TUGboat, Volume 25 (2004), No. 2

A non-expert looks at a small TEX macro
David Walden

Introduction

I use TEX a lot, but I seldom dig deeper into how
TEX works than I must in order to address the im-
mediate writing project I am working on. However,
once I think I have figured out something new, I like
to write it up to help me be sure I understand it. In
this piece I describe a simple ITEX macro I wrote,
how the macro evolved, and what I learned along the
way. Perhaps other intermediate users who have a
similar incremental approach to increasing their ca-
pabilities to use TEX will find reading my account a
short cut to understanding of their own.

My problem

In some documents I write, I use an extra blank line
and an extra large letter on the first character of
the first word of a paragraph to indicate a thought
break.

Here is an example.
A couple of years ago, I wrote a simple XTEX
macro to accomplish this:

\newcommand{\newthoughtgroup} [1]{%
\bigskip\noindent{\Large #1}}

199

It was called as follows:
\newthoughtgroup{H}ere is an example.

However, I didn’t like having the first word of
the paragraph in my ITEX file being split as in the
above line. I wished the macro call could be

\newthoughtgroup{Here} is an example.

but still only make the first character of the first
word larger.

Search and discovery

Therefore, I looked around for a way to have the
whole first word be part of the macro argument —
I had to look around since I didn’t understand TEX
macros well enough to be able to figure it out myself.

First approach. I discovered the following pair of
macros on comp.text.tex (April 6, 1994) in a post-
ing by Victor Eijkhout, who was answering a ques-
tion about making the first letter of a word be upper

case:1

\def\CapString#1{%
\CapFirstLetter#1$} %assumes no $ in arg 1
\def\CapFirstLetter#1#2${/,
\uppercase{#1}#2}

Without fully comprehending how Eijkhout’s
macros worked, I changed them as follows to ac-
complish my purpose:

\def\newthoughtgroup#1{/,

\BigFirstLetter#1$}

\def\BigFirstLetter#1#2${/

\bigskip\noindent{\Large #1}#2}

I suspect I am not alone among TEX user in blindly
copying or converting something that already exists
without much understanding of how it works.

Learning more. After using my version of Eijk-
hout’s macros for a while, I decided to try to un-
derstand them in detail. So, I looked at chapter
20 of Knuth’s The TEgXbook;? in particular, I tried
to understand from the first dangerous bend signs
on page 203 to the first dangerous bend signs on
page 204. The following is what I think I learned.3

First, I noted the difference between KTEX
macro definitions and TEX macro definitions. My
original I#TEX macro listed above might be written
as a TEX macro as follows:

1 I’'ve suddenly jumped to TEX style macro definitions in-
stead of the INTEX form of macro definitions because that is
what I found searching comp.text.tex, and for another rea-
son that may become apparent.

2 Addison Wesley, Reading, MA, 1986.

3 1 am not going to repeat the full explanation of a macro
definition or how a macro finds its arguments when called; I’ll
just use what I learned to explain the macros I was working
with.



200

\def\newthoughtgroup#1{/
\bigskip\noindent{\Large #1}}

The TEX form of macro definition includes \def, fol-
lowed by the new macro name (\newthoughtgroup in
our case), followed by what Knuth calls the parame-
ter text which in this case is #1 indicating the macro
has one undelimited parameter, and ending with the
replacement text (\bigskip\noindent{\Large #1}).
The call-time argument of an undelimited parameter
is the first non-blank token,* or the tokens enclosed
in matched braces, after the macro name.
This same format of TEX macro definition is
used for the first macro below.
\def \newthoughtgroup#1{%
\BigFirstLetter#13$}
\def\BigFirstLetter#1#2${/,
\bigskip\noindent{\Large #1}#2}

The parameter text is #1, and the replacement text

is \BigFirstLetter#1$. Thus, when the first macro
is called with

\newthoughtgroup{Here}

the macro is expanded into its replacement text,
which thus becomes \BigFirstLetter Here$.?

But the second macro’s parameters specify a
slightly different form of macro call. The first pa-
rameter (#1) is undelimited and, thus, the macro
call’s first argument is the first (non-blank) token or
tokens enclosed in braces (as with the first macro).
The second parameter, however, is delimited by the
following $ and, thus, the macro call’s second ar-
gument is all the tokens from the end of the first
argument to the $, i.e., to the delimiter.

Thus, when the first macro calls the second
macro, that macro call (\BigFirstLetter{Here$})
finds its first argument to be H and its second ar-
gument to be ere with the $ being discarded after

4 Tokens are described between exercises 7.2 and 7.3 on
pages 38-39 of The TgXbook. As what the user typed
is read into TEX, the letters, numbers, command names,
etc., are stored as tokens. Tokens are internal representa-
tions of the characters in the input stream, with the no-
table exception that control sequences (e.g., \bigskip, \def,
\newthoughtgroup) are each stored as single tokens. Macro
definitions are stored as tokens, and macro calls are processed
in terms of tokens.

5 My macros are usually so simple that I can just think
of the literal characters of the macro definition replacing the
literal characters of the macro call in the sequence of charac-
ters that TEX reads, and so the definition \newthoughtgroup
in this section originally looked funny to me. I wondered why
the replacement text for \newthoughtgroup{Here} wasn’t
\BigFirstLetterHere$ and then wondered why TEX didn’t
report that as an undefined control sequence. The an-
swer, I believe, is that, as noted in footnote 4, TEX pro-
cesses macros in terms of tokens, and the replacement text,
\BigFirstLetter#1$, is manipulated as three distinct tokens:
\BigFirstLetter, #1, and $.

TUGboat, Volume 25 (2004), No. 2

matching. In turn, the call to \BigFirstLetter is
replaced by

\bigskip\noindent{\Large H}ere}

producing the desired vertical space, no indentation,
a big H, and normalsize ere.

Second approach. I happily used these macro
definitions for a long time until I discussed them one
day recently with Karl Berry. He pointed out that
my version of Victor’s formulation can be changed
to remove that restriction on including $ in the ar-
gument. He explained that the second argument’s
delimiter doesn’t have to be a character; it can be
an arbitrary control sequence (even an undefined
control sequence), and he wrote down the following
for me:©

\def\newthoughtgroup#1{/
\BigFirstLetter#1\enddavesmacro}

\def\BigFirstLetter#1#2\enddavesmacro{’
\bigskip\noindent{\Large #1}#2}

Third approach. That sounded like a good im-
provement, but then Karl said, “Personally, I would
be inclined to a different approach, that has the ben-
efit of being called without braces— which thus ad-
dresses your original reason for moving from a macro
called with \newthoughtgroup{H}ere.” He showed
me the following definition for \newthoughtgroup:

\def\newthoughtgroup#1{J,
\bigskip\noindent {\Large #1}}

When called, for example, as
\newthoughtgroup Here is an example.
the argument that replaces the parameter (#1) is the
H, i.e., the first non-blank token.”
Conclusion

As T started drafting this conclusion, it gradually
dawned on me that the Third Approach TEX macro
is the same as the TEX transliteration of my orig-
inal WTEX macro (“Learning more” section), and
perhaps my original WTEX macro (“My problem”
section) also worked when called without braces:

\newthoughtgroup Here is an example.

6 Victor also showed me a different formulation — one op-
timized for efficiency —that I will not try to explain in this
note.

7 Karl was not quite done yet. His final note was that
if T was willing to stop trying to figure out macros like
these, the “lettrine” package has support for many varia-
tions along the lines I desired. See http://www.tex.ac.
uk/cgi-bin/texfag2html?label=dropping for mention of the
package and http://www.tex.ac.uk/tex-archive/macros/
latex/contrib/lettrine/doc/demo.pdf for a demonstration
document.



TUGboat, Volume 25 (2004), No. 2

It does— a bit of a startling conclusion for me.

There are two possible lessons here. Perhaps
I originally should have posed my real problem to
comp.text.tex rather than searching for “first let-
ter of a string”; I might have been pointed in the
right direction of understanding how TEX macro
calls find their arguments. Or perhaps it paid to
wander in some less-than-optimal directions; my
journey of discovery was enlightening and relatively
painless, and trying to explain it in writing definitely
consolidated my knowledge—and I hope helped
you.

Acknowledgements

I appreciate Victor Eijkhout’s deep understanding
of how the TEX program processes the TEX lan-
guage (his book TEX by Topic has a comprehen-
sive discussion of how TEX processes macros, http:
//www.eijkhout.net/tbt/) and also the deep un-
derstanding of Karl Berry and his suggestions as I
prepared this paper.

Biographical note

David Walden is retired after a career as an engi-
neer, engineering manager, and general manager in-
volved with research and development of computer
and other high tech systems. These days he does a
lot of writing.

¢ David Walden
East Sandwich, MA
www.walden-family.com/dave

201



