
TUGboat, Volume 25 (2004), No. 2 201

Hints & Tricks

Glisterings

Peter Wilson

All that glisters is not gold —
Often have you heard that told.

Merchant of Venice, Act II scene 7
William Shakespeare

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two.

Corrections, suggestions, and contributions will
always be welcome.

An issue that has cropped up recently on the

comp.text.tex (ctt) newsgroup is what can be
done when two packages clash by defining the same
macro.

And we are here as on a darkling plain
Swept with confused alarms of struggle
and flight,
Where ignorant armies clash by night.

Dover Beach
Alfred, Lord Tennyson

1 Package/package clashes

A very simple method of undefining a macro, per-
haps \amacro, is to let it be undefined, as:

\let\amacro\undefined

Of course, \undefined must never be defined. You
might feel safer if instead you used, say

\let\amacro\uNdEFiNed

or some other unlikely name.
If two packages are being used, say packA and

packB, which both create \amacro then, provided
the second has used \newcommand and not the TEX
\def macro which will silently replace any prior def-
inition, it will complain that \amacro is already de-
fined. If the definitions in packA and packB are iden-
tical then the following resolves the problem.

\usepackage{packA}
\let\amacro\undefined
\usepackage{packB}

Life being what it is, the definitions are usually
different. In this case both definitions can be used
but the name of the first definition has to be altered.

\usepackage{packA}
\let\Aamacro\amacro
\let\amacro\undefined
\usepackage{packB}

Following this, you use \Aamacro when you want
packA’s version and \amacro for the packB version.

Of course, life gets even more awkward if packA
uses \amacro as part of another macro that you
might use, in which case you have to hope that the
author of at least one of the packages will change it
to eliminate the clash.

2 Class/package clashes

A slightly different version of the same problem is
when there is some clash between the code in a class
and the code in a package. I came across this when
I was developing the memoir class [3] which incor-
porates code from many1 packages. In some cases I

1 Mostly written by me.



202 TUGboat, Volume 25 (2004), No. 2

needed to make sure that a particular package was
not used with the class. I came up with this macro
that fooled LATEX into thinking that a package had
been loaded, even though it hadn’t been. The argu-
ment to the macro is the package name.
\newcommand*{\@memfakeusepackage}[1]{%
\@namelet{ver@#1.sty}\@empty}

\newcommand*{\@namelet}[1]{%
\expandafter\let\csname #1\endcsname}

(The code must be put where @ is treated as a letter.)
The LATEX kernel has two useful macros for

composing and using macro names which do not nec-
essarily consist only of letters, namely:
\@namedef{〈text〉}{〈def 〉}, and
\@nameuse{〈text〉}.
The first of these lets you define a macro called
\〈text 〉 and the second lets you call a macro called
\〈text 〉 As an example, the result of the next piece
of code is shown afterwards; note that you can’t
directly call a macro whose name includes analpha-
betic characters.
\makeatletter
\newcommand*{\ru}{are you}
\@namedef{ru4me}#1{#1, are you for me?}
‘\ru4me{Fred}’ he asked. \\
‘\@nameuse{ru4me}{Fred}’ he asked.
\makeatother

‘are you4meFred’ he asked.
‘Fred, are you for me?’ he asked.

In the same vein the macro
\@namelet{〈text〉}
defined above is for \leting. Thus, calling
\@memfakeusepackage}{pack}

effectively expands to
\let\ver@pack.sty\@empty

which appears to be the magic incantation to make
LATEX believe it has already used the pack package.

The memoir class includes code very similar,
but not identical, to the array, dcolumn, delarray and
tabularx packages and I used \@memfakeusepackage
to make sure these were not loaded again.

The memoir class also includes code correspond-
ing to Heiko Oberdiek’s ifpdf package [1] but I did
not do anything to prevent loading the package.
This resulted in a thread on ctt where the poster
was using
\documentclass{memoir}
\usepackage{ps4pdf}

only to be told that \ifpdf was already defined.
It turns out that the ps4pdf package uses the ifpdf
package which defines \ifpdf which was also defined
in memoir.

Heiko Oberdiek [2] gave the simple ‘let to unde-
fined’ solution and the following more complex one:
\documentclass{memoir}

%% memoir defines \ifpdf
\makeatletter

%% save memoir’s \ifpdf
\let\saved@ifpdf\ifpdf

%% then undefine it
\let\ifpdf\@undefined

%% use ifpdf package (defines \ifpdf)
\usepackage{ifpdf}

%% is \ifpdf undefined?
\@ifundefined{ifpdf}{%

%% yes, used the saved memoir version
\let\ifpdf\saved@ifpdf

}{%
%% no, check for matching definitions

\ifx\ifpdf\saved@pdf
\else

%% mismatch, write error message
\latex@error{Different meaning

of \@backslash ifpdf}\@ehc
\fi

}
\makeatother

%% use ps4pdf which uses \ifpdf
\usepackage{ps4pdf}

This scheme can be applied to similar situa-
tions. Note that it produces an error if the second
and first definitions are different, which could very
well be useful.

References

[1] Heiko Oberdiek. The ifpdf package, July 2001.
Available on CTAN in latex/macros/contrib/
oberdiek.

[2] Heiko Oberdiek. Re: memoir, ps4pdf and
\ifpdf. Post to comp.text.tex newsgroup,
3 September 2004.

[3] Peter Wilson. The memoir class for configurable
typesetting, 2004. Available on CTAN in latex/
macros/contrib/memoir.

� Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries.press@earthlink.net


