194

Macros

xkeyval — new developments and
mechanisms in key processing

Hendri Adriaens and Uwe Kern

Abstract

This article introduces the xkeyval (I&)TEX pack-
age, an extension of the well-known keyval package.
The new package provides more flexible commands,
syntax enhancements, and a new option processing
mechanism for class and package options using the
key=value syntax.

1 Introduction

The keyval package [2] written by David Carlisle is
widely used by package authors to provide the means
for users to easily specify numerous optional argu-
ments for macros. The main advantages of using
keyval are that (1) the number of optional arguments
is no longer limited to 9 and that (2) the arguments
are named, and hence there is less chance of confu-
sion about the syntax of a macro.

The package provides ways to define so-called
“key macros” which handle the input of the user.
These key macros end up defined with the form
\KV@family@keyname, where the KV is a literal pre-
fix to avoid collisions. They should take one argu-
ment to handle user input. A macro to handle the
key pi can, for instance, be defined by

\define@key{myfam}{pi}{\setlength{\parindent}{#1}}

This defines a macro named KVOmyfam@pi. Such
key macros are called when \setkeys is invoked to
set the keys. In our case, when pi is used, the key
macro will set \parindent to the given value. Here
is a typical example of its use:

\setkeys{myfam}{pi=10pt,pn=Page~\thepage}

The packages keyval and xkeyval are mainly di-
rected to class and package authors. The various
\define@key commands usually go into the docu-
ment preamble or the package and the main inter-
face for users is given by \setkeys.

The xkeyval.tex can be used with plain TEX;
all the functionality described here is available, with
the exception of the ‘X’ macros listed in section 3.

Editor’s note: This article was first published in MAPS 31
(2004), and is reprinted, with additions, by kind permission
of the authors and editor.

TUGboat, Volume 25 (2004), No. 2

2 Why a new package?

When working on another package, the need arose
to have multiple families in the package. Each fam-
ily would provide keys for a particular macro or en-
vironment. This provided the means to block the
use of illegal keys in a macro argument, which could
have a destructive effect on the rest of the docu-
ment. However, it would also be nice to be able to
allow the user to set specific keys of each macro or
environment globally in the preamble. One could,
for instance, think of allowing the user to set the
markup of all example and exercise environments
in the document in the preamble, but disallowing
changing the markup of example environments lo-
cally in exercise environments and vice versa. In
more complicated settings, specifying keys in macros
which are not designed to handle those keys can eas-
ily lead to almost untraceable errors. That was the
start of the xkeyval package [1].

However, in the process of generalizing keyval,
we noticed that a lot of packages had already tried
extending the features, all in their own way. Quite
a few packages, for instance, provide a system to
allow the use of keys and values in \usepackage
commands. The most famous examples are the hy-
perref, geometry and beamer packages. All of these
approaches differ in details and are not portable to
other packages without reprogramming. This called
for a unified approach.

Another extra feature, found for instance in the
hyperref package, is the availability of boolean keys
which can only be true or false. hyperref actually im-
plements this within the ordinary key system, using
\define@key. However, since (part of) the function
to be executed on the use of the key is known in
advance (namely, set an “if” command to true or
false depending on the input), the system can be
simplified.

A final motivation for the new package is based
on the fact that the development of the keyval pack-
age seemed to have paused since 1999 and that
fundamental changes and improvements to the sys-
tem could more easily be made with a new package.
Among the improvements, we find macros for creat-
ing package options that can take values, new types
of keys, the use of multiple families in \setkeys,
the pointer syntax, the preset system, robust in-
put parsing and support for the PSTricks family of
packages. The remaining sections of this article will
discuss these new developments.

3 Keys and values in package options

First of all, the package supplies macros to declare

TUGboat, Volume 25 (2004), No. 2

class or package options, execute them and process
them. The macros are available under the usual
IXTEX names, but all with the suffix X, namely

\DeclareOptionX

\DeclareOptionX#*
\ExecuteOptionsX
\ProcessOptionsX

These commands allow the user to assign a value to
an option just like when using \setkeys. The first
macro is based on \define@key and the final two
are based on \setkeys. Supposing that a package
mypack is set up with these commands, a user could
for instance do

\usepackage [textcolor=red, font=times] {mypack}

These macros are fully integrated with the A TEX op-
tion system. This, for instance, allows packages to
copy global options specified in the \documentclass
command, to pass options to other classes or pack-
ages and to update the list of unused global options
that will be displayed by BTEX in the log file.

However, key values like author=\textit{Me}
in class or package options are not allowed, although
they could easily be processed by \setkeys. This
restriction results from the design of INTEX’s option
processing mechanism, which expands the entire op-
tion list (keys and values) completely, causing obvi-
ous trouble.!

To avoid these premature expansions, several
kernel macros need to be redefined. xkeyval includes
the xkvltxp package which contains these new defini-
tions. Loading this package before loading the class
or package which uses xkeyval for option processing
will allow class and package options to contain ex-
pandable macros. This file will not be included in
the IMTEX 2¢ kernel since it might introduce com-
patibility conflicts for those using an old kernel with
new packages which might depend on this new func-
tionality.

4 Prefixes, families, keys and pointers

The package provides extended syntax for all of the
commands provided by keyval.? The syntax for
defining keys has been extended with an optional
argument to set the prefix of the key macro. It is
good practice for package authors to use a pack-
age specific prefix for all internal macros so as to
avoid possibly redefining a macro of another pack-
age. Moreover, this optional argument allows for

1 Note that author=\protect\textit{Me} is not a solu-
tion for this problem.

2 Please refer to the documentation of the xkeyval pack-
age to learn about further syntactical details which are not
discussed in this article.

195

defining and setting keys in specialized systems such
as implemented in the PSTricks package. More de-
tails about this system will be discussed later, in the
section about the pst-xkey package.

The syntax for setting keys using \setkeys has
been adjusted accordingly. Also, one can specify a
list of families which should be scanned when setting
keys, as discussed in the introduction. For instance,

\setkeys{font,page}{fs=10pt,pn=Page~\thepage}

The package also provides new types of keys.
These are choice keys, which allow for a limited num-
ber of possible input values, and boolean keys, which
are a special type of choice key and only take the
values true and false. An example is below.

\define@choicekey{fam}{keya}{\fbox, \mbox}{#1{text}}
\define@boolkey{fam}{keyb}{%
\ifKV@fam@keya we continue\else we stop here\fi
}
\setkeys{fam}{keya=\mbox,keyb=false}

These keys generate an error when the user specifies
a value that is not allowed.? The package provides
a viewer utility in xkvview to generate tables with
information about defined keys.

Part of the new syntax is also the possibility
of using pointers to keys. Pointers allow assigning
to keyb the value that has been assigned to keya,
irrespective of what that value is. For example

\setkeys{family}{\savevalue{keyal}=red,
keyb=\usevalue{keyal}}

Here, \savevalue will make xkeyval save the value
submitted to keya. \usevalue will use this value
again. (One can use the \savekeys command to
avoid typing \savevalue every time.) If, in this ex-
ample, red is changed to blue no changes are nec-
essary to the value of keyb to assign it blue as well.
This is an obvious similarity to TEX’s behaviour in
the macro case \def\cmdb{\cmda}.

This pointer system can be used as well in the
default value system. This system submits a default
value to the key macro in case the user has used the
particular key, but didn’t assign a value to it. One
could, for example, define the keys

\define@key{fam}{keya}t{keya: #1 }
\define@key{fam}{keyb} [\usevalue{keya}]{keyb: #1 }

Then the following use of \setkeys

\setkeys{fam}{\savevalue{keya}=test,keyb}

would result in typesetting

keya: test keyb: test

196

We will discuss some technical details regard-
ing the pointer syntax. First of all, the control se-
quences \savevalue and \usevalue are not defined!
Instead, the package uses them as delimiters. A sim-
ple parsing step determines if \savevalue has been
used in the key name part. Parsing is also used to
substitute occurrences of \usevalue by the saved
value. When a pointer is replaced, its replacement
will also be scanned again for pointers. This al-
lows for nested pointers in key values. Moreover,
it ensures that, once the value is submitted to a
key macro, this value does not contain pointers any-
more.?

The replacement process is a little trickier when
the user did not submit a value to the key. In this
case, the default value of a key (if present) should
be scanned for pointers. Default value macros are
set up like this:

\def\prefix@fam@key@default{/
\prefix@fam@key{the default valuel/,
}

The macro \prefix@fam@key@default will be exe-
cuted when the user did not supply a value to the
key.

This system has been introduced by keyval and
many packages use it. However, some packages do
not use it in the way intended by keyval. For in-
stance, the fancyvrb package defines default value
macros to execute arbitrary code rather than the
standard \prefix@fam@key. To retain compatibil-
ity with existing packages, we must support this;
otherwise, we could do something much cleaner, e.g.,
define \prefix@fam@key@default as ‘the default
value’ in the first place, without the extra macro
invocation.

This is an important restriction for the pointer
system since we want to retrieve the default value
from the default value macro and scan it for point-
ers. So, xkeyval proceeds as follows. It first checks
whether the default key macro starts as expected,
namely with a key macro \prefix@fam@key. If that
is the case, it locally redefines the key macro to save
the value to a temporary macro and then executes
the key macro. The temporary macro then contains
the default value which can be scanned for pointers.
If the default value macro is not of the expected
form, as with fancyvrb, then xkeyval just executes it
without attempting to retrieve the default value or
replace pointers.

3 Unless the pointer is hidden to xkeyval inside a group.

TUGboat, Volume 25 (2004), No. 2

5 Preset system

The default value system operates when users spec-
ify keys, but no value for the keys. But the keyval
package does not provide a way to assign values to
keys that have not been used at all by the user. In
many applications, one would like to implement de-
fault values for keys when they are not used. For
instance, ‘scale this figure with factor 1 unless spec-
ified otherwise by the user’. One could go ahead
and call the key macro with a preset value and af-
terwards, submit the user input to \setkeys and
possibly overwrite the values that you have just set.
This is possible (but quite cumbersome when there
are many keys) in cases where keys do not gener-
ate material themselves, but, for instance, only set
a length.

But what happens if we apply this scheme to
keys which are defined as follows?

\define@key{fam}{keya}{Your input was: #1}
\define@key{fam}{keyb}{\edef\list{\list,#1}}

If we follow the scheme in the first example, both our
preset value as well as the user input (if present) will
be typeset. In the second example, both the preset
value and the user input will be added to the list
contained in \1list.

To avoid this, xkeyval introduces the preset sys-
tem. First one declares the keys that should always
be assigned and their values using \presetkeys, for
instance

\savekeys{fam}{head}
\presetkeys{fam}{head=red}{tail=\usevalue{head}}

The reason to have two arguments containing key
presets in the \presetkeys macro will become clear
in a moment.

Now, when submitting user input for keys in
the family fam, the macro \setkeys will determine
which keys will be set by the user and will avoid
setting them again with the preset values. Keys that
are not set by the user will be set by the values
specified in \presetkeys.

However, when pointers are used, there is one
thing about this system that we should keep in mind.
If the pointer points to a key which is assigned a
value afterwards, the pointer cannot know this value
yet and errors will occur. Hence, it is best (in most
situations) to execute preset pointers at the very end
as done in the example above.

A similar discrepancy can occur when keys with-
out pointers in the values are preset after setting the
user input. Users then can’t use pointers to these
presets as they are preset in a later stage of execu-
tion. Hence, for keys without pointers in the value,

TUGboat, Volume 25 (2004), No. 2

it is best to execute them at the very beginning,
before setting user input.

That is why the \presetkeys macro has two
arguments: the first one (usually containing keys
and values without pointers) will be inserted before
setting user input keys, the second one (containing
pointers to preset values or user input) afterwards.

This system is especially useful when you can’t
rely on key values remaining local to a macro or envi-
ronment since the preset system will, at every use of
your macro or environment, reset key values to the
preset value unless overwritten locally by the user.
This needs some more explanation. \def definitions
(for instance made by key macros) will be destroyed
by TEX when leaving a group or environment. Hence
the values will remain local. However, if your keys
do not always use \def, but for instance, \gdef,
such global definitions will escape the group or en-
vironment and might distort all following macros or
environments. Hence, you will have to take care to
reinitialize the key values at every use of the macro
or environment.

This is, however, not necessary anymore with
the preset system. Once the preset keys have been
defined for a specific family, each time this family is
used in the \setkeys command, the preset values
will be taken into account together with the user
input.

The following example will demonstrate the
power of the preset system in combination with
pointers. Below the example, you can find its out-
put and the explanation. Let’s assume we want to
create a simple frame/shadow box command with
the following default behaviour:

e a shadow will be drawn if and only if the box is
framed;

e the shadow color should be a 40% tint of the
frame color, thus being clearly discernible;

e the shadow size (or width) should be 4 times
the width of the frame.

Certainly, the user should be able to overrule each
of these default parameter relations when the box
command is actually applied.

\documentclass{article}
\usepackage{xkeyval}
\usepackage{calc,xcolor}

\newdimen\shadowsize
\def ine@boolkey{Fbox}{frame} [true] {}
\define@boolkey{Fbox}{shadow} [true] {}
\define@key{Fbox}{framecolor}y,

10 {\def\Fboxframecolor{#1}}

11 \define@key{Fbox}{shadowcolorl}/,

12 {\def\Fboxshadowcolor{#1}}

1
2
3
4
5 \makeatletter
6
7
8
9

197

13 \define@key{Fbox}{framesizel}V,

14 {\setlength\fboxrule{#1}}

15 \define@key{Fbox}{shadowsizel}J,

16 {\setlength\shadowsize{#1}}

17 \savekeys{Fbox}{frame,framecolor,framesize}
18 \presetkeys{Fbox}%

19 {frame,framecolor=black,framesize=0.5pt}%
20 {shadow=\usevalue{frame},

21 shadowcolor=\usevalue{framecolor}!40,

22 shadowsize=\usevalue{framesize}*4}

23 \newcommand*\Fbox [2] [1{%

24 \setkeys{Fbox}{#1}/

25 {\ifKV@Fbox@frame\else\fboxruleOpt\fi

26 \1fKV@Fbox@shadow\else\shadowsizeOpt\fi
27 \sboxO{\fcolorbox{\Fboxframecolor}{white}{#2}1}%
26 \hskip\shadowsize

29 \color{\Fboxshadowcolor},

30 \rule[-\dp0]{\wd0}{\ht0+\dpO}%

st \llap{\raisebox{\shadowsize}%

32 {\boxO\hskip\shadowsize}}}%

33 }

3« \makeatother

36 \begin{document}

37 \Fbox{demo1}

38 \Fbox[framecolor=gray]{demo2}

39 \Fbox[shadow=false]{demo3}

a0 \Fbox[framesize=1pt]{demo4}

11 \Fbox[frame=false,shadow]{demo5}
42 \end{document}

| demol | ‘ demo2 ‘ demob

First of all, lines 7 to 16 define the keys to be
used in the example. The \presetkeys command in
line 18 defines the presets: the frame will be set to
true, its color to black and the frame size to 0.5 pt,
unless the user provides different specifications for
these keys. The requirements listed above are then
covered by the pointer expressions in the next argu-
ment.

The first box application now shows the default
box without additional user input. We see a frame
and a shadow, based on the color black. The second
box shows that the user input for the frame color will
overwrite the preset values and turn the box gray.
But since the shadow color equals the frame color
by default, the shadow is light gray. In the third
example, we have a frame, but no shadow. Notice
that the frame color has returned to black, the preset
value. The fourth box has an increased frame size
and hence an increased shadow size as well due to
the pointer use when presetting the keys. The last
example shows that it is possible to overwrite the
preset behaviour of linking shadows to frames: it
displays a shadow without a frame.

6 Robust parsing

Just as with the pointer delimiters \savevalue and
\usevalue, keyval and xkeyval treat the comma and

198

the equality sign as delimiters. In the past, this
has led to problems. A well known incompatibility
exists between the Turkish language version of the
babel package and all packages using keyval. Since
Turkish babel changes the catcode of the equality
sign for shorthand notation, the parsing macros of
keyval cannot detect these characters anymore and
will generate errors.*

xkeyval solves this by sanitizing (i.e. setting
the catcode to 12) all characters necessary to parse
the input properly. This is done using the macro
\@selective@sanitize, which can sanitize one or
more different characters in a single run. Moreover,
the sanitize group depth can be controlled. xkey-
val implements the macro such that only commas
and equality signs appearing in the top level of a
key value will be sanitized, since that is all that’s
needed for input parsing. Characters inside groups
are left untouched and can hence contain even babel
shorthand notation without causing errors:

\usepackage [turkish] {babel}

i;étkeys{fa.m}{key={some =text}}

In this example, the first ‘=’ will be sanitized for
parsing, whereas the second ‘=’ will remain un-
touched and thus keeps its original meaning.

7 Redefining macros?

Obviously, redefining existing macros is dangerous
in general. Nevertheless, the xkeyval package rede-
fines the two major keyval macros \define@key and
\setkeys. The reason is that this avoids any confu-
sion of having several systems running next to each
other, doing approximately the same things.

Although xkeyval supports all of the syntax al-
lowed by the original keyval package, we still had
to check the packages using keyval before we could
make the decision to redefine the macros. Three
major issues came up in that process.

First of all, we found that some packages were
using keyval internals directly instead of the user
interface formed by \define@key and \setkeys. To
avoid any errors of undefined control sequences in
these packages, xkeyval loads the keyval internals if
keyval hasn’t been loaded before.

Secondly, certain packages implemented a cre-
ative use of the default value system as has been dis-
cussed in the section about the pointer syntax. The
solution in xkeyval has also been discussed there.

4 See for more information concerning this problem of
keyval and babel: http://www.latex-project.org/cgi-bin/
ltxbugs2html?pr=babel/3523

TUGboat, Volume 25 (2004), No. 2

Finally, we found that the pst-key package was
redefining \define@key and \setkeys itself to pro-
vide the means of setting PSTricks keys. After dis-
cussing this with the PSTricks maintainer Herbert
Vof}, we agreed that xkeyval would develop a unified
approach to keys and values and that the pst-key
package would be abandoned. More information on
the development related to PSTricks is provided in
the final section of this article.

After redefining the necessary macros, xkeyval
will make sure that the keyval package cannot be
loaded subsequently, in order to avoid again redefin-
ing the xkeyval macros. This was the final step neces-
sary in safely redefining the keyval macros and pro-
viding a system to which all package authors can
convert their package without too much effort.

8 The pst-xkey package

An important stream of packages will be using xkey-
val in the near future. These are the PSTricks pack-
ages [3, 4]; for key and value processing, they cur-
rently rely on a combination of private definitions in
pstricks.tex and pst-key, the latter being a mod-
ification of the keyval package.

Due to the popularity and flexibility of the
PSTricks package, several people have contributed
extensions to the original distribution. Unfortu-
nately, all PSTricks keys used to have the same
form, namely \psset@somekey; thus, PSTricks au-
thors have needed to check all existing packages to
be sure not to redefine an existing key.

The PSTricks maintainer Herbert Vo8 has rec-
ognized this problem and soon the work on xkeyval
started to provide a way to define and set PSTricks
keys via this package. The major advantage would
be the possibility for individual package authors to
nest their keys in a well chosen family (for instance,
the package name) and avoid the need to check other
packages for existing keys.

In order to make this possible, \define@key
and \setkeys needed to be adjusted so that the
standard keyval prefix KV could be changed, for in-
stance to psset. Further, the \psset macro needed
to be redefined to use the new \setkeys and let this
scan all families available. When a PSTricks package
is loaded, it adds all families used in the package to
a list and this list will be used in \setkeys. Since all
separate packages will use different families, reusing
key names is not a problem anymore. The redefini-
tion of \psset, along with some other macros nec-
essary to do the job, is available in the pst-xkey
package which comes with the xkeyval package.

Due to the vastness of the PSTricks collection of
packages, the conversion of all packages to use pst-

TUGboat, Volume 25 (2004), No. 2

xkey instead of pst-key will take some time, but has
already started and should be finished in the near
future.

References

[1] Hendri Adriaens. xkeyval package, v2.4,
2005/03/31. CTAN:/macros/latex/contrib/
xkeyval.

[2] David Carlisle. keyval package, v1.13,
1999/03/16. CTAN:/macros/latex/required/
graphics.

[3] Herbert VoB. PSTricks web site.
http://www.pstricks.de.

[4] Timothy Van Zandt et al. PSTricks package,
v1.04, 2004/06/22. CTAN:/graphics/pstricks.

o Hendri Adriaens
hendri[at]uvt.nl
http://stuwww.uvt.nl/ hendri

¢ Uwe Kern
tex[at]ukern.de
http://wuw.ukern.de

199

