
TUGboat, Volume 25 (2004), No. 2 199

A non-expert looks at a small TEX macro

David Walden

Introduction

I use TEX a lot, but I seldom dig deeper into how
TEX works than I must in order to address the im-
mediate writing project I am working on. However,
once I think I have figured out something new, I like
to write it up to help me be sure I understand it. In
this piece I describe a simple LATEX macro I wrote,
how the macro evolved, and what I learned along the
way. Perhaps other intermediate users who have a
similar incremental approach to increasing their ca-
pabilities to use TEX will find reading my account a
short cut to understanding of their own.

My problem

In some documents I write, I use an extra blank line
and an extra large letter on the first character of
the first word of a paragraph to indicate a thought
break.

Here is an example.
A couple of years ago, I wrote a simple LATEX

macro to accomplish this:
\newcommand{\newthoughtgroup}[1]{%

\bigskip\noindent{\Large #1}}

It was called as follows:
\newthoughtgroup{H}ere is an example.

However, I didn’t like having the first word of
the paragraph in my LATEX file being split as in the
above line. I wished the macro call could be

\newthoughtgroup{Here} is an example.

but still only make the first character of the first
word larger.

Search and discovery

Therefore, I looked around for a way to have the
whole first word be part of the macro argument—
I had to look around since I didn’t understand TEX
macros well enough to be able to figure it out myself.

First approach. I discovered the following pair of
macros on comp.text.tex (April 6, 1994) in a post-
ing by Victor Eijkhout, who was answering a ques-
tion about making the first letter of a word be upper
case:1

\def\CapString#1{%

\CapFirstLetter#1$} %assumes no $ in arg 1

\def\CapFirstLetter#1#2${%

\uppercase{#1}#2}

Without fully comprehending how Eijkhout’s
macros worked, I changed them as follows to ac-
complish my purpose:

\def\newthoughtgroup#1{%

\BigFirstLetter#1$}

\def\BigFirstLetter#1#2${%

\bigskip\noindent{\Large #1}#2}

I suspect I am not alone among TEX user in blindly
copying or converting something that already exists
without much understanding of how it works.

Learning more. After using my version of Eijk-
hout’s macros for a while, I decided to try to un-
derstand them in detail. So, I looked at chapter
20 of Knuth’s The TEXbook ;2 in particular, I tried
to understand from the first dangerous bend signs
on page 203 to the first dangerous bend signs on
page 204. The following is what I think I learned.3

First, I noted the difference between LATEX
macro definitions and TEX macro definitions. My
original LATEX macro listed above might be written
as a TEX macro as follows:

1 I’ve suddenly jumped to TEX style macro definitions in-
stead of the LATEX form of macro definitions because that is
what I found searching comp.text.tex, and for another rea-
son that may become apparent.

2 Addison Wesley, Reading, MA, 1986.
3 I am not going to repeat the full explanation of a macro

definition or how a macro finds its arguments when called; I’ll
just use what I learned to explain the macros I was working
with.



200 TUGboat, Volume 25 (2004), No. 2

\def\newthoughtgroup#1{%

\bigskip\noindent{\Large #1}}

The TEX form of macro definition includes \def, fol-
lowed by the new macro name (\newthoughtgroup in
our case), followed by what Knuth calls the parame-
ter text which in this case is #1 indicating the macro
has one undelimited parameter, and ending with the
replacement text (\bigskip\noindent{\Large #1}).
The call-time argument of an undelimited parameter
is the first non-blank token,4 or the tokens enclosed
in matched braces, after the macro name.

This same format of TEX macro definition is
used for the first macro below.

\def\newthoughtgroup#1{%

\BigFirstLetter#1$}

\def\BigFirstLetter#1#2${%

\bigskip\noindent{\Large #1}#2}

The parameter text is #1, and the replacement text
is \BigFirstLetter#1$. Thus, when the first macro
is called with

\newthoughtgroup{Here}

the macro is expanded into its replacement text,
which thus becomes \BigFirstLetter Here$.5

But the second macro’s parameters specify a
slightly different form of macro call. The first pa-
rameter (#1) is undelimited and, thus, the macro
call’s first argument is the first (non-blank) token or
tokens enclosed in braces (as with the first macro).
The second parameter, however, is delimited by the
following $ and, thus, the macro call’s second ar-
gument is all the tokens from the end of the first
argument to the $, i.e., to the delimiter.

Thus, when the first macro calls the second
macro, that macro call (\BigFirstLetter{Here$})
finds its first argument to be H and its second ar-
gument to be ere with the $ being discarded after

4 Tokens are described between exercises 7.2 and 7.3 on
pages 38–39 of The TEXbook. As what the user typed
is read into TEX, the letters, numbers, command names,
etc., are stored as tokens. Tokens are internal representa-
tions of the characters in the input stream, with the no-
table exception that control sequences (e.g., \bigskip, \def,
\newthoughtgroup) are each stored as single tokens. Macro
definitions are stored as tokens, and macro calls are processed
in terms of tokens.

5 My macros are usually so simple that I can just think
of the literal characters of the macro definition replacing the
literal characters of the macro call in the sequence of charac-
ters that TEX reads, and so the definition \newthoughtgroup

in this section originally looked funny to me. I wondered why
the replacement text for \newthoughtgroup{Here} wasn’t
\BigFirstLetterHere$ and then wondered why TEX didn’t
report that as an undefined control sequence. The an-
swer, I believe, is that, as noted in footnote 4, TEX pro-
cesses macros in terms of tokens, and the replacement text,
\BigFirstLetter#1$, is manipulated as three distinct tokens:
\BigFirstLetter, #1, and $.

matching. In turn, the call to \BigFirstLetter is
replaced by

\bigskip\noindent{\Large H}ere}

producing the desired vertical space, no indentation,
a big H, and normalsize ere.

Second approach. I happily used these macro
definitions for a long time until I discussed them one
day recently with Karl Berry. He pointed out that
my version of Victor’s formulation can be changed
to remove that restriction on including $ in the ar-
gument. He explained that the second argument’s
delimiter doesn’t have to be a character; it can be
an arbitrary control sequence (even an undefined
control sequence), and he wrote down the following
for me:6

\def\newthoughtgroup#1{%

\BigFirstLetter#1\enddavesmacro}

\def\BigFirstLetter#1#2\enddavesmacro{%

\bigskip\noindent{\Large #1}#2}

Third approach. That sounded like a good im-
provement, but then Karl said, “Personally, I would
be inclined to a different approach, that has the ben-
efit of being called without braces —which thus ad-
dresses your original reason for moving from a macro
called with \newthoughtgroup{H}ere.” He showed
me the following definition for \newthoughtgroup:

\def\newthoughtgroup#1{%

\bigskip\noindent {\Large #1}}

When called, for example, as

\newthoughtgroup Here is an example.

the argument that replaces the parameter (#1) is the
H, i.e., the first non-blank token.7

Conclusion

As I started drafting this conclusion, it gradually
dawned on me that the Third Approach TEX macro
is the same as the TEX transliteration of my orig-
inal LATEX macro (“Learning more” section), and
perhaps my original LATEX macro (“My problem”
section) also worked when called without braces:

\newthoughtgroup Here is an example.

6 Victor also showed me a different formulation —one op-
timized for efficiency—that I will not try to explain in this
note.

7 Karl was not quite done yet. His final note was that
if I was willing to stop trying to figure out macros like
these, the “lettrine” package has support for many varia-
tions along the lines I desired. See http://www.tex.ac.

uk/cgi-bin/texfaq2html?label=dropping for mention of the
package and http://www.tex.ac.uk/tex-archive/macros/

latex/contrib/lettrine/doc/demo.pdf for a demonstration
document.



TUGboat, Volume 25 (2004), No. 2 201

It does — a bit of a startling conclusion for me.
There are two possible lessons here. Perhaps

I originally should have posed my real problem to
comp.text.tex rather than searching for “first let-
ter of a string”; I might have been pointed in the
right direction of understanding how TEX macro
calls find their arguments. Or perhaps it paid to
wander in some less-than-optimal directions; my
journey of discovery was enlightening and relatively
painless, and trying to explain it in writing definitely
consolidated my knowledge — and I hope helped
you.

Acknowledgements

I appreciate Victor Eijkhout’s deep understanding
of how the TEX program processes the TEX lan-
guage (his book TEX by Topic has a comprehen-
sive discussion of how TEX processes macros, http:
//www.eijkhout.net/tbt/) and also the deep un-
derstanding of Karl Berry and his suggestions as I
prepared this paper.

Biographical note

David Walden is retired after a career as an engi-
neer, engineering manager, and general manager in-
volved with research and development of computer
and other high tech systems. These days he does a
lot of writing.

� David Walden
East Sandwich, MA
www.walden-family.com/dave


