
Server side PDF generation based on LATEX templates

ISTVÁN BENCZE, BALÁZS FARK, LÁSZLÓ HATALA, PÉTER JESZENSZKY
University of Debrecen
Faculty of Informatics
Egyetem t.
H-4032, Debrecen, Hungary
jeszy (at) inf dot unideb dot hu

Abstract
We present a web-based addressbook application that can generate customized PDF documents using LATEX template
documents. The application is hosted on a server and users can access its functions using a web browser. A working
LATEX system must be installed only on the server side. Each registered user can manage his or her own addressbook.
They can upload LATEX templates and can generate multiple PDF documents from a template. Templates are customized
to each selected recipient, substituting the appropriate addressbook data element into them. An example application
might be an invitation card or a letter that must be sent to different recipients. Moreover, users can create simple
documents (e.g. letters) using builtin templates and a simple web-based document editor.

Introduction
The Portable Document Format (PDF) has become
one of the most widely used electronic document for-
mats for publishing documents on the Web. It has
many advantages that made it very popular. Some of
them are the following:

• It is an open standard.
• It is device and platform independent.
• It is suitable for both viewing and printing.
• It is a file format, not a programming language like

PostScript. A PostScript file contains code that
must be interpreted, whereas a PDF file is rather
a description, that results in faster and computa-
tionally less expensive processing.
• PDF files are searchable.

The goal of this paper is to give an overview of
the tools and techniques that can be used to generate
PDF documents in Java applications.

The first section presents a brief overview of the
family of PDF tools that are available in Java.

In the following section we present our solution
that is based on LATEX template documents and on
access to an external LATEX system.

The last section is devoted to our sample LATEX
template-driven web application that generates PDF
documents.

Overview of creating PDF documents in
Java applications using conventional tools
This section gives an overview of the widely used so-
lutions for the dynamic creation of PDF documents in
Java applications. These tools can be classified as:

• XSL-FO formatters,
• PDF class libraries,
• reporting tools.

In the following we restrict our attention to open
source solutions.

XSL-FO formatters
XSL-FO is an XML vocabulary for document format-
ting, a TEX-like typesetting language that uses XML
syntax. It is a part of XSL, a family of W3C stan-
dards for the transformation and formatting of XML
documents.

Because of the verbosity of the syntax, XML doc-
uments using the XSL-FO vocabulary are not edited
manually. In order to use XSL-FO one needs an XML
document and an appropriate XSLT stylesheet to trans-
form it into another XML document that uses the
XSL-FO markup vocabulary. (The transformation is
executed by an XSLT processor, which is commonly
available in Java environments.)

Then the XSL-FO document is converted into a
readable or printable format by a so-called formatter.
The most widely used output format is PDF.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 51



István Bencze, Balázs Fark, László Hatala, Péter Jeszenszky

Although the current version of the XSL specifi-
cation became a W3C recommendation in 2001, none
of the existing XSL-FO software products (including
commercial products) implements the full standard.

Apache FOP [3] is an open source formatter, im-
plemented in Java, that is a partial implementation of
the XSL specification. FOP provides a Java API to ac-
cess all of its functionality, thus it can be embedded
into Java applications without difficulty.

XSL-FO might be a good solution if your data is
in XML. There are ready-to-use XSLT stylesheets for
standard XML document formats, such as DocBook
XML, to transform them into XSL-FO. Writing your
own stylesheet is not an easy job. Although there are
graphical authoring tools, a sound knowledge of XSLT
and XSL-FO is required.

PDF class libraries
Several Java class libraries are available to create and
work with PDF documents. Unfortunately most of
them are commercial products.

For example, fourteen PDF class libraries are listed
in the appropriate category of the Google Directory
[1] at the present time, and only three of them are
available as open source software. Another reference
[2] provides a list of open source PDF libraries in Java
and contains six entries at present.

PDF class libraries can be classified as low-level or
high-level.

Low-level PDF libraries provide low-level access to
the contents of PDF documents and allow the creation
of PDF documents in Java applications. To work with
these APIs the programmer must be quite familiar with
the PDF document format. It might be very difficult
and cumbersome to use them.

In contrast, high-level PDF libraries use object
models to model the logical structure of PDF docu-
ments. These logical models consist of Java objects
that represent building blocks such as pages, chapters
and paragraphs. Manipulating the object model pro-
grammers can access and modify the content of the
underlying PDF documents.

PJX

A typical example of a low-level PDF library is PJX
[4]. In order to use it one must know all about the
PDF document format.

PDFBox
PDFBox [5] is a high-level class library. According to
the project’s web site it is used in several open source
and commercial software products.

It allows the programmer to access and manipulate
individual pages within a document. The content of
pages can be accessed as a stream of objects, and it is
easy to add text and images.

Unfortunately the API does not provide access to
higher level building blocks such as chapters or para-
graphs. For example, in order to add some text one
must position to the right location within a page.

Although the API documentation is quite good
and there are also some example programs and a de-
veloper’s guide, unfortunately the latter is not very
extensive.

iText
iText [6] is another high level class library that is more
user friendly than PDFBox. It uses a higher level ab-
straction of documents. The building blocks of doc-
uments are chapters, sections, paragraphs, list, tables
etc. This model looks like a document object model of
an XML document. It is well documented; a very good
tutorial is also available. According to the project web
site, a book on iText will be published by Manning
Publications this year.

Reporting tools
These are software tools that can generate business re-
ports based on templates and data in databases and
other data sources. Visual report designers may assist
in the preparation of the reports. Templates are typi-
cally stored as XML documents that can also be edited
by hand.

For a comprehensive list of open source reporting
tools see [7]. Reporting tools offer varying features
and capabilities; for example, they support different
data sources and output formats. Some of them can
produce PDF output and some can not.

JasperReports
JasperReports [8] is an excellent and powerful open
source reporting tool that is written entirely in Java. It
has a Java API that provies full programmatic control
over the entire reporting process form report defini-
tion to report generation.

52 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Server side PDF generation based on LATEX templates

Report templates are defined by XML documents
or defined programmatically, but open source and com-
mercial visual report designer tools are available too.
Compiled templates can be populated with data that is
passed as parameters by the application or that comes
from various data sources. A wide range of data sources
is supported, such as relational databases (via JDBC
and also via Hibernate), EJBs, XML documents and
CSV files. When a template is filled the resulting re-
port can be viewed, printed or exported to PDF, XML,
HTML, CSV, XLS or RTF.

JasperReport is a professional-quality tool with
many other features, such as i18n and integrated chart-
ing support.

DataVision
DataVision is an open source reporting tool that is
very similar to JasperReports. It is also open source
and written in Java, and it can be incorporated into a
Java application easily. Reports can be created using a
visual report designer tool and stored as XML files that
can also be edited manually. The generated reports can
be viewed, printed and exported to tab or comma-
separated text files, DocBook, HTML, PDF and XML.

Compared to JasperReports, it has fewer features,
for example it supports only relational databases (via
JDBC) and plain text files as data sources.

It is mentioned here because to the best of our
knowledge it is the only reporting tool than can ex-
port to LATEX. Note that it uses LATEX only as an
output format; the user may use the resulting LATEX
documents to produce PDF or PostScript files. Data-
Vision itself does not interpret LATEX files to produce
PDF, it uses the iText PDF library instead to generate
PDF files directly.

Problems with the above solutions when
using LATEX templates
Some problems with the solutions presented in the
preceding section are summarized below.

Problems with XSL-FO

Lack of stylesheets for non-standard XML formats
If data is stored in a non-standard XML format
and a stylesheet is not available to transform it
into XSL-FO, it may be a difficult task to create
an appropriate stylesheet.

Problems with PDF class libraries
Lack of flexibility As documents are created program-

matically, any change in the output PDF file re-
quires modification of the source code and the
application must be recompiled.

Difficulty of use Low-level PDF class libraries require
in-depth knowledge of the PDF format, making it
extremely difficult to generate a PDF file. Even in
the case of high-level libraries it may be difficult
to achieve the right text layout.

Problems with report generators
Non-general purpose They are useful for generating

business reports that contain tables and charts,
based on data sources. They may not be the best
solution to generate conventional documents such
as letters. Typesetting large chunks of text and
achieving the right layout may be difficult.

Common problems
Quality The aesthetic quality of the generated PDF

documents is often poor compared with PDF files
that are produced by LATEX.

Java-TEX integration
Accessing TEX from Java
TEX and LATEX offer the highest typographic quality.
They can produce publication-quality PDF files with
a professional appearance. It would be very useful if
Java applications could benefit from it.

Unfortunately we have no knowledge of any ex-
isting standard tool to integrate Java and TEX.

Such an integration may work as follows. To pro-
duce high quality PDF output a Java application gener-
ates a TEX file. This is a trivial task since TEX source
is plain text. Then the resulting TEX file is passed to a
TEX system, that will turn it into DVI, PostScript or
PDF.

The TEX system is accessed by using the java.
lang.Runtime class, which allows the Java applica-
tion to interface with the operating system. The appli-
cation can have complete control over the TEX compi-
lation process, it can interrupt the process if necessary
and it also has access to the files that are produced by
the TEX system.

Extending the above scenario with the use of TEX
templates offers greater flexibility. In this case the Java
application does not generate a TEX file from scratch,

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 53



István Bencze, Balázs Fark, László Hatala, Péter Jeszenszky

but it reads a template and populates it with data.
(Report generators operate in this way.)

Template engines
As described in Wikipedia, a template engine is a piece
of software that processes an input text (the template)
to produce one or more output texts. Template en-
gines are widely used and very popular in web appli-
cation development to create dynamic web content.
Their most important advantage is that they separate
application logic from web page layout.

Many Java-based template engines are available;
see [10] for a list of open source Java template en-
gines. They are used not only on the server side to
generate HTML, but also they may be used in other
applications to produce arbitrary textual output, even
source code.

Generating LATEX sources using FreeMarker
FreeMarker [11] is one well-known general-purpose
open source template engine implemented in Java. Al-
though it is typically used to generate HTML web
pages in servlet-based MVC applications, we use it to
produce LATEX sources based on templates, that are
turned into PDF.

FreeMarker has a powerful template language. Di-
rectives such as if, switch and list provide pro-
gramming capabilities, and other common program-
ming language constructs as variables, expressions and
user defined functions are also available in templates.

Just as in the case of web applications the tem-
plate engine is frequently used to incorporate database
content into templates. In the example below we use
Hibernate to access a relational database.

Hibernate [12] is the most popular solution for
object-relational mapping (ORM) in the Java world.
Hibernate provides transparent persistence for Java
objects, that allows applications to store, update and
delete objects in a relational database. It also provides
query and object retrieval facilities. It is simple to use
FreeMarker and Hibernate together.

Here is an example template fragment for produc-
ing a LATEX table with FreeMarker:

\begin{tabular}{ll}
\toprule
Title & ISBN\\
\midrule
<#list HibernateUtil.query("from Book b

where b.year = 2006 order by b.title")

as book>
${book.title} & ${book.isbn}\\

</list>
\bottomrule

\end{tabular}

In the example, HibernateUtil is a helper class
whose static query(String query) method executes
a HQL query,1 and returns query results as a list of
objects. Here we retrieve all books in the database
that are published this year sorted by title. The table
contains titles and ISBN numbers of the books and the
output would look like this:

Title ISBN

Aglaja. Apokrif 9630779668
Kazár szótár 9637448306
Utazás a tizenhatos mélyére 9631425169

Related projects
Although they have not influenced our work, the NTS
and εXTEX projects must be mentioned here.

NTS stands for New Typesetting System. The goal
of the project was to re-implement TEX in Java, but it
was discontinued.

NTS has been replaced by εXTEX [13], that is a
TEX-compatible typesetting system written in Java.
Originally it was started as an attempt to enhance
NTS, but later the entire system was rewritten from
scratch.

The system is under development. Although a
downloadable installer is available at the website of
the project, the development is currently in pre-alpha
stage.2

The project is a very promising initiative, but
there is much to do. If it becomes available it will
provide a more flexible Java-TEX integration.

The TEX Catalogue [14] contains two packages
that support database access, namely SQLTeX and La-
TeXDB.

SQLTeX is a Perl script that reads an input TEX
file containing SQL commands and produces an out-
put in which the commands are replaced with the
results. LaTeXDB is a similar preprocessor but it is

1HQL stands for Hibernate Query Language, the fully object-
oriented query language of Hibernate.
2Namely, it is only a development release that is not “feature com-
plete”. The next so-called alpha release will be delivered for more
general testing.

54 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006



Server side PDF generation based on LATEX templates

implemented in Python. Both packages support only
MySQL databases.

In either case, TEX input files may contain con-
structs that look like commands (for example \sqldb,
\sqlrow or \texdbconnection) but are not in fact
TEX commands. (This means that TEX files contain-
ing them will not compile.) They will be interpreted
and replaced by the preprocessor to produce TEX files
that should compile without any errors. In that sense,
SQLTeX and LaTeXDB operate in a similar way to
FreeMarker, but using TEX syntax.

A sample web application generating PDF

We have developed a web application to demonstrate
the above approach in practice. Using the web appli-
cation requires registration. Each registered user can
manage his or her own addressbook and can generate
PDF files based on LATEX templates. The user selects
entries of the addressbook and these are used to pop-
ulate the template with data. A separate PDF file is
generated for each selected entry that will be offered
for download in a single ZIP file.

For example, this can be used to generate letters
in PDF that are customized for each recipient. The
PDF files are produced by LATEX, thus guaranteeing
a certain quality. Many users do not have LATEX in-
stalled on their computer, but via the web application
they have access to a LATEX system. (It is also possible
not to use the addressbook at all, and simply produce
single PDF files.)

After logging in users have the following options:

• manage addressbook (add, delete and modify en-
tries),
• upload an existing template and generate PDF(s),
• create a new template with a simple web-based

editor and generate PDFfile(s).

If the third option is selected the user is presented
with a list of predefined templates. These templates
are LATEX document skeletons that are stored on the
computer hosting the web application. The follow-
ing templates are installed by default: article, book,
report, letter, empty.3 The document editor is initial-
ized with the selected template.

The templates that are uploaded or edited by the
user should be valid LATEX documents that should
compile without any errors, although they may con-

3Additional templates can be added easily.

tain constructs that have special meaning. Text sur-
rounded by ‘@’ characters is a variable reference, and
a replacement text will be substituted for it.

Some variable references have a predefined mean-
ing, for example

• @current.name@ means the full name of a person
in an addressbook entry;

• @current.name.firstname@ is the first name of
a person in an addressbook entry;

• @current.addresses.country@ is the country
of the default postal address of a person in an
addressbook entry;

• @current.addresses.home.zipcode@ means
the zip code of the home address of a person in
an addressbook entry;

• @current.phonenumbers.office@ is the office
telephone number of a person in an addressbook
entry.

These variable references can be used to generate
multiple PDF files from a single template based on ad-
dressbook entries. Any other variable references such
as @signature@ are called static variable references,
which will be replaced by static replacement text.

The user is presented with a list that contains all
static variable references that occur in the template.
For each of them a replacement text may be specified.

The next step is to select the output format, the
possible choices being DVI, PostScript and PDF.

If the template does not contain any variable refer-
ences, or contains only static variable references, then
a single result file will be generated. Otherwise as the
last step the user must select at least one addressbook
entry, and a DVI, PostScript or PDF file will be gener-
ated for each of them.

The results are offered for download in a ZIP file
that contains the generated DVI, PostScript or PDF
file(s) together with the log file(s) and LATEX source(s).

The \write18{command} construct allows the
execution of operating system commands and is a po-
tential security risk. Thus, \write18 should be dis-
abled, especially in web applications such as this (nor-
mally this is the default in TEX systems).

The following technologies and software products
were used in the development: JDK 5.0, Apache Tom-

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 55



István Bencze, Balázs Fark, László Hatala, Péter Jeszenszky

cat, JavaServer Pages (JSP), PostgreSQL, and Hiber-
nate. Note that we did not use FreeMarker, as there
was no need for such a complex template engine in
this application.

References
[1] A list of PDF class libraries for Java.

http://www.google.com/Top/Computers/
Programming/Languages/Java/Class_
Libraries/Data_Formats/PDF/

[2] Open source PDF libraries in Java.
http://java-source.net/open-source/
pdf-libraries

[3] Apache FOP.
http://xmlgraphics.apache.org/fop/

[4] PJX.
http://www.etymon.com/epub.html

[5] PDFBox — Java PDF library.
http://www.pdfbox.org/

[6] iText, a free Java-PDF library.
http://www.lowagie.com/iText/

[7] Open Source Charting & Reporting Tools in
Java. http://java-source.net/
open-source/charting-and-reporting

[8] JasperReports.
http://jasperreports.sourceforge.net/

[9] DataVision.
http://datavision.sourceforge.net/

[10] Open Source Template Engines in. Java
http://java-source.net/open-source/
template-engines

[11] FreeMarker.
http://freemarker.sourceforge.net/

[12] Hibernate. http://www.hibernate.org/

[13] εXTEX. http://www.extex.org/

[14] The TEX Catalogue Online.
http://texcatalogue.sarovar.org/

56 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006


