
TUGboat, Volume 25 (2004), No. 2 177

LATEX in 3D: OpenDX annotations

J. P. Hagon

Abstract

We present a system, DXfontutils, for adding high-
quality annotation to OpenDX objects using LATEX
as the typesetting engine. The system utilizes na-
tive OpenDX fonts converted from original outlines
(TrueType, OpenType or PostScript) using the au-
thor’s font2dx translator. Also we demonstrate how
OpenDX can be used as a tool for producing special
effects with OpenDX text elements which have been
typeset by LATEX.

1 Introduction

OpenDX [2] is a general purpose data visualization
system similar to Khoros, IDL, AVS, Amira and oth-
ers. As its name implies it is open source software
and freely available. It was formerly a product from
IBM known as Data Explorer. IBM released the Data

Explorer source code for public use under a special
licence in 1999.

OpenDX has an extremely versatile data model
and an excellent visual programming interface. Fig-
ure 1 shows the output of a simple example. This
output was produced with the visual program illus-
trated in figure 2. The program consists of an Im-
port module which reads in the data, and an Image
module which displays the data.

The modules contain input and output tags. In
this case, the output tab from Import is connected to

Figure 1: A simple 2D function plot in OpenDX.

the input tab of Image. The connection is made sim-
ply by clicking and dragging with a mouse. Clicking
on the Import icon produces an entry box in which
the name of the import file is typed. The appro-
priate tab then appears in the closed form shown in
figure 2 within the visual programming editor (VPE)
indicating that the parameter has explicitly been
set. In fact, I/O tabs can be hidden to simplify the
layout — Image has many more input tabs than the
one shown here. Note also that there can be more
than one output tab — the three output tabs from
Image provide information about the rendered ob-
ject, the viewing camera and the viewing position.
Here is the program:

Import

na
m

e
=

"e
xa

m
pl
e.

dx
"

Image

Figure 2: The OpenDX visual program which
produced figure 1.

The VPE can be used to build large-scale inter-
active GUIs for specialized data analysis. Further-
more, the user can write custom modules (plugins
usually written in C) and macros (a visual program
combining other modules and macros).

The writing of modules is facilitated by a Mod-
ule Builder interface and all of the standard OpenDX

modules are available via a set of C libraries for
skilled programmers. In fact, it is possible to pro-
duce an application using an external GUI library
combined with the OpenDX graphics and rendering
libraries. OpenDX can even be run in script mode
using its own scripting language. Visual programs
created through the VPE are stored in this scripting
language.

Although OpenDX is a rather intimidating piece
of software, there is extensive documentation, ac-
tive user forums, commercial third party support
and an introductory, tutorial based book [9]. Many
useful third party macro and module libraries are
available [2] for fields as wide-ranging as geophysics,
medical imaging, quantum chemistry, biology, as-
tronomy, social science, finance and engineering.

178 TUGboat, Volume 25 (2004), No. 2

2 OpenDX Font Format

Two types of font are supported by OpenDX — ‘line’
fonts and ‘area’ fonts. The former are similar to the
fonts that were common on pen-plotter output de-
vices some years ago. Such fonts are still useful for
screen display where hard copy quality is not impor-
tant since they can be rendered very quickly. They
are not our concern here and will not be discussed
further. ‘Area’ fonts rely on filled polygons and are
therefore capable of much higher quality than line
fonts. Unfortunately there is just one such font sup-
plied with the standard OpenDX release — the Pit-
man monospaced font.

2.1 Area Font Structure

Most outline fonts are fairly simple in concept — in-
ner and outer boundary lines (often defined in terms
of cubic splines) define an area to be filled. The
spline defining the inner outline is opposite in direc-
tion (clockwise/anti-clockwise) to a spline defining
an outer boundary. PostScript and TrueType fonts
have opposite conventions in this regard.

Things are more complicated with an OpenDX

area font. First, polygons rather than splines are
used to define the outlines. Second, areas to be
filled are not defined with clockwise/anti-clockwise
polygons; instead, the required area must be trian-
gulated to create an area mesh. These concepts are
illustrated in figure 3.

In an OpenDX font file, the boundary polygons
are defined through a set of positions and the con-
nections defining the triangulated mesh are defined
as a set of integer triples, each integer referring to a
particular position. For example, a simple hyphen
(essentially just a rectangle) might be defined in an
OpenDX font file as shown in figure 4.

OpenDX fonts have exactly 256 entries, mak-
ing them equivalent to 8-bit fonts commonly used
today. There is no flexibility in the format to allow
for larger (or smaller) fonts. The files themselves ad-
here to the OpenDX data model and can be in text or
binary format. The binary format is generally more
compact. The official description of the font format
can be found in the OpenDX User’s Guide [1].

3 The Font Conversion Method

In order to get from, say, a Type 1 PostScript outline
to an OpenDX font in the form illustrated in figure 4
requires roughly the following steps:

1. Obtain the boundary points corresponding to
all inner and outer lines for each character in a
font.

Figure 3: Comparing methodologies for
PostScript/TrueType and OpenDX fonts. The
letter B of the AMS Euler Bold Fraktur font as
represented in PostScript form (upper figure)
and OpenDX form (lower). In the upper diagram
there are three boundaries defined, the outer one
going clockwise and the two inner ones going
anti-clockwise. The lower diagram shows how a
filled area is represented in a OpenDX font using a
triangulated mesh bounded by the same outlines
as in the upper diagram.

object "positions_hyphen" class array type

float rank 1 shape 3 items 4 data follows

0.276 0.187 0.0

0.011 0.187 0.0

0.011 0.245 0.0

0.276 0.245 0.0

attribute "dep" string "positions"

#

object "connections_hyphen" class array type

int rank 1 shape 3 items 2 data follows

2 1 0

0 3 2

attribute "ref" string "positions"

attribute "element type" string "triangles"

attribute "dep" string "connections"

#

object "hyphen" class field

component "positions" value "positions_hyphen"

component "connections" value "connections_hyphen"

attribute "name" string "hyphen"

attribute "char width" number 0.333

attribute "series position" number 45.000000

Figure 4: An entry for the hyphen character from
a native OpenDX font file. Note the ‘char width’
and ‘series position’ attributes.

TUGboat, Volume 25 (2004), No. 2 179

2. Triangulate the appropriate regions and obtain
a set of connections for each character.

3. Output positions, connections and width infor-
mation for each character in OpenDX font for-
mat.

To perform this task, we make use of three software
packages, all of which are freely available. The pack-
ages are fontforge [10], pstoedit [6] and Triangle [8]. A
brief description of each package follows, along with
an explanation of its contribution to the OpenDX

font conversion process.

3.1 fontforge

This remarkable application, by George Williams, is
an outline font editor capable of creating and editing
both PostScript and TrueType fonts. It is similar to
commercial font editors such as Fontlab or Fontogra-

pher and provides much of the same functionality. It
is available for multiple platforms and can be com-
piled from source if required. Further details may
be obtained from the fontforge web site [10].

For all its many features, only limited use is
made of fontforge in the OpenDX font production
procedure. In particular it is used to obtain the
following vital font information:

• The official name of the font.

• The name, ASCII code and widths of each font
character. This is stored temporarily in one file
for each font.

• An Encapsulated PostScript (EPS) rendering of
each character in the font for subsequent pro-
cessing by pstoedit.

The above procedure can be automated via font-

forge’s own scripting language.

3.2 pstoedit

Written by Wolfgang Glunz, this is a well-estab-
lished and very useful package which converts Post-
Script (and PDF) files into a variety of vector for-
mats.

pstoedit is used to extract the boundary point
information for each character by converting the eps
files generated by fontforge into gnuplot [4] com-
mands. The gnuplot driver was chosen because its
output is in a very convenient form for subsequent
processing — the boundary points being returned as
a column of (x, y) pairs. When a full closed curve is
completed, this is indicated by a blank line and the
next set of points started, if there is more than a sin-
gle closed curve for the given character. The gener-
ated output file can then be loaded into gnuplot and
viewed via the gnuplot command plot <file> or
alternatively plot <file> with lines if you want

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

’b.gp’

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

’b.gp’

Figure 5: gnuplot rendering of the Euler Fraktur
B. The upper diagram shows a points plot, the
lower shows a line plot (each point is connected to
the next point (as ordered in the input file created
by pstoedit).

to see the points joined up. Some gnuplot output
for the Euler Fraktur character discussed earlier is
shown in figure 5. The remaining task is to add the
connection information.

3.3 Triangle

This program is the work of Jonathan Shewchuk. It
produces a triangulated mesh, given a set of input
points and constrained segments — i.e. the bound-
ary outlines of each font character. Triangle is a very
efficient program and makes the task of triangula-
tion relatively straightforward. The input required
is a simple text file (referred to as a .poly file — see
figure 6) with entries supplied for:

• A list of vertices — these are the nodes which
form the boundary outlines for each character.
They take the form of (x, y) pairs.

• A list of segments, i.e. the connection informa-
tion needed to construct the boundary polygon.
These are a list of integer pairs corresponding to

180 TUGboat, Volume 25 (2004), No. 2

Vertices, dimension, attributes, boundary markers

#

286 2 0 0

#

Vertex no., x, y

#

0 0.906 0.09

1 0.734 -0.021

.

.

284 0.528219 0.394703

285 0.527145 0.369736

#

Segments, boundary markers

#

286 0 0

#

0 0 1

1 1 2

2 2 3

.

.

192 192 193

193 193 0

194 194 195

.

.

243 243 244

244 244 194

245 245 246

.

.

284 284 285

285 285 245

#

Holes

#

2

#

0 0.640961 0.323633

1 0.6685625 0.6155

Figure 6: A Triangle ‘.poly’ file showing how
vertices, segments and holes are set up. Note the
termination segments which close each polyline
and the two hole coordinates.

the vertices mentioned previously. Since all the
vertices are correctly ordered, this list can be
generated easily; and since all polygons are of
the simple closed form, the last entry for a given
polyline will be of the form (n+m−1, n) where
n is the starting vertex and m is the number of
points in a given closed polyline.

• A list of ‘holes’, if any. These are points which
lie within regions inside certain polylines which
are not to be triangulated. In the case of the
Fraktur B, it is clear that there are two inte-
rior polygons which enclose regions which are
not to be triangulated. By specifying a hole
point anywhere in a given region, Triangle is in-
structed not to triangulate that region.

Triangle produces a set of triangulated elements con-
necting polyline vertices from this input and stores
the elements in a .ele file.

Vertices and segments are essentially provided
by pstoedit but holes need to be calculated explic-
itly. As mentioned previously, the sense of a polygon
(clockwise or anti-clockwise) determines if it should
be filled or not. If it is not to be filled, then a
hole coordinate must be placed somewhere within
the polygon.

In the Type 1 PostScript format an anti-clock-
wise polygon is one forming an inner boundary and
therefore containing a hole; for TrueType it’s the
other way round. A simple algorithm exists [5] for
determining if a polygon is clockwise. For a closed
polygon with n points (x0, y0), . . . , (xn−1, yn−1), cal-
culate the quantity:

A =
1

2

n−1
∑

i=0

(xiyi+1 − xi+1yi) with (xn, yn) ≡ (x0, y0)

If A > 0 then the polygon is anti-clockwise, other-
wise it is clockwise. Once a hole polygon has been
identified, any point within it serves as a hole point
for Triangle.

The following algorithm is used [3] to construct
an interior polygon point:

1. Identify a convex vertex v.

2. For each other vertex q do:

(a) If q is inside avb, where a and b are the
adjacent vertices to q, compute distance
to v (orthogonal to ab).

(b) Save point q if distance d is a new mini-
mum.

3. If no point is inside, return midpoint of ab, or
centroid of avb.

4. Else if some point inside, qv is internal: return
its midpoint.

Application of this algorithm usually results in a
hole point being set very close to a boundary seg-
ment — so close, that to the naked eye the point
often seems to lie on the segment.

4 Putting it all together

Two Perl scripts — g2poly and font2dx — have been
written to automate the above procedure. g2poly

converts a gnuplot input file (generated by pstoedit)
into a .poly file suitable for input into Triangle. Ev-
erything else is handled within the font2dx script,
which in fact calls g2poly. font2dx can optionally re-
encode a font according to several common encoding
schemes. At present font2dx outputs fonts only in

TUGboat, Volume 25 (2004), No. 2 181

text (ASCII) format, rather than the more compact
binary format.

The general form of a font2dx command is:

font2dx [OPTION]... FILENAME

where FILENAME is a PostScript Type 1, OpenType
or TrueType font file. At present, the following op-
tions are available:

--noclean Don’t clean up intermediate files (usu-
ally there are hundreds of these!) — by default
these files are deleted, leaving just the gener-
ated and original fonts.

--scale=<integer> Attempt rescaling of the font.
This can be used to correctly scale a font in
cases where the default scale factor fails.

--negate Reverse the normal convention for inner
and outer closed polygons.

--flat=<number> Set the pstoedit ‘flat’ parame-
ter. This defaults to 1.0 and the acceptable
range of values is [0.2–100.0]. This parameter
controls how accurately curves in fonts are ap-
proximated by polylines — higher numbers give
rougher approximations.

--enc=<encoding> Change font encoding. There is
a choice of many pre-defined schemes and if the
encoding is not one of these, then an encod-
ing file is looked for, with the assumed name
<encoding>.enc. Hence, many of the standard
encoding schemes in TEX can also be used.

--help Print usage information and help.

font2dx will process only the first 256 character
glyphs in a font. Modern fonts often have many
more than this. If there is a ‘hidden’ glyph not in one
of the first 256 slots, then you could try manually
re-encoding the font with a tool such as fontforge

prior to running font2dx.
A further issue is that OpenDX font characters

have a width attribute, but no explicitly defined
height. However, TEX is perfectly happy using char-
acters which have zero width. In such cases, it is
impossible to correctly scale such characters unless
there is a corresponding height (so that scaling ratios
can be calculated). font2dx therefore adds a char

height attribute, equivalent to 〈height〉 + 〈depth〉
enabling proper scaling even for zero width charac-
ters.

4.1 Quality Issues

It can be worth experimenting with the --flat op-
tion to optimize font quality. The default value for
this parameter is 1 which generally produces very
good quality fonts, i.e. unless the fonts are greatly
enlarged, it is almost impossible to detect the polyg-
onal character of the outlines. In fact, a value of 10

produces pretty decent results for most text fonts
we have tested. Figure 7 illustrates the effect of the
--flat parameter for the URW Times-Roman font.
For exceptionally fine and detailed fonts a flat pa-
rameter of less than 1 may prove necessary.

Figure 7: OpenDX rendering of URW

Times-Roman for different flat parameters:
flat = 100 (top); flat = 10 (middle); flat = 1
(bottom). Even a flat value of 100 produces
recognizable text albeit in effectively a different
font!

There is a trade-off between font size and qual-
ity with smaller flat parameters leading to larger file
sizes, as might be expected. However it is generally
true that as flat parameters get very large, the space
saved is not worth the enormous loss in quality. This
is illustrated in Table 1 where it is clear that there
is not much space to be gained in going from a flat
parameter of 10 to a flat parameter of 100 in the
case of URW Times-Roman — but there is an enor-
mous loss of quality. In the rest of this paper, we
use fonts generated with a flat parameter of 1.

‘flat’ parameter 100 10 1
URW Times 181717 254580 543254
WebOMints-GD 417797 709443 2036248

Table 1: Font file sizes (in bytes) for different flat
parameters in the case of URW Times and the
ornament font WebOMints-GD.

5 Annotation in OpenDX

This ability to create native OpenDX fonts from
industry-standard outlines, as described above, has
the potential to greatly improve annotation qual-
ity within OpenDX. It has been common for users
to post-process their OpenDX-generated images with
graphical editing tools such as Gimp or Photoshop in
order to add text elements. Either that, or the Pit-
man font was grossly overused (because it was the
only good quality font available) making many an-
notated images produced by OpenDX immediately

182 TUGboat, Volume 25 (2004), No. 2

identifiable.1 One remaining issue is the typographi-
cal quality of OpenDX annotation, particularly with
regard to mathematics. This is one area where TEX
can certainly help!

5.1 OpenDX Text and Caption Modules

Text within OpenDX is treated just like any other
OpenDX object. It can be scaled, rotated, coloured,
and manipulated in many different ways. There are
two modules within the core OpenDX system which
facilitate text entry and annotation.

The Text module allows text to be positioned
anywhere in 3D space with any rotation, size and
orientation. The position and height are given in
world (user) coordinates.

The Caption module displays a caption on the
screen independently of any other OpenDX objects
representing the user’s data. This produces text
which remains in the same position relative to the
screen. The position of the text is given in screen
(viewport) coordinates, i.e. a position of [0.9, 0.5]
means 9/10 of the way along the horizontal axis and
half way up the vertical axis. The height is given in
pixels.

Text and Caption have very rudimentary type-
setting capabilities. Escape sequences (using ‘back-
slash’ as the escape character) can be used to obtain
characters not available on some keyboards (e.g. di-
acriticals) and spacing is achieved via the ‘space’
character (ASCII 32) of the particular font in use.
Now this latter point raises a problem if one wishes
to use, say, Computer Modern Roman because this
font doesn’t have a space character! Position 32 is
taken up by the suppress character — . Of course,
this isn’t a problem in TEX since all spacing is calcu-
lated internally — removing the need for an explicit
‘space’ character.

5.2 The LaTeXText and LaTeXCaption

Macros

Two new OpenDX macros were developed as alter-
natives to the Text and Caption modules: LaTeX-
Text and LaTeXCaption. In OpenDX a macro is a
combination of modules (and other macros) and can
be created through the OpenDX visual programming
editor.

The above macros take LATEX commands as
their main argument. The user may enter, option-
ally, a set of LATEX preamble commands if certain

1Not unlike the situation some years ago where almost

any document produced using TEX used the Computer Mod-

ern fonts— not because TEX was incapable of using other

fonts but because at that time it was not straightforward to

do so.

packages are required. Hence,
\\usepackage{cmbright}

might be entered as a preamble option if the CM

Bright fonts were required. The double backslash
is not an error — it’s an unfortunate consequence of
the previously mentioned fact that backslash itself
is treated as an escape character in text arguments
of the Text and Caption modules.

If there is a lot of text to be typeset, it is more
convenient to supply a file containing the text rather
than type the text in as an argument to a macro.
For this reason, two modified versions of LaTeX-
Text and LaTeXCaption are available, which accept
a file of LATEX commands rather than a string of
commands. These macros are LaTeXFileText and
LaTeXFileCaption respectively. Another advantage
of using these modules, in addition to their primary
purpose, is that backslash characters do not need to
be doubled-up. Within the VPE, the macros appear
like this:

Figure 8: LaTeXText and LaTeXCaption macros
as they appear in the OpenDX VPE.

LaTeXText takes the following inputs:

latex string A string of LATEX commands.

height Height of text in user (world) coordinates.

position Position vector of reference point (see be-
low) in user coordinates.

baseline Direction of baseline expressed as a vec-
tor.

angle Euler-type angle specifying rotation about
the baseline axis.

preamble A string of LATEX preamble commands —
for example, to load font definitions or special
packages.

extrusion A scalar defining the extrusion in user
coordinates. A number ≤ 0 produces no extru-
sion.

reference An integer (1–9) specifying the reference
point on the formatted text object to be used
for positioning. (1) refers to bottom left (the
default); (2) is bottom centre; (3) is bottom
right, etc., up to (9) which refers to top right.

There are 4 outputs:

text Complete object including extrusions and sur-
faces.

nosurface Just the extrusion (no upper or lower
surfaces).

TUGboat, Volume 25 (2004), No. 2 183

top surface The top surface.

bottom surface The bottom surface.

The four outputs allow the upper/lower surfaces and
extrusion to be handled differently. For example,
the upper and lower surfaces can be given different
colours.

LaTeXCaption has just a single output and the
following inputs:

latex string A string of LATEX commands.

coords An integer specifying the type of coordi-
nates used: (1) viewport, (2) pixel, (3) world
or (4) stationary. Using stationary coordinates,
the text string will be attached to a particular
point in world coordinates but will retain the
same orientation with respect to the viewing
camera.

direction Direction of baseline expressed as a vec-
tor.

priority An integer specifying how the text is lay-
ered relative to the other OpenDX objects: (−1)
behind, (0) equal or (1) in front.

position The screen position. How this vector is
interpreted depends on the value of the coords

parameter.

height Height, in pixels unless stationary position,
in which case world coordinates are used.

preamble A string of LATEX preamble commands.

reference An integer (1–9) specifying the reference
point on the formatted text object to be used
for positioning. See description above for La-
TeXText

The conversion of LATEX commands to OpenDX

objects is handled by two Perl scripts — dvidx and
latex2dx:

dvidx is a TEX dvi driver program similar to dvips

et al. It takes a dvi file as input and generates
an OpenDX object. This object contains the
correctly scaled and positioned characters from
the OpenDX fonts converted from outline orig-
inals. It understands dvips colour specials and
can output in two different OpenDX formats: a
compact form which consists of external refer-
ences to OpenDX fonts; and an inclusive format
in which all the relevant data from the external
font files is included in the output. dvidx can
be used standalone to produce OpenDX output
if desired. Multiple pages are handled by col-
lecting individual pages in an OpenDX Group
object.

latex2dx is essentially a wrapper Perl script around
dvidx. It takes raw LATEX input, produces a

temporary dvi file and then calls dvidx to gen-
erate OpenDX output.

It is latex2dx that is actually called by the LaTeX-
Text and LaTeXCaption macros but it is dvidx which
does all the hard work.

6 The dvidx Perl Script

The writing of dvidx was made considerably easier
by the use of two clever Perl packages written by Jan
Pazdziora — Font::TFM and TeX::DVI::Parse [7].
The working of dvidx is roughly as follows:

1. First, run dvicopy2 on the original dvi input to
translate all the virtual font references to base
fonts.

2. Parse the dvicopy output using the Perl package
TeX::DVI::Parse.

3. For each font encountered, obtain the appropri-
ate metrics from the TEX font metric (tfm) file
using Font::TFM.

4. Map the base font to a raw OpenDX font and
extract the appropriate characters.

5. Position and scale the character via an OpenDX

rotation/translation operation (in OpenDX jar-
gon, this is an XForm transformation object).

dvidx cannot read the packed font (PK) files tra-
ditionally used by dvi drivers and usually created
(indirectly) from METAFONT source files. There is
no reason in principle why it could not be made
to use such files but the approach described here
produces higher quality and is much easier to im-
plement. However, it does mean that METAFONT

sources which have not been converted to outline
form cannot currently be rendered using dvidx.

6.1 The dvidx Map File

The mapping of raw TEX font names to OpenDX

font files is done via a map file similar to (but much
less versatile than) the map file used by dvips. The
dvidx map file contains two columns, the first col-
umn giving the name of the raw TEX font and the
second column giving the name of the corresponding
OpenDX font file. It is possible that a single OpenDX

font file may map to more than one raw TEX font
but not vice-versa. If a raw TEX font maps to more
than one OpenDX font file then the last entry in the
map file is the one that is used.

One of the features of the dvips map file is that
one can re-encode a PostScript font on the fly via
a re-encoding directive within the map file itself.

2dvicopy is a program which is routinely available as part

of all modern TEX implementations. Its primary purpose is to

expand virtual font definitions. This is useful in cases where

a dvi driver doesn’t understand virtual fonts.

184 TUGboat, Volume 25 (2004), No. 2

For example, a re-encoding to TeXBase1 is achieved
within a dvips map file with the following directive:

" TeXBase1Encoding ReEncodeFont " <8r.enc

where 8r.enc is a file containing the appropriate
PostScript encoding commands. This type of func-
tionality could be added to the dvidx map file, but
in many cases would be redundant. This is because
OpenDX fonts always contain exactly 256 characters
whereas Type 1 PostScript fonts generally contain
‘hidden’ glyphs that are not contained within the
visible 256 character slots. It is often the case that
the purpose of re-encoding is actually to place many
of these hidden glyphs in visible slots.

Our solution to this problem is somewhat brute-
force but effective. A program such as fontforge can
be used to re-encode the original outline font using
the required encoding file (such as 8r.enc, for ex-
ample). The re-encoded PostScript font is then con-
verted to an OpenDX font using font2dx but given
a different name to the original. The convention we
use, is to append the string -<enc> to the OpenDX

file name. This produces map file entries like:

ptmri8r Times-Italic-8r.dx

tii Times-Italic-8y.dx

whereas in the dvips map file we would have:

ptmri8r Times-Italic

" TeXBase1Encoding ReEncodeFont " <8r.enc

tii Times-Italic

" TeXnANSIEncoding ReEncodeFont " <texnansi.enc

A similar brute-force approach can be used to
deal with ‘slanted’ fonts created on the fly via a dvips

map file entry such as:

ptmro8r Times-Roman " .167 SlantFont ...

7 Examples of Text Annotation in OpenDX

Suppose we wish to add a title to the image shown
in figure 1. The normal way to do this in OpenDX

would be via the Caption module. The visual pro-
gram would look like that shown in figure 9. We
have created a caption object and added it to the
original object (using the Collect module). The re-
sult is shown in figure 10.

Now the function we are plotting is quite a com-
plicated one:

z =

√

sin(ωx) cos(2ωy) + 1

1 +
√

x2 + y2

and we have tried to indicate the form of the func-
tion in the caption. The core facilities of OpenDX

limit what we can do here and the result is both dif-
ficult to read and cumbersome to position because
it consists of one relatively long line of monospaced
text.

Caption

st
rin

g
=

"z
=s

qr
t(s

in
(..

."

po
si
tio

n
=

[.0
5

.0
25

]

Import

na
m

e
=

"e
xa

m
pl
e.

dx
"

Color

co
lo
r =

 "b
la
ck

"

Collect

Image

Figure 9: Modified visual program using Caption.

Figure 10: OpenDX-annotated figure.

So, we instead use the LaTeXCaption macro.
In addition, to make the mathematics easier to read
on-screen, we anti-alias the output using the Text-
Alias macro. The resulting visual program is shown
in figure 11. The main argument to LaTeXCaption
is the following piece of LATEX code:

TUGboat, Volume 25 (2004), No. 2 185

Import

na
m

e
=

"e
xa

m
pl
e.

dx
" LaTeXCaption

la
te

x_
st
rin

g
=

"$
$z

=\
\fr

ac
{\\

sq
rt{

...
"

sc
re

en
_p

os
 =

 [0
.3

5,
0.

05
,0

]

he
ig
ht

 =
 5

0.
0

Color

co
lo
r =

 "b
la
ck

"

TextAlias

ba
ck

gr
ou

nd
 =

 {[
1,

1,
1]

}

Collect

Image

Figure 11: Modified visual program using
LaTeXCaption.

$$z=\\frac{\\sqrt{\\sin(\\omega x)

\\cos(2\\omega y)+1}}{1+\\sqrt{x^2+y^2}}$$

where, as mentioned earlier, the backslashes have
been doubled because backslash is an escape char-
acter in OpenDX. LaTeXCaption’s other arguments
include an orientation vector, a position vector and
optional LATEX preamble text. Standard OpenDX

modules can be used to make other modifications,
such as colour changes.

8 Special Effects with LaTeXText

LaTeXCaption provides flat 2D screen annotation
within a 3D OpenDX space. LaTeXText has similar
functionality except that it operates in 3D and the
text can be oriented and positioned arbitrarily in 3D
space. In this section we show how OpenDX can be
used as a tool to produce 3D special effects. All the
examples which follow were typeset with LATEX via
the LaTeXText macro (or its equivalent LaTeXFile-
Text) but the effects described can all be applied to
standard OpenDX text objects no matter how they
were created. These examples really just scratch the
surface of what can be done with special effects in
OpenDX — the possibilities are almost limitless.

Figure 12: LATEX-annotated figure.

8.1 Warped Text

Many of the operations that can be done on OpenDX

objects can also be done on text. So, for example,
we can warp a piece of text by transforming its coor-
dinates as shown in figure 13. Note that the warped
text has a distinct ‘sheen’ due to reflected light. The
properties of the lighting can be precisely controlled
within OpenDX, as can the reflective properties of
the surfaces of objects.

Figure 13: Warping text.

8.2 Texture Mapping

Texture mapping, i.e. the overlaying of a 2D image
onto a 2D surface, is a common technique in com-
puter graphics. It is most useful when the surface
itself has a low resolution. Overlaying a high reso-
lution image then produces an impressive visual ef-
fect but with an underlying simplicity allowing fast
geometric transformations. In figure 14 we overlay
an image (texture) onto the font characters. Note
that as well as being texture mapped, the text has

186 TUGboat, Volume 25 (2004), No. 2

also been extruded to give it a thickness. We show
another example of extrusion later. At present, tex-
ture mapping in OpenDX relies on OpenGL hard-
ware rendering and there are some technical limi-
tations on the quality of hard-copy output one can
obtain.

Figure 14: Texture mapping.

8.3 Text Boundaries

It is easy within OpenDX to embellish the character
boundaries of text in many different ways. In figure
15, spherical glyphs are used to define boundaries
but almost anything is possible — and often easy to
set up. The density and size of the glyphs can be
adjusted within OpenDX by first extracting the out-
line information for each character and populating
the outlines with graphical glyphs.

Figure 15: Glyph boundaries: spheres in this
case.

8.4 Exploiting Transparency

The opacity of the 3D text can be changed to make
it semi-transparent. For example, a stained glass ef-
fect can be achieved by wrapping a tube around the
boundary of each character (to simulate the lead)
and reducing the opacity of the text to some suit-
able value (< 1). This is illustrated in figure 16.

Figure 16: Stained glass effects — note the
transparency of the ‘glass’.

8.5 Extrusion

In figure 17, we illustrate extruded 3D text — i.e.
the text has a thickness as well as width, height and
depth!

Figure 17: Extruded 3D text.

It should be emphasized at this point that as
far as OpenDX is concerned, this is just an ordinary
3D object. In the image display window, you can
rotate, zoom and even walk through the zero in the
subscript on the

∑

∞

i=0
sum! Such manipulations

are possible with all the objects we have described.
Note that in figure 17, the text has been rotated
and the image generated with perspective. These
properties can be controlled interactively from the
OpenDX image window.

8.6 Foreign Languages

LATEX has excellent support for many of the world’s
languages, including an increasing number of non-
Latin languages such as Arabic, Japanese, Chinese
and Hebrew, through packages such as ArabTEX,
CJK and babel. Many of these packages have been

TUGboat, Volume 25 (2004), No. 2 187

successfully applied to OpenDX captioning using
DXfontutils.

9 Getting DXfontutils

The complete DXfontutils system consists of:

• three Perl scripts, font2dx, dvidx and latex2dx;

• five OpenDX macros: TextAlias, LaTeXText,
LaTeXCaption, LaTeXFileCaption and LaTeX-
FileText ;

• a set of TEX fonts in OpenDX format: Computer
Modern, AMS Euler and a selection of others
converted from outlines in the TEX Live 2004
distribution;

• several example OpenDX networks showing how
to achieve the various effects described in this
document and a sample dvidx map file.

The complete system can be downloaded from:

http://www.njph.f2s.com/dxfontutils

10 Summary

We have shown one way that LATEX can be used as a
back-end typesetting engine: to enhance the limited
annotation facilities provided in the core OpenDX

system. To facilitate this, a font conversion pro-
gram was written, allowing native OpenDX fonts to
be utilized throughout for maximum efficiency. Ad-
ditional requirements were an OpenDX dvi driver
and a set of macros to be used in the visual pro-
gramming editor of OpenDX.

We have also demonstrated how OpenDX can be
used as a powerful tool for producing special effects
on LATEX generated typeset material. LATEX and
OpenDX are therefore complementary, each able to
enhance the output from the other.

The main problem to date has been the speed
with which the various Perl scripts, external pro-
grams, and OpenDX macros link together. For ex-
ample, the standard OpenDX Text macro is much,
much faster than the LaTeXText macro. The bot-
tleneck is primarily the dvidx script.

OpenDX has a caching mechanism which means
that for a given piece of LATEX formatted text, the
dvidx and latex2dx scripts are run just once. Sub-
sequent operations such as rotation or shading are
done on the cached object. Of course, if the LATEX
commands are changed, then the scripts are auto-
matically re-executed. Generally, re-execution hap-
pens only if any of the inputs to LaTeXText or
LaTeXCaption are changed.

Finally, there are several other improvements
which could be made, such as:

• modifying font2dx to produce OpenDX fonts in
the more compact binary format;

• modifying dvidx to read binary format OpenDX

fonts (at present it works only with text format
fonts);

• adding “SlantFont” transformation directives
to the dvidx map file following a similar scheme
to that used by dvips;

• adding \special support within dvidx for the
inclusion of native OpenDX objects;

Currently, DXfontutils is more a proof-of-concept
system than a well-tuned production software prod-
uct. However, it is a proof-of-concept with consider-
able functionality. We have illustrated its use with
LATEX, but there is no reason why plain TEX or other
formats could not be used instead — all that would
be required are minor edits to the latex2dx script.

References

[1] IBM Visualization Data Explorer User’s
Reference. http://opendx.npaci.edu/docs/

html/refguide.htm, 1999–2004.

[2] OpenDX. http://www.opendx.org,
1999–2004.

[3] comp.graphics.algorithms FAQ, §2.06.
http://www.faqs.org/faqs/graphics/

algorithms-faq, 2004.

[4] Gnuplot. http://www.gnuplot.info, 2004.

[5] P. Bourke. Determining whether or not a
polygon (2D) has its vertices ordered clockwise
or counter-clockwise.
http://astronomy.swin.edu.au/∼pbourke/

geometry/clockwise, 2004.

[6] W. Glunz. pstoedit. http://www.pstoedit.

net, 2004.

[7] J. Pazdziora. TEX::DVI::PARSE, Font::TFM.
http://www.cpan.org, 2004.

[8] J. Schewchuk. Triangle. http://www.cs.cmu.

edu/∼quake/triangle.html, 2004.

[9] D.L. Thompson, J.A. Braun, and R. Ford.
OpenDX: Paths to Visualization. Visualization
and Imagery Solutions Inc., 2001.

[10] G. Williams. Fontforge. http://fontforge.

sourceforge.net, 2004.

⋄ J. P. Hagon
Physics Centre
School of Natural Sciences
University of Newcastle upon Tyne
NE1 7RU
United Kingdom
jerry.hagon@newcastle.ac.uk

