ranade, noted
that TEX is responsible for a multimillion dollar
typesetting-support industry in India that employs
thousands of people.

This openness should be contrasted with the
abysmal state of the desktop-publishing industry
where markup is generally keep secret and propri-
etary, holding user documents hostage to marketing
whims of software vendors, and making it impossible
to achieve consistent output when documents are
moved between platforms, or to archive documents
for long-term access. This deplorable situation is
getting worse, not better: one desktop-publishing
vendor is moving towards encrypted file formats that
can be decoded only by that vendor’s products; the
marketing justification is called document security,
but it also locks out competition and gives the ven-
dor, not the user, control over document access.

3.2 Typesetting kernel

TEX provides a small kernel of primitives that are
specialized for the complex, and often idiosyncratic,
job of typesetting. The best-known analogue of this
software model is the PostScript page-description
language, which provides primitives that are highly
suited to placing marks on a page, assuming that
some other software package has first decided where
they go.

3.3 Extensible typesetting language

Although most of TEX’s typesetting kernel is rather
low level, dealing with object positioning and se-
lection, through a powerful, albeit arcane, macro
language, TEX can be extended to provide higher-
level markup. Such extensions significantly lessen
the demand for changes in the underlying software,
shielding it from the creeping featurism that plagues
most commercial software, and prevents reliability
and stability.

The most successful of these extensions is the
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LATEX document preparation system [41, 42] and the
many packages built on top of it [47, 18, 19]. LATEX,
like BibTEX, is strongly influenced by Brian Reid’s
pioneering Scribe system.

The key feature of LATEX markup is that type-
setting objects such as title and author information,
tables of contents, abstracts, chapters, sections, sub-
sections, equations, figures, tables, glossaries, in-
dexes, and so on, are general concepts shared by
most documents, and are thus marked up with com-
mands that tell what to do, rather than how to do.
This is usually termed logical markup, as opposed to
physical, or visual, markup. Most desktop-publish-
ing software is modeled on physical markup: the
what-you-see-is-all-you’ve-got approach is burden-
some on the user, and makes it nearly impossible
to achieve formatting consistency.

In principle, the meaning of logical markup can
be changed simply by declaring a new document
class at the start of the top-level file. In practice,
other changes may be required as well, but they
are usually limited to issues of front-matter markup,
which can be quite complex for some documents,
and to issues of how literature citations are used
in the text (e.g., the numbered style used in this
article, versus the author-date style common in the
humanities). Nevertheless, the changes needed to
switch document style are generally a small part of
the total effort of document production.

The need for presentation of the same informa-
tion in different formats is often not appreciated by
authors, but publishers at past TEX Users Group
conferences have reported that they have sometimes
been able to reuse information in a dozen ways,
each of them generating income. Document reuse
is a major driving force in the use of SGML and
XML markup for long-term document storage in the
publishing industry. For example, while most article
submissions to the American Chemical Society (the
world’s largest publisher of chemistry literature)
are in word-processor formats, all submissions are
converted to SGML with a combination of in-house
format-conversion software and manual touch-ups.

3.4 Device-independent output

The Bell Laboratories’ troff system produced out-
put for one particular typesetting device, now long
defunct, and its design was heavily influenced by the
capabilities and limitations of that particular device.

TEX’s output pays homage to no particular
device: it is a compact device-independent format,
called a DVI file. The job of converting that file
for any particular output device is left to separate
software, called a DVI driver. This task is far from

trivial: current drivers for single devices are 22,000
(dvips) to 29,000 (xdvi) lines of code, and my own
DVI driver family, which supports dozens of devices,
is about 97,000 lines. These are all larger than TEX
itself. Popular output formats have evolved during
TEX’s life, but TEX remains blissfully independent
of that evolution.

Current analogues of TEX’s design choice are
the virtual machine definition underlying the Java
and C# programming languages, and the virtual
machine layer provided on IBM mainframes since the
early 1970s. More recently, the VMware15 system on
the Intel IA-32 platform permits multiple operating
systems to be simultaneously active on the same
hardware, and IBM PowerPC systems now support
sharing of CPUs by separate operating systems.

Although they were not part of the original
design of TEX, Geoffrey Tobin’s excellent dv2dt

and dt2dv tools included in many modern TEX
distributions provide a way to convert the compact
DVI format to a human-readable, and thus, editable,
form, and back again.

3.5 Font independence

The lack of good-quality vendor-independent fonts
forced Donald Knuth to develop an outstanding
font-design system, METAFONT. However, he was
careful to isolate most of the details, so that TEX
only needs to know about the dimensions of the
fonts, through the compact TEX font metric (TFM)
files. TEX remains completely unaware of character
shapes and how they are represented in font files.

This independence has proved a great virtue,
allowing TEX to use almost any font, subject to an
unfortunate limitation on the number of characters
in a font, provided that metrics are available. Some
commercial font vendors in the early days of TEX
would not release that information, and some still
do not permit its free distribution.

With virtual-font technology [26], composite
fonts can be created whose glyphs come from other
fonts, even other virtual fonts. This makes it
possible, for example, to remap glyphs into the
order expected inside TEX, avoiding the need to
redefine numerous macros that assign names to font
characters. PostScript Type 1 fonts are generally
accessed via virtual fonts.

3.6 Open font specification

Unlike most commercial fonts of the 1970s, META-
FONT’s output file formats are openly, and well,
documented. Besides the TFM file of font metrics,

15 http://www.vmware.com/.
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METAFONT produces a file of character bitmaps,
called a generic font (GF) file.

When superior font compression techniques
were developed by Tom Rokicki in 1985 [53], he was
able to write a clean font-format translation tool,
gftopk. Today, most TEX sites store only the more
compact PK format.

3.7 Boxes, glue, and penalties

A great insight in the design of TEX is the concept
of boxes of text, and flexible space between them,
called glue (though springs might have been a better
characterization). TEX builds up lines, paragraphs,
and page galleys as lists of boxes separated by glue,
where the glue has user-defined stretchability and
shrinkability.

Centered, ragged-right, and ragged-left typeset-
ting are all straightforward to implement with glue.

For further control, users can insert penalties
at suitable points to encourage or discourage line
breaks and page breaks. TEX can then apply a
mathematical optimization technique to determine
the best way to typeset pages; few other systems,
before or since, do as good a job.

3.8 Compact markup for common cases

The first thing that one sees when comparing SGML

or XML markup with TEX markup is that the
first two are painfully verbose. TEX makes com-
mon cases simple and compact. For example, in-
stead of wrapping paragraphs with SGML com-
mands <paragraph> . . . </paragraph>, TEX sim-
ply assumes that a line that is blank or empty
separates paragraphs. When this is not convenient
or possible, it offers the \par control word to mark
the boundary.

Other examples of TEX’s brevity are the use
of braces for grouping, dollar signs around math-
ematics markup (Knuthian humor: mathematics
was traditionally expensive to typeset), and caret
and underscore for mathematical superscripts and
subscripts.

Consider the lowly, but important, period (dot
or full stop): it is the smallest character in a font,
but it can mean end of initial, end of abbreviation,
end of sentence, decimal point, Internet hostname
separator, filename separator, or be part of an
ellipsis. TEX has a simple rule for its interpretation
when it is followed by an input space: if it follows
a capital letter, it ends an initial, and otherwise,
it ends a sentence. This heuristic is almost always
correct, but careful LATEX typists will write Back in

the USSR\@. to instruct TEX that an intersentence
space, rather than an interword space, is called for,

or use a tie (~) or literal space (\ ) when only
an interword space is needed. The special spacing
required for ellipses is handled by standard control
words: \cdots, \ldots, and \ddots.

3.9 Nonsignificant spaces

In troff, spaces are significant: two spaces in the
input produces two spaces in the output, plus or mi-
nus a bit to justify lines. Consequently, indentation
cannot be used in troff input to improve readabil-
ity and highlight nested document structure.

TEX avoids this significant design flaw by treat-
ing a sequence of spaces as equivalent to a sin-
gle space. Similarly, any sequence of empty or
blank lines is equivalent to a single paragraph break.
When this behavior is unwanted, TEX offers verba-
tim environments.

3.10 Identical results on all systems

A huge virtue of TEX is the possibility of getting
identical output on all platforms. Indeed, as long
as all of the input macro packages and font metrics
are identical, output is identical. No commercial
desktop-publishing system even comes close.

TEX achieves this platform-independence by
carrying out all arithmetic identically: it uses ex-
act fixed-point arithmetic in all computations that
affect line and page breaking. For dimensions, an
underlying 32-bit integer word is split into fragments
1 + 1 + 14 + 16: a sign bit, an overflow bit, a 14-bit
integer part (214 = 16384), and a 16-bit fractional
part. The largest dimension is about the width of
a room, and the smallest spacing is less than the
wavelength of visible light: computational rounding
errors are invisible in the output. TEX also supports
pure 32-bit integer arithmetic in computations with
\count registers.

3.11 Dimension independence

Systems of measurement differ between different
cultures and countries: TEX allows dimensions to
be specified in any of nine different units that cater
to the majority of needs.

3.12 Dynamic loading of files

TEX permits temporary redirection of its input
stream to another file, via the \input control word.
That file can in turn contain other \input com-
mands, with the result that packages of commonly-
used commands are easily supported, and users can
break up large documents into manageable pieces.
This saves processing time, since only those pieces
being worked on need to be typeset, and also reduces
the effect of global editing disasters.
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3.13 Redefinition of character meaning

TEX assigns each input character one of sixteen
category codes that controls further interpretation
of each character, and those assignments can be
changed at any time via the \catcode command.
Although few users directly exploit the feature,
its existence makes it possible for TEX to typeset
documents written in quite different markup, such
as control words that begin with @ in Texinfo, and
angle-bracket delimited words in SGML and XML

(e.g., jadetex and xmltex).

3.14 No system call

Because TEX is expected to run on many different
platforms, it does not offer any internal way of com-
municating with the underlying operating system,
such as via a \system{...} command.

While such an ability can be handy, allowing,
for example, a book index to be prepared imme-
diately before it is typeset, experience on the In-
ternet has shown that such power is too frequently
exploited for nefarious purposes. The words worm

and virus are now familiar to the general population,
even those who have never used a computer. When
the mere viewing of a document can cause arbitrary
commands to be executed, security and stability are
impossible.

3.15 Last definition holds

Although it seems trivial, in TEX, as in most pro-
gramming languages, the last definition or assign-
ment of an object is the one that is used.

SGML, by contrast, uses a first-definition-holds
rule. Instead of being able to load up a base
package of command definitions, and then make
minor tweaks to it by subsequent redefinitions and
assignments, each package modification must be
defined as a complete new package, with altered
definitions preceding an inclusion of the original
package.

3.16 \special command

In order to allow support of unforeseen features, TEX
provides the \special command whose argument is
recorded verbatim in the DVI file. Graphics, color,
and hypertext links are common examples that use
\special. Of course, DVI drivers then need to be
taught how to handle such material.

3.17 Stability and reliability

TEX is quite possibly the most stable and reliable
software product of any substantial complexity that
has ever been written by a human programmer.

Although its development has not been free of
errors, most TEX users have never seen an error,
much less a crash, in TEX.

What errors have been found have been well
studied and documented in The errors of TEX : see
[35] and an update in [37, pp. 243–339].

3.18 Illustrations by Duane Bibby16

In a remarkable collaboration that has lasted nearly
two decades, the gifted illustrator Duane Bibby has
worked with members of the TEX community to
prepare wonderful drawings for not only Knuth’s
Computers and Typesetting series, but also for sev-
eral LATEX books, and numerous T-shirts and mugs
at TEX Users Group conferences.

It was such a pleasure for many of us to meet
Duane for the first time at this meeting, to hear his
talk on his long collaboration with Donald Knuth,
and to see how the TEX lion and METAFONT lioness
evolved.

Duane Bibby’s drawings, and Donald Knuth’s
wit and superb writing skill, add light and humor to
what might otherwise be a dry and daunting manual
on the complex subject of typography.

4 What did TEX do wrong?

It is now time to drop our laudatory stance, and
become a grinch: nothing is perfect, not even TEX,
and with 25 years of hindsight, it is time to assess
what it did wrong.

There has been a lot of computer technology
developed since 1977 that few could have predicted
then, including personal computers, high-quality
printers, PostScript, PDF, window systems, and the
World-Wide Web. Hardware costs have dropped,
and speed and capacity have grown, at a pace that is
unparalleled in the history of human development.
Most of the criticisms of this section would have
been both unfair and unforeseen when TEX was first
designed.

4.1 No rigorous grammar

The biggest deficiency in TEX that has always
bothered me is that it is not based on a rigorous
programming-language grammar. This is particu-
larly puzzling when its author is the founder of mod-
ern LR parsing [28], and that work is cited among
the great papers in computer science [43]. When I
asked Don about this once, he jokingly responded
that he didn’t believe in grammars!

Most programming languages designed since

16 This section of my address was written long before I
found out that Duane would be attending the conference.
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Algol 60 have been based on grammars, but TEX
is not. Lack of an independent grammar means
that the only truly reliable parser of TEX input
is TEX itself, yet long experience with other pro-
gramming languages has shown that rigorous gram-
mars can lead to highly-reliable machine-generated
parsers (Unix yacc, Berkeley byacc, GNU bison,
and Holub’s occs [24] are good examples of parser
generators). Parsers are needed not only in com-
pilers, like TEX, but also in prettyprinters, syntax
checkers, tag extractors (ctags and etags), and
other tools that operate on the input language for
purposes other than its execution.

Precisely because human programmers are fal-
lible, it is important to have multiple independent
implementations of any significant program, and to
have implementations available on several machine
architectures. Only when those programs produce
identical output can one have any confidence in
their results. Languages like awk, Cobol, Fortran,
C, C++, Common Lisp, and Java enjoy this diver-
sity, while others, like axiom, C#, delphi, maple,
mathematica, perl, python, ruby, reduce, sas,
spss, tcl, and Visual Basic, do not. Since modern
compilers are usually very much bigger than the
programs that they process, when a bug or other
unexpected behavior surfaces, it is legitimate to
ask whether the bug is in the compiler, or in the
program. If the misbehavior disappears when the
compiler or platform changes, suspicion rests on the
compiler.

The lack of diversity for TEX has been less of
a problem, simply because of the enormous talent
behind it. Nevertheless, it is good to see the appear-
ance of NT S as an independent implementation of
TEX.

4.2 Macro, not programming, language

TEX’s extension language is a macro language, not
a proper programming language. Every TEX macro
programmer who has implemented a nontrivial op-
eration has suffered from the difficulty of TEX’s
macro language. Things that are simple to do in
other languages designed for text processing are
frequently very painful in TEX. Macro languages
have too many side effects, and lack the power of
true programming languages.

Lisp programmers would argue that the proper
approach is to eliminate that separation between
programs and data: making data look like programs
means that the data can be a program, and that has
been found to produce great power and generality.
Luigi Semenzato and Edward Wang at the Univer-
sity of California, Berkeley, investigated a Lisp-like

interface to TEX [54].

4.3 Too much hard coded

The limited 18-bit address space of the 36-bit DEC

PDP-10 architecture17 of TEX’s original development
platform, and severe limitations of the Pascal pro-
gramming language, constrained many aspects of
the program.

There are many examples of objects inside
TEX whose size is fixed when TEX is compiled for
a particular platform: the dreaded TeX capacity

exceeded message is familiar to every serious TEX
user.

Fortunately, in recent years, the Web2C imple-
mentation has replaced many of these fixed limits by
configurable limits settable in startup files, although
other implementations may not be so flexible. Nev-
ertheless, modern programming practice in the GNU

system and others is that software should have no
hard limits, other than those found to be available at
run time, or enforced by the underlying architecture.

It isn’t just table sizes that are hard coded
in TEX: many algorithms are too, notably, hy-
phenation, line breaking, page breaking, and float
placement. While TEX provides powerful ways to
influence these algorithms, the algorithms cannot be
ripped out and replaced dynamically at run-time,
and they cannot be changed in TEX itself without
producing a program that is no longer allowed to
call itself TEX.

4.4 Too many fixed-size objects

The need to squeeze a large program and data
into the small PDP-10 address space led to further
economizations in TEX that are difficult to remove,
because the sizes of various objects themselves are
encoded in bitfields of other data structures. If only
8 bits are available for the size, then only 28 = 256
objects can be created. This limitation is seen in
the number of various types of TEX boxes, category
codes, token lists, registers, and skips. Worse, it
permeates TEX’s internal source code, making it
very hard to eliminate.

Enlarging these limits was one of the major
design goals of ε-TEX, which is extended from TEX
with a change file that is about a third the size
of TEX itself. For comparison, pdfTEX augments
TEX’s DVI output with a completely new, and very
complex, output form: PDF; its change file is about
40% the size of TEX.

17 In modern terms, 1.3M characters or 0.25M words.
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4.5 Too many global variables

In the 60-year history of computing, program after
program has foundered in complexity arising from
too much global state. When code depends on global
variables that can be changed arbitrarily at any
place in the code, it becomes impossible to reason
about the correctness of the program. Redesigns
of the relatively small and simple Unix operating
system in the form of Mach, Solaris, and GNU/Linux
all attempted to sharply limit the problem of global
state, by repackaging the software into independent
layers with simple, and well-defined, interfaces.

TEX has too many global variables and macros
that can be changed anywhere, at any time, by any
user.

4.6 Too little tracing

For debugging, and for understanding unfamiliar
packages, it is desirable to be able to request tracing
of the use and (re)definition of commands, files,
and registers. Although TEX provides a few tracing
commands, their output usually overwhelms the
user, because there is no way to restrict the tracing
to a specified set of names. Also, TEX provides
no way to record where definitions happen, yet
precisely that information is needed to prepare
customizations.

4.7 Name collision

Older programming languages, such as Algol, For-
tran, Cobol, Pascal, and C all have very limited
control over name visibility. Usually, this amounts
to just local variables (defined in a function or sub-
routine), and global variables, known throughout the
program. C adds a bit more control in offering file-

global variables that are known throughout a single
source file, but inaccessible elsewhere.

Descendants of these languages, such as Ada,
Fortran 90, Cobol 2002, Modula, C++, Java, and
C# all introduce additional constraints through
modules or namespaces to allow compartmentaliza-
tion and control of names.

Sadly, TEX has effectively only one level of
naming: global. Although names can be defined
inside braced groups, the size of groups can be
severely constrained by internal buffer sizes, and
in any event, groups are anonymous: you cannot
refer to names in other groups except by nasty or
tricky subterfuges that make program maintenance
impossible.

Lisp too had this defect, but it became common
practice to use long descriptive names that incor-
porate a package prefix, such as LaTeX-pageref-

with-completion from my LATEX editing-support
package for Emacs. However, with default category
codes, TEX limits command names to just the Latin
letters, so the only way to avoid inadvertent colli-
sions with names in other packages is to use long
names, and the only way to make them readable is
to use mixed capitalization, such as (in the LATEX
kernel) \DeclareRobustCommand.

The lack of hooks into the entry and exit of
commands means that packages are often forced to
redefine macros used by other packages. Loading of
multiple packages sometimes results in puzzling, and
hard-to-debug, interactions of these redefinitions.

4.8 Inadequate I/O

Like Fortran, TEX’s I/O model is based on lines,
rather than characters, with the additional restric-
tion that braces (or characters of that category)
must be properly nested. By contrast, the C pro-
gramming language provides getc() and putc()

primitives to read and write single characters, and
I/O of higher-level objects can be built from these
alone.

Java, C++, and C# go a step beyond C in
generalizing I/O to a stream of data in which pro-
cessing filters can be arbitrarily, and transparently,
inserted. The streams need not even be directed
to and from physical files, but can instead refer to
strings in memory, or network devices, or display
devices, or virtual files.

Unlike most other programming languages,
TEX does not offer anything analogous to Fortran’s
formatted I/O or C’s equivalent of fscanf() and
fprintf(), which provide detailed control over the
interpretation of input, and the appearance of out-
put. A satisfactory I/O library is astonishingly
complex: it deserves to be rigorously defined, stan-
dardized, and incorporated in every implementation
of the programming language.

The deceptively-easy task of expressing binary
fractional numbers as human-readable decimal num-
bers led TEX’s author to write a famous paper called
A Simple Program Whose Proof Isn’t [36]. Related
articles that finally properly solved the number-base
conversion problem have appeared only since 1990
[1, 7, 21, 56, 57].

4.9 Character set limits

TEX processing is based entirely on a model of
characters that can be represented as a single 8-bit
byte, in the ASCII encoding. This was not much
different from other software of the 1970s, and at
least, TEX could handle lowercase letters, and with
the help of control symbols and control words, even
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decorate letters with accents.
However, it was clear that 28 = 256 characters

are not enough, not even for European use. ISO has
already standardized ten different ISO-8859-n code

pages based on the Latin alphabet, with a few more
to support Arabic, Cyrillic, Hebrew, and Thai.

Two separate efforts to standardize much larger
character sets began in the early 1990s: Unicode and
ISO 10646. After some divergence, the two groups
are fortunately now coordinated, with Unicode guar-
anteed to be a strict subset of ISO 10646. Several
operating systems have adopted Unicode as their
standard character encoding.

Unicode developers hold that 21 bits are suffi-
cient to encode all real writing systems in human
history. This is a repertoire of about two million
characters, of which 96,283 are encoded in the lat-
est version [59]. Of these, 70,203 are ideographic
characters from Chinese, Japanese, Korean, Yi, and
historical Vietnamese [44, 45].

The large number of Unicode characters means
that neither 8-bit nor 16-bit values suffice. 24-bit
words are impractical in current computer architec-
tures, and native 32-bit words waste a third of the
bits. In practice, then, Unicode is represented in
one of several encodings that require one or more 8-
bit or 16-bit chunks to represent a single character.
One of these, UTF-8, contains ASCII and most ISO-
8859-1 characters in their normal positions, but uses
up to four bytes for some other characters. UTF-8

was developed at Bell Laboratories for the Plan 9
operating system, and because most of the world’s
existing computer files are in either ASCII or ISO-
8859-1, they are already Unicode-conformant when
interpreted in the UTF-8 encoding.

Existing programming languages have usually
been defined with the assumption that a single
character can be held in an 8-bit byte, and the
effects of that assumption are deeply rooted. Most
languages are only beginning to address the problem
of how to deal with Unicode data, and none of the
initial attempts, in C, C++, C#, and Java, are yet
very satisfactory.

TEX too requires massive changes to handle
Unicode, and although the work on Ω was originally
based on a change file for TEX, its developers
report that a completely new program, in C++, will
probably be needed.

4.10 No input filters

The code-page morass mentioned in the previous
subsection has an immediate impact on TEX doc-
uments written in a variety of European languages.
In particular, the encoding must be known, and then

translated to TEX’s internal expectations, before
TEX can process the document. Filesystems rarely
record character-set information, so documents have
to do so themselves.

TEX processing would be easier if it had input
filters that could transparently supply the needed
translations. It would have been relatively easy
to implement them by making the internal xchr[]
array [30, §21, p. 10] accessible to the TEX user.18

Instead, TEX erroneously assumes that character
sets are a unique property of each platform, and
therefore, can be hard-coded into the implementa-
tion on each system. That assumption was correct
for EBCDIC on IBM mainframes versus ASCII ev-
erywhere else, but it was false as soon as code pages
were introduced.

The need for input translation is so strong
that Ω developers from an early stage in its design
introduced Ω translation processes (OTPs).

4.11 No color state

In 1977, there were no low-cost color output devices,
and some commercial typesetting systems were in-
capable of handling color. Consequently, TEX is
completely ignorant of color. However, color is a
text attribute much like the current font, although
it can also be a page-background or region-shading
attribute. In particular, once set, the current colors
should remain in effect across line breaks and page
breaks, just like the current font does.

In order to make it possible to process selected
pages of DVI files, TEX records in the DVI postamble
a list of all required fonts, and at the start of
each page description in the DVI file, it records
the current font, so that the page can be rendered
independently of all preceding pages.

In the same way, the current colors are needed
at page start. Since TEX doesn’t provide for color,
its support has to come through the \special com-
mand. However, TEX lacks a hook (code fragment)
to be executed when a page is shipped out to the
DVI file (actually, it does have one, but output
routines are very fragile, and depend on the macro
package in use), so there is no clean way to record
the current colors on each page. This means that
DVI drivers that support color are now forced to
read the entire DVI file, parse all of its \special

commands, and build up a list of starting colors for
each page, even if the user just wants to display a
single page. Fortunately, modern machines are fast,
so most users probably never notice the delay.

18 Some implementations have extended TEX to provide
such access.
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4.12 No graphics

In the 1970s, commercial typesetters had no graph-
ics capabilities. Although researchers in computer
graphics had produced a rudimentary draft graphics
standard [2] a few months before work began on
TEX, it took two more years for a more detailed
draft standard [3], and much of that specification
could not be implemented portably. Sadly, graph-
ics standardization splintered and foundered in the
1980s, and today, the ISO graphics standards that
exist are largely ignored by programmers.

Nevertheless, a small number of graphics oper-
ations, notably dot and line primitives, an elliptical
arc primitive, and a region fill, would have been suf-
ficient to represent most technical drawings. They
could have been compactly encoded in the DVI file,
and reasonably easily translated by DVI drivers.

LATEX’s picture mode can emulate curves by
drawing tiny squares along the curve path, but their
internal representation is extremely inefficient, and
even a few such curves soon exhaust TEX’s memory.

Today, most graphics in TEX documents is
represented by PostScript (released in 1984) figure
inclusions.

4.13 One page at a time

Memory constraints forced TEX to handle page
creation by building up a sequence of objects on
the main vertical list, asynchronously invoking an
output routine as the list contents get big enough to
fill a single output page.

However, in high-quality manual typesetting,
page-layout design proceeds in pairs of facing pages.
With a lot of work, it would be possible to program
a TEX output routine for handling pages in pairs,
but the task is decidedly nontrivial, and in LATEX,
the output routine is viewed as a fragile part of the
kernel that cannot be altered without great risk of
breaking other parts of LATEX.

4.14 Multicolumn deficiency

Multicolumn output is challenging, for three main
reasons:

1. Narrow columns make it difficult to maintain
right-margin justification without excessive hy-
phenation, or objectionable whitespace. Every
reader of a printed newspaper is familiar with
these problems.

2. Esthetic considerations require columns to be
balanced, perhaps all with the same length, or
with all but the last of uniform size.

3. Complex documents may require changing col-
umn formatting within a single page. In these

proceedings, for example, article front matter is
in one-column mode, but article text is in two-
column mode. Some American Physical Soci-
ety journals have particularly complex column-
formatting practices, and newspaper layout is
even more difficult.

Although it has been possible to prepare style
files to support multicolumn typesetting, such as
Frank Mittelbach’s multicol package [46] and
David Carlisle’s and Arthur Ogawa’s REVTEX pack-
age [50] designed for the American Physical Society,
and also style files to support the flowing of text
around figures [17, §6.4], only a handful of TEX
wizards are capable of creating such packages. I
suspect that all of these packages can be broken in
certain cases: while they may be quite good, they
are not robust.

Had TEX been designed from the beginning
to typeset into a list of regions of arbitrary user-
specifiable shapes, instead of into a single rectan-
gular page, even the most complex magazine and
newspaper layouts could readily be accommodated.

As the doctoral work of Michael Plass [40, 51]
and Stefan Wohlfeil [61] has shown, line-breaking
and page-breaking algorithms are extremely diffi-
cult. In my view, they should be implemented in
a dynamically-loaded module in the programming
language that TEX doesn’t have.

4.15 Not general enough for all writing
directions

TEX expects text to be laid out horizontally from
left to right. While this works for many languages,
it doesn’t handle right-to-left Semitic languages, or
vertical writing directions (left to right across the
page, or the reverse) needed for Chinese, Japanese,
Korean, and Mongolian.

Donald Knuth and Pierre MacKay were able
to extend the TEX program to handle mixtures of
left-to-right and right-to-left text [27], producing
the TEX--XET derivative, and ε-TEX now includes
that extension. In Semitic languages, numbers are
written from left to right, so those languages always
need bidirectional typesetting. Similar extensions
have allowed TEX derivatives to handle some of the
vertical typesetting needs in East Asia, although I
suspect that Mongolian remains unsupported.

In the troff world, Becker and Berry [5] were
able to extend that program for tri-directional type-
setting, but could not handle a fourth writing direc-
tion.

In our global community, a typesetting system
must be able to handle all traditional writing direc-
tions, including mixtures of all of them in a single
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document (e.g., a Chinese literary article citing En-
glish, Arabic, and Mongolian texts).

4.16 No DVI output pipe

TEX expects to write an entire DVI file under its
exclusive control, relinquishing it to others only
when TEX is done. Unix pipelines demonstrate that
it is very useful to sample program output before it
is complete, but Unix was only just emerging from
Bell Laboratories when TEX design began.

In the early 1980s, in unpublished work demon-
strated at early TEX Users Group conferences, David
Fuchs at Stanford University ported TEX to the
cramped and crippled environment of IBM PC DOS,
and then in a tremendous feat, extended TEX to
allow immediate communication with a screen pre-
viewer. His work became a commercial product, Mi-
croTEX, but its vendor shortly thereafter withdrew
it from the market.

Later, Blue Sky Research produced Lightning
Textures on the Apple Macintosh, which retypesets
the document as changes are made in its input files.

More recently, Jonathan Fine in Cambridge,
UK, developed texd [12], a permanently-running
resident daemon TEX that can be called upon at
any time to typeset a fragment of TEX code, and
return DVI code.

Certainly, TEX’s descendants should learn from
these extensions.

4.17 No sandbox

When TEX was born in 1977, the Arpanet was eight
years old, but still an infant, with fewer than a
hundred hosts and a few thousand users with a
strong community spirit. Today, the Internet has
hundreds of millions of hosts, and is a decidedly
hostile environment.

TEX does not offer a way of restricting its
actions to benevolent ones. Although we noted
earlier that TEX cannot run external programs, it
can nevertheless (over)write a file anywhere in the
file system that the user has write access to.

PostScript also has this problem, but the de-
signers of the ghostscript implementation of that
language added the SAFER option to limit filesystem
access.

The TEX Live implementation of TEX contains
changes to restrict output to the current directory,
and prevent writing special configuration files that
might open security holes, but most other imple-
mentations lack these features.

4.18 Uncaught arithmetic overflow

To enhance reliability, TEX catches arithmetic over-

flow from multiplication, but curiously, not from ad-
dition [30, §104], which you can readily demonstrate
with this small example:

\count0 = 2147483647

\advance \count0 by \count0

\message{ADD: count0 = \the \count0}

\count0 = 2147483647

\multiply \count0 by 2

\message{MULTIPLY: count0 = \the \count0}

\bye

TEX reports in the output log:

ADD: count0 = -2

! Arithmetic overflow.

l.8 \multiply \count0 by 2

MULTIPLY: count0 = 2147483647

When I asked Don about this, he responded that
there were too many places in TEX where integer
addition was done. In my view, that is simply a
design flaw: all of those additions should be done
in one function that is called wherever needed. It is
much better to get the right answer a little slower,
than to get the wrong answer fast.

TEX is not alone in partly, or wholly, ignoring
integer overflow: many CPU architectures, operat-
ing systems, and programming languages do too.
Several major civilian, government, and military
disasters have subsequently been attributed to arith-
metic overflow [49].

4.19 32-bit precision too limiting

Although TEX’s design choice of using fixed-point
arithmetic was critical in achieving its goal of identi-
cal results everywhere, there are applications where
32 bits are insufficient. One of them is the im-
plementation of trigonometric functions needed for
computing text rotations, and another is fixed-point
division.

4.20 No floating-point arithmetic

When TEX was designed, floating-point arithmetic
systems varied widely, with 24-bit, 32-bit, 36-bit,
48-bit, 60-bit, and 64-bit sizes on various platforms.
Worse, their implementations were sometimes seri-
ously flawed, with anomalies like (z + z) 6= 2 × z,
z 6= 1 × z, y × z 6= z × y, and if (z 6= 0.0) x = y/z
terminating with a zero-divide error. It would thus
have been untenable for TEX to use native hardware
floating-point arithmetic for calculations that affect
output appearance.

Starting in the late 1970s, a much-improved
floating-point arithmetic system was designed by
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an IEEE working group. Although the system
was not standardized until 1985 [25], it was first
implemented in the Intel 8087 already in 1980. This
IEEE 754 floating-point arithmetic system has been
part of almost every new computer architecture
designed since then.

Despite standardization, variations in internal
details of specific hardware implementations of IEEE

754 prevent getting identical results everywhere.
However, but for TEX’s seniority, TEX could have
had its own software implementation of IEEE 754

arithmetic that behaved identically everywhere, and
it could have had its own repertoire of elementary
functions (trigonometric, logarithmic, exponential,
and so on) that would have greatly simplified some
typesetting applications.

4.21 No conventional arithmetic
expressions

TEX’s commands for integer arithmetic, illustrated
in the overflow example given earlier, are incon-
venient: it would have been much better to have
a conventional arithmetic-expression facility. It is
possible, though difficult, to do so in TEX’s macro
language [20]. The LATEX calc package only pro-
vides arithmetic expressions in a limited context.

Expression parsing of one of the first examples
given in books on compiler design, and is not
particularly difficult to implement; it should have
been in TEX from the beginning.

4.22 No word and line boundary markers

With any document formatting or markup system or
typesetting system, one sometimes needs to extract
text from the formatted output, perhaps because the
input is not available, or cannot be deduced from the
input without implementing a complete parser.

While input usually reflects output, this need
not be the case, as shown by David Carlisle’s
seasonal puzzle [8]. His plain TEX input file from
the CTAN archives19 is reproduced in Figure 3, and
has no apparent relation to the typeset output, a
well-known poem.

Unix tools such as antiword, dehtml, deroff,
detex, dexml, dvi2text, dvi2tty, pdftotext, ps-
2ascii, and pstotext attempt to do this text
extraction for common document formats, but none
is entirely successful, because they all have to apply
fragile heuristics to deduce word and line boundaries
from spacing.

Becker and Berry [5, p. 134] pointed out that

19 http://ctan.tug.org/tex-archive/macros/plain/

contrib/xii.tex.

\let~\catcode~‘76~‘A13~‘F1~‘j00~‘P2jdefA71F~‘7113jdefPALLF

PA’’FwPA;;FPAZZFLaLPA//71F71iPAHHFLPAzzFenPASSFthP;A$$FevP

A@@FfPARR717273F737271P;ADDFRgniPAWW71FPATTFvePA**FstRsamP

AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA&&71jfi

Fjfi71PAVVFjbigskipRPWGAUU71727374 75,76Fjpar71727375Djifx

:76jelse&U76jfiPLAKK7172F71l7271PAXX71FVLnOSeL71SLRyadR@oL

RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73:Fjif.73.jelse

B73:jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRdriPAQQFRsreLPAI

I71Fo71dPA!!FRgiePBt’el@ lTLqdrYmu.Q.,Ke;vz vzLqpip.Q.,tz;

;Lql.IrsZ.eap,qn.i. i.eLlMaesLdRcna,;!;h htLqm.MRasZ.ilk,%

s$;z zLqs’.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,@;G

LcYlaDLbJsW,SWXJW ree @rzchLhzsW,;WERcesInW qt.’oL.Rtrul;e

doTsW,Wk;Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W,:jbye

Figure 3: David Carlisle’s seasonal puzzle file for
plain TEX.

they could not apply their method for tridirectional
text to TEX because of its lack of line-boundary
markers.

When text is typeset, TEX usually knows where
each word begins and ends, and where it has used
hyphenation for improved line breaking; sadly, this
important information is lost in the DVI output.

Given the complexity of deciphering TEX input,
checks for spelling, doubled-word, and delimiter-bal-
ance errors really should be done on text extracted
from the DVI file.

4.23 No paper size

TEX’s view of a page is a galley of material of
unknown width and indefinite height, measured in a
left-handed coordinate system beginning at an offset
from the top-left corner of the page. The main
body of each page is expected to fill a rectangle
of size \hsize × \vsize (in LATEX, \textwidth ×
\textheight). The corner offset of its (0, 0) point
is, regrettably, a parochial one inch from each edge.

TEX never admits that there might be a phys-
ical page of one of several common standard sizes
and names (e.g., A, A4, quarto, foolscap, JIS-B5,
. . . ), and consequently, users who want to adjust
their text dimensions to suit a particular paper
size may have to tweak several different dimension
parameters.

4.24 No absolute page positioning

Because of the developing page galley, within the
input document, there is no way to refer to an
absolute position on the output page, such as for
typesetting a company logo, or displaying a red-
lettered document-security classification. The only
way that this can be achieved is to hook into the
fragile output routine, most safely by attaching the
desired material to running headers. Even that
is not foolproof, because those headers might be
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suppressed, such as on even-numbered pages at
chapter end.

It should have been relatively simple for TEX to
provide absolute-page-position commands.

4.25 No grid typesetting

The boxes-and-glue model of typesetting that TEX
exploits so successfully has one drawback: if it is
required that all typeset material line up on a grid,
it can be extremely difficult to guarantee this in
TEX. The reason is that there are a great many
dimensional parameters in TEX that have a certain
amount of stretch associated with them, and it isn’t
possible to tell TEX that it should limit spacing and
stretch to multiples of a grid unit. Also, in the
presence of inherently two-dimensional material, like
mathematics, music, figures, and tables, it is difficult
in TEX to guarantee grid-aligned results.

Even if high-quality typography would reject
grid-based typesetting, there is nevertheless a de-
mand for it for certain document types, and it needs
to be available in the typesetting system.

4.26 No comments in DVI files

The DVI format permits a single comment in the
preamble, but has no mechanism for embedding
comments anywhere else. Programmers have always
found comments useful, and a few other programs
besides TEX can produce DVI files. The \special

command could, of course, be used for this purpose,
but it is already rather a mess.

Some people feel that it would be useful to
preserve all input in document-formatter output, so
that the original text could be recovered. Consider,
for example, a programmer faced with the task after
a corporate merger of updating company names in
all documentation, much of which exists only in DVI,
PostScript, and PDF format. Specially-formatted
comments would be one way for input to be hidden
in the output.

4.27 No rotated material

TEX provides no direct way to typeset material at
some angle relative to the horizontal. This capa-
bility is sometimes required for landscape display of
tables, and for labeling of axes and curves in graphs.

PostScript allows text to be typeset along arbi-
trary curved paths, and allows the coordinate sys-
tem to be scaled, rotated, and translated. Text rota-
tion later became possible from TEX via \special

commands for a suitable DVI-to-PostScript driver,
as described in [17, Chapter 11].

5 What did METAFONT do right?

METAFONT’s manual [31] has many similarities
with TEX’s [29], including charming illustrations by
Duane Bibby.

METAFONT is used directly by many fewer peo-
ple than TEX is: although we all use, and sometimes
generate, fonts, few of us have the interest, need, and
skill to design them. Indeed, authors of books and
journal articles rarely have any choice: publishers,
editors, designers, and marketing staff have already
made all font decisions.

The next two sections are therefore consider-
ably shorter than the preceding pair on TEX.

5.1 Open software

The most important done-right feature of META-
FONT is that it is an open-source literate program

[32], and the same favorable comments made above
for TEX apply to METAFONT.

This openness made it possible for John Hobby
to produce METAPOST [22] [23, Chapter 13], a
substantial modification of METAFONT intended for
creation of drawings, as well as fonts, with output
in PostScript instead of GF and TFM files.

5.2 Font-design kernel

METAFONT has a small kernel of primitive com-
mands that are highly suited to font design.

5.3 Programming language

Unlike TEX, METAFONT is a true programming
language, though perhaps not as general as one
might like.

One of the very interesting features of the
METAFONT language is the ability to define char-
acters in terms of constraint equations, to ensure,
for example, that both legs of the letters H, M, and
N have the same width. Font formats like PostScript
Type 1, TrueType, and OpenType provide a feature
called hints with a similar purpose, but they are less
powerful than METAFONT equations.

Although TEX actually does use native floating-
point arithmetic for some internal glue calculations
that cannot affect line breaking or page breaking,
METAFONT has no floating-point arithmetic what-
soever in either the language, or the program.

5.4 ‘Meta’ fonts

A superb achievement of Knuth’s work on the
Computer Modern family of typefaces [33] is that he
was not only able to reproduce closely an existing
traditional font (Monotype Modern 8A, used in
his Art of Computer Programming treatise), but
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to generalize the character programs with a few
dozen well-chosen parameters in such a way as to
allow changes in those parameters to produce several
different styles that are still recognizably members
of the Computer Modern type family, and to allow
tiny tweaks to those characters to accommodate the
imaging characteristics of various output devices.

Before METAFONT, no font designer had the
tools to pull off such a design coup. Since then, only
Adobe’s no-longer-supported Multiple Master font
technology has attempted to do something similar,
and even then, the results were much less flexible
than METAFONT can produce, and only a few such
fonts were marketed. For an Adobe insider’s view of
their failure, see [10].

For technical text, the lack of a broad choice of
families of related fonts is a serious problem: Alan
Hoenig [23, pp. 316–344] shows 29 samples of the
same page of a scientific article with various font
choices.

Apart from Computer Modern, there are only
a few families with a repertoire that includes a
typewriter font and a mathematical font: Bigelow
& Holmes’ Lucida is probably the best example,
and there was once talk of Adobe extending the
Stone family to add them. The widely-used Times
family lacks Times-like sans-serif and typewriter
fonts: most books set in Times use Helvetica and
Courier for that purpose, but they are a poor match.

5.5 Shaped pens

An interesting feature of METAFONT is that draw-
ing of characters can be done by moving a pen of a
user-definable shape along a curved path: the enve-
lope of the pen shape traces strokes of the character.
The tracing can add dots to, or subtract dots from,
the drawing. Also, the dots need not just be on or
off: they can have small signed integer values. At
output time, the positive values become black dots,
and the zero or negative values, white dots.

This can be compared with character descrip-
tions in PostScript Type 1, TrueType, and Open-
Type fonts, which are based on describing paths that
are then stroked with a fixed-shape pen, or closed
and filled with a solid color.

5.6 Open font formats

The formats of the GF and TFM font files produced
by METAFONT are well documented in [31, Appen-
dices F and G] and [32, §45 and §46], and the gftype
and tftopl utilities in standard TEX distributions
can produce human-readable dumps. The compan-
ion program pltotf can convert a possibly-modified
property-list dump back into a TFM file.

This situation should be contrasted with the
secrecy surrounding most commercial fonts before
TEX: even the PostScript Type 1 font format was
not documented until competition from the True-
Type camp forced Adobe to publish the black-and-
white book [14], and the hinting in some True-
Type and OpenType fonts is encumbered by vendor
patents.

6 What did METAFONT do wrong?

6.1 Bitmap output premature

In the 1970s, typesetting technology was moving
away from the 500-year tradition of hot-lead type,
and the much more recent optical-mask generation
of character shapes, to a digital representation of the
shapes in grids of tiny dots that can be displayed on
dot-matrix, ink-jet, and laser printers.

Although METAFONT character descriptions
are in terms of continuously-varying pen strokes,
the shape that is recorded in the GF file is just a
compressed bitmap at a particular resolution. This
made the job of DVI translators easier: they could
either copy those little bitmaps into a large page-
image bitmap, or they could encode them in a
bitmap font format understood by a particular out-
put model, such as Hewlett-Packard PCL or Adobe
PostScript.

One significant effect of this decision is that the
font resolution must be chosen at DVI translation
time. That is acceptable when the DVI output
is sent immediately to an output device with a
matching resolution and imaging technology.

A few years later, PostScript appeared with
a different model: fonts would normally be repre-
sented by outline shapes, and those outlines would
be either resident in, or downloaded to, a PostScript
interpreter in the printing device. Since that inter-
preter could be specially tuned for each device, it
could handle the conversion of shapes to bitmaps.
Since hints are embedded in the font files, rather
than the font programs, they could be applied dur-
ing rasterization. With initial laser-printer reso-
lutions of about 300 dots/inch, typical characters
contained only a few hundred dots in the bitmap,
and that rasterization could be done acceptably fast
at print time, as long as shapes, once converted to
bitmaps, were cached for reuse.

The benefit of the PostScript (and later, PDF)
approach is twofold: dependence on device reso-
lution and device-imaging characteristics is moved
from fonts to output devices, and character shape
information is preserved, so that documents viewed
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under any magnification will retain smooth charac-
ters.

While PostScript Type 1 font outline represen-
tations of all Computer Modern fonts are now freely
available, it has taken nearly two decades, and a lot
of hard work by several groups of people, to achieve
that.

6.2 Pen shapes

While pen shapes are a powerful feature, their use
in fonts designed with METAFONT makes it very
hard to translate to other font formats that lack
that feature. This can only be called a misfeature
of METAFONT if one needs to cater to other font
formats, but most of us have to.

For a long time, most PostScript-producing DVI

drivers simply output fonts as PostScript Type 3
bitmap fonts, with the result that when PDF con-
version became commonplace, screen quality was
horrid.

This need not have been the case, since Adobe’s
own co-founder, and chief architect of PostScript,
had long ago shown how to convert high-resolution
character bitmaps to gray-scale displays [60], and
the xdvi translator on Unix systems has always done
a superb job of bitmap-font display.

It took ten years after the appearance of PDF

for a new release of Adobe’s own Acrobat Reader
to improve the display of bitmap fonts, and even
then, the improved version is not yet available on
any Unix platform.

Fortunately, researchers at the Nottingham font
conversion project have found clever ways to replace
bitmap fonts in PostScript files with outline fonts
[52]. Their software should allow repair of a lot of
existing PostScript files, such as Web documents,
for which TEX source files are unavailable. Once
converted to PDF, those files should have much
better screen readability.

6.3 Curve representations

The computer graphics and computer-aided design
community in the 1960s and 1970s developed well-
understood, and widely-implemented, representa-
tions of curves as special polynomial forms known
as Bézier and B-spline curves, and later, nonuni-
form rational B-splines (NURBs). The first two
can represent conic sections, including circular arcs,
only approximately, but NURBs can describe them
exactly.

The interest in these special polynomials is that
they are bounded by a companion polyline whose
vertices can be moved around to obtain smooth, and
humanly-predictable, variations in curve shapes.

Ordinary polynomials lack this important design-
control property: small changes in their parameters
can often produce large, and surprising, changes in
curve shape.

John Warnock, the PostScript architect, had
learned about these curve representations in courses
at Utah, and realized that they could be used to
describe letter shapes, just as well as the shapes
needed in aircraft, automobile, and ship design for
which they were originally developed. PostScript
Type 1 fonts are therefore based on cubic Bézier
curve segments.

METAFONT supports Bézier curves, but also
some more general curve types with curl and ten-
sion parameters that are difficult to reduce to the
simpler curves. The tex-fonts mailing list20 in
2003 carried extensive debates about how to handle
these reductions, since there is considerable interest
in automated conversion of fonts between any pair
of popular formats.

The subject of this subsection is thus not really
a criticism of METAFONT, but it has nevertheless
proved a serious stumbling block for font-format
conversion.

6.4 Inadequate I/O

Like TEX, METAFONT too has inadequate I/O,
but the situation is even worse. TEX can open
an arbitrary filename for output, but the META-
FONT language can only write to its log file, which
is cluttered with lots of other material beyond
programmer control.

One of the things that METAFONT can do is
report the outlines that it discovers as it sweeps the
pen shape around the character. Some of the work
in translation of METAFONT output to PostScript
Type 1 form has used that trace information, but
the task is much harder than it could have been
with a more powerful I/O model.

6.5 Font sizes

Although METAFONT can be used to produce fonts
with more than 256 characters, such as would be
needed for some East Asian languages, the magic
number 256 is still present in a way that suggests
the format may not be well-suited to alphabets
or syllabaries with more than 256 characters of
arbitrary dimensions. TEX itself cannot handle fonts
with more than 256 characters.

20 http://www.math.utah.edu/mailman/listinfo/

tex-fonts/.
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6.6 Inflexible character numbering

Font programs for METAFONT contain character
definitions, each beginning with a hard-coded dec-
laration of the position of the character in the font.
These positions then carry over into the output GF

and TFM files. TEX and METAFONT have to agree
on character numbering, so that a TEX character
definition can declare, for example, that the math-
ematics Greek letter Ω is found in the tenth slot in
the Computer Modern roman font. That numerical
position is then fixed, and embedded in at least four
separate files: the METAFONT program file, the two
font files, and a TEX startup file. In practice, the
redundancy is widespread: I found 44 different files
in the CTAN archives that declared the position of
Ω, and that problem is repeated for several hundred
other characters in common use with TEX.

PostScript Type 1 fonts take a different, and
more flexible, approach. Character definitions are
given names in the .pfa (PostScript font ASCII) or
.pfb (PostScript font binary) outline font file, and
both names and numbered positions in the .afm

(Adobe font metric) file. However, the number is
used only for a default position.

What really determines the character position
in the font is the font encoding vector, a list of up
to 256 names that can be specified in PostScript
code outside the font file itself. Only a handful
of standard encoding vectors [4, Appendix E] are
defined and known to all PostScript interpreters,
even though there are thousands of different Type 1
fonts. Most Latin text fonts use the encoding vector
named StandardEncoding, and therefore omit its
definition from the font files.

As shown at TUG 2001 [6], about 20% of Type 1
fonts actually contain more than 256 characters,
even though only 256 can be accessed from one
encoding vector. However, the same font can be
loaded by a PostScript program and assigned differ-
ent internal names and encoding vectors, so with a
little more work, all characters can still be accessed
in single PostScript job.

Had METAFONT used character names instead
of numbers, and provided a TEX-accessible encoding
vector, many of the difficulties in using non-META-
FONT fonts in TEX would disappear, and TEX
virtual fonts would be rarely needed.

6.7 Not adopted by font designers

Many of us expected that professional font designers
would use METAFONT to create new implementa-
tions of old fonts, and entirely new fonts. This has
not happened, despite Donald Knuth’s extensive col-

laboration with noted font designers Chuck Bigelow,
Richard Southall, and Hermann Zapf. Richard in
particular taught us at early TEX Users Group con-
ferences that font designers are highly skilled artists,
craftsmen, and draftsmen; they are not program-
mers, and describing character shapes in an abstract
programming language, like METAFONT, is not an
easy task.

This is unfortunate, because I think that font
designers could make great progress with ‘meta’ness.
Perhaps significant gains will come from an en-
tirely different direction: the important work of Wai
Wong and Candy Yiu presented at TUG 2003 on the
programmatic representation of Chinese characters,
combined with progress in optical character recog-
nition, could make possible the scanning of tens of
thousands of characters, and the automatic creation
of METAFONT programs to regenerate them in a
range of beautiful shapes and styles.

The huge East Asian character repertoire is the
biggest hurdle for font vendors to address as the
world moves to Unicode. Although there are more
than 20,000 fonts with 256 or fewer characters,21

there is hardly a handful of Unicode fonts yet.22

None is even close to complete, and none comes in
a family of styles.

7 Future directions

While TEX, troff, and commercial desktop-
publishing systems can continue to be used as be-
fore, I believe quite strongly that the electronic
representation of documents in the future is going
to involve two key technologies:

1. XML, XML, XML, XML, XML, XML, . . .

2. Unicode and ISO 10646 character encoding.

7.1 XML directions

I have already given economic reasons why publish-
ers are interested in XML. If the archived document
at the publisher’s end is going to be XML, perhaps
authors should be writing in XML to begin with.
The major problem seems to be the lack of good
XML tools, and a wide selection of sample document
type definitions (SGML and XML DTDs correspond
roughly to LATEX class files).

Like HTML, XML [15] is a particular instance of
the Standard Generalized Markup Language, SGML

[16].
Because SGML is exceedingly complex and gen-

eral, it is very difficult to write parsers for it: two

21 http://www.math.utah.edu/∼beebe/fonts/

fonts-to-vendors.html.
22 http://www.math.utah.edu/∼beebe/fonts/unicode.

html.
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of the best-known freely-available ones are James
Clark’s sgmls23 (22,000 lines of C) and sp24 (78,000
lines of C++ and C).

XML is a reaction to this complexity: its major
design goal is that it should be possible for any
competent programmer to write a working parser
for XML in an afternoon. XML removes much of
the freedom of SGML, and eliminates character-
set variations by adopting Unicode. For most
applications where SGML might be used, XML is
good enough.

I spent several months in 2002–2003 on a joint
book project authored directly in XML (and typeset
by troff, though TEX could have done the job
too if the publisher had provided the needed tools),
and found that the project has not been notably
harder than it would have been with LATEX markup.
Fortunately, there is virtually no mathematics in the
book, because that would have been very painful
to produce in XML with the current state of input
tools.

The major LATEX feature that I’ve missed is the
ability to define new commands to obtain consistent
formatting of certain technical names. Once I’d
prepared a powerful Emacs editing mode for XML,25

input of the more verbose XML tags took about
as few keystrokes as I would have needed with my
LATEX editing mode.26

A significant advantage of XML is that many
markup mistakes were quickly caught by a rigorous
SGML parser before typesetting began: with LATEX,
the mistake would often not be evident until the
typeset output was proofread.

I missed a companion to html-pretty during
the book work, so I ultimately wrote a workable,
but still rudimentary, equivalent for XML.27

7.2 Unicode directions

The biggest difficulty for the future is likely to be
Unicode, not XML.

First, Unicode requires very much larger fonts,
and the few that are currently available lack many
glyphs, including virtually everything that is not a
Latin, Greek, Hebrew, or Arabic relative.

23 http://www.math.utah.edu/pub/sgml/sgmls/.
24 http://www.math.utah.edu/pub/sgml/ and http://

www.jclark.com/.
25 http://www.math.utah.edu/pub/emacs/docbook.el

and http://www.math.utah.edu/pub/emacs/docbookmenu.

el.
26 http://www.math.utah.edu/pub/emacs/latex.el,

http://www.math.utah.edu/pub/emacs/ltxaccnt.el, and
http://www.math.utah.edu/pub/emacs/ltxmenu.el.

27 http://www.math.utah.edu/pub/xmlfixup/: the name
xmlpretty is already in use on the Internet.

Second, Unicode raises the issue of how strings
of characters are to be interpreted and displayed.
Those accustomed to the languages of Europe and
the Americas are used to alphabets, and words
displayed in the same order as they are spelled and
present in the input stream. This is not always so.

Ancient inscriptions were often written in lines
that alternated reading direction, a practice called
boustrophedon, Greek for as the ox follows the plow.

Lao, Khmer, and Thai are based on alphabets
of reasonable size (70 to 116 characters, including
letters, digits, and punctuation), and are written
from left to right. However, in these languages, and
several ancient ones, there are no spaces between
words, only between sentences, as shown in Figure 4.
Without input word-boundary marks, hyphenation
and line breaking are insurmountable problems.

Figure 4: Sample of Khmer text, from Franklin
E. Huffman (ed.), Intermediate Cambodian Reader,
Yale University Press, New Haven and London
(1972), p. 274. There are no interword spaces.
The isolated symbol that looks like a digit 7 is
called khan; it is the Khmer end-of-sentence mark.

Hindi, and several other Indic scripts, are also
based on an alphabet (about 100 characters cover
letters, digits, and punctuation), but characters in
Hindi are often combined into new shapes, and are
often displayed in an order different from their input
sequence, as shown in Figure 5.

−→

Figure 5: A Hindi word, adapted from [59, p. 17],
with circled digits marking the input character
order.
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While Arabic is a nicely-flowing calligraphic
script written from right to left along a common
baseline, with spaces between words, text justifi-
cation is normally done by stretching horizontal
strokes in letters, instead of the spaces. Also,
each Arabic letter has three shapes, depending on
whether it appears first, medial, or last in the word.

Urdu uses a script closely related to Arabic, but
the language is Indo-European, not Semitic, and
the spoken form is often mutually comprehensible
with Hindi speakers in north India and Pakistan, as
shown in the trilingual dictionary entry in Figure 6.

ghāgar, s.m. (Dahk.), The rope
tied to the foot of an elefant.

Figure 6: An Urdu/Hindi/English dictionary
entry.

Despite its Arabic appearance, characters in
Urdu words tend to march in from the Northeast
Frontier (remember, this is a right-to-left script), in-
stead of hugging a horizontal baseline, as illustrated
by the poem in Figure 7.

Today when my petition was rejected
I asked the Sahib, feeling much dejected,
‘Where shall I go to now Sir? Kindly tell.’
He growled at me and answered ‘Go to Hell!’
I left him, and my heart was really sinking;
But soon I started feeling better, thinking,
‘A European said so! In that case
At any rate there must be such a place!’

Figure 7: Urdu satirical verse of Akbar Ilahabadi.
From Ralph Russell, The Pursuit of Urdu

Literature: A Select History, Zed Books, London
(1992), p. 153.

These are only a small sampling of some of
the difficulties in store as the world moves to a
common character-set encoding. A lot has already
been accomplished, but a great deal more remains
to be done. It has become clear that Ω development

is not just TEX extended for Unicode: a typesetting
system capable of handling all of the world’s writing
systems must be able to do much more than TEX
can.

For further reading on Unicode issues, I recom-
mend Unicode Demystified [13] and Digital Typog-

raphy Using LATEX [58].
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