
A pdfLATEX-based automated journal production system
THIERRY BOUCHE
Cellule MathDoc
UMS 5638 (Université Joseph Fourier & CNRS)
100, rue des Maths
Domaine Universitaire
38402 St-Martin-d’Hères, France
thierry dot bouche (at) ujf dash grenoble dot fr
http://www.cedram.org/

Abstract
We present the recent development of a production system for mathematical serials with both an electronic and paper
version. The challenges were many: (i) no house style layout should be imposed, as the journals come from different
publishing houses and may have very different typographical options; (ii) produce screen-optimised and printer-friendly
output at once; (iii) avoid any duplication of information so that all aspects of the publications are always in sync
(Web site metadata, table of contents. . .), thus (iv) generate on the fly article’s page numbers, XML metadata at the
published volume level from one master LATEX source file tree. Using available technology (pdflatex, pdfpages.sty and
\write18), the proposed solution to these problems appeared amazingly simple and easy to use. However, we’ll show
that there is quite some room left for improvement.

Introduction
At the end of fall 2003, discussions began in the French
mathematical community about a consolidated effort
for high-quality online publishing of our academically
(meaning: independent and learned society) published
research journals. One driving force of this project
was the achievements of the NUMDAM digitisation
program, which has more or less settled standards for
delivery and navigation of a significant part of the
mathematical literature (http://www.numdam.org).

Among the prominent features of NUMDAM, we
have the rich set of metadata for each article, includ-
ing tagged bibliographies, and the powerful search en-
gine associated with it, written by Claude Goutorbe of
Cellule MathDoc. Thanks to various matching tools
provided by the AMS or developed internally, what-
ever sensible link can be provided is added to the Web
interface, which is something our users very much
appreciate.

It appeared after some investigations that what
was almost straightforward to achieve in a retrodigiti-
sation process could become a nightmare to produce
in a natively digital environment:

1. Although all journals under consideration were
produced with some flavour of TEX, each had a

specific format with a primarily paper-only ap-
proach to the publication process.

2. Although all of them had a Web site, none of
them had reliable processes to control whether
the metadata exposed on this site was consistent
with the reality of the paper issues.

3. Although bibliographies are such a routine ob-
ject in the learned publication business, we could
count over 20 ways of “structuring” them in the
TEX files.

It turned out that, although we’re now in the
21st century, the rather quaint copy-paste operation
(a typical late 20th century hobby) was the main pro-
cedure on which all these journals relied for the most
typical aspect of serials publishing: exposing the same
data in many formats and contexts. Let’s think for a
moment about the starting page number of an article,
which is a rather critical datum if you hope to find it
somewhere. It will be printed within the article itself
(where it is determined only at the last step of pro-
duction, as it depends on the lengths of all the same
volume’s articles before it), probably an inner table
of contents, possibly a back cover table of contents,
presumably a Web table of contents, not to mention

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 45

http://www.numdam.org

Thierry Bouche

an eventual annual index, or third party uses of the
data, as current contents or indexing databases ser-
vices, that could nowadays be fed through OAI-PMH
or RSS feeds. . .

For instance, let me give the following (anony-
mous) example: a respected journal once published
a paper which, for some obscure (possibly scientific!)
reason, was ultimately shortened by a paragraph or
two in the proof reviewing stage. It was the first pa-
per of the first issue of its year of publication in that
journal, and was paginated 1–27 (hard coded in the
TEX source) although its final form had 26 pages. The
next article was thus paginated starting at p. 29 but
the printer saved the 2 white pages. Thus, all the
2000 printed page numbers in this volume are wrong
except the first 26.

Last minute changes and copy-paste are the two
devils in journal production. A more obvious exam-
ple: an accepted paper happens to have a serious sci-
entific failure which is found after all the publishing
process has been done. The author informs the jour-
nal in a hurry that they have to cancel it, of course
they do. Now, all pages numbers are wrong for the
following articles, go figure where they have already
been disseminated!

In a retrodigitisation process, these issues are just
annoying, but all you aim at is to create accurate and
structured metadata describing an existing paper col-
lection. Moreover, as it is a batch process on a large
amount of similar data, high quality can be achieved
at a reasonable cost. Production cost and complexity
is an issue for our small journals, which heavily rely
on voluntary effort by researchers in their spare time
(as well as Cahiers GUTenberg which will enter the
scene later on).

Good solutions to complex problems
are simple
So. How do you produce a journal in such a way that
you have detailed, accurate metadata in a versatile for-
mat, a powerful Web site with screen optimised ver-
sions of the articles, and yet the same paper version?

After some time spent in reviewing the existing
more or less full answers to this question, mostly based
on scripts, heuristics, external programs or auxiliary
files, I happened to find one so simple that I think it
deserves to be detailed here. In fact, it is so simple
that I feel a little embarrassed to show the main steps

in the small \includearticle macro on p. 48 while
I spend the rest of the text discussing the troubles.
At the time of this writing, 11 issues from 3 journals
(including the latest Cahiers GUTenberg) were made
using this tool.

This solution has been made possible rather re-
cently thanks to the collaborative effort of many tal-
ented developers, and although I could achieve this
because of the power of TEX macro language, I must
confess that I never use TEX itself, but engines that un-
derstand an extension of TEX’s primitives, yet have a
full macro interpreter onboard, namely: pdfTEX with
\write18 enabled and (soon) Tralics.

Here is a short description of the system.

Principles
1. Any metadata is input at most once in the system,

preferably in the relevant file.

2. Anything that is not deterministically determined
by a given file, should stay away from that file.

3. Anything that can be computed, should be com-
puted!

4. Do not reinvent the wheel, do not invent exotic
formats that no one will master, stay pragmatic
but avoid bottle-necks that would impact versatil-
ity of future use or quality of the output.

Implications
1. A journal is a set of volumes, made of issues, made

of articles, plus various other material, mostly
constant. The journal description belongs to the
journal file, the volume description to the volume
file, etc. Notice that a page number is essentially
a by-product of a completed issue; except for the
first page of an issue, it should be set nowhere.

2. As it is the de facto standard of math writing,
AMSLATEX was chosen as the input format, with
the minmal set of extensions as required by the
subsequent processing. BibTEX was chosen for
the bibliographies.

User interface
Of the relevant parts of a journal, I didn’t implement
the volume level (this would save copying one number)
but tried to define an issue.

Claim 1 An issue is entirely determined by

46 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

A pdfLATEX-based automated journal production system

• its bibliographic data (journal, year, month, volume,
issue),
• its first page number,
• the ordered list of the articles,
• and optional additional material such as advertis-

ing, disclaimers, obituaries. . .

I write this (and only this) in the issue file:
\documentclass[francais,CG,Volume,

Couverture]{cedram}
\IssueInfo{}{46-47}{avril}{2006}
\SetFirstPage{1}
\SpecialNo{Les fontes (Brest 2003)}
\begin{document}
\makefront

\includearticle{edito}
\includearticle{atanasiu}

[...]
\includearticle{devroye}
\includepub{pubyannis}

\makeback
\end{document}

The \makefront command makes the front mat-
ter of the paper volume (including the table of con-
tents), \includearticle includes the corresponding
article, \makeback makes the back matter, etc.

Each article obeys an AMSLATEX structure:
\documentclass[CG,francais]{cedram}
\usepackage{x,y}
\title[Formatons les formats de fonte]

{Formatons\\ les formats de fonte !}
\author{\firstname{Luc} \lastname{Devroye}}
\address{McGill University,\\
etc.}
\thanks{L’auteur...}

Assuming that all the articles and other material
are in final form (which means that they are in a direc-
tory of their own, and that an error-free source master
file compiled with pdflatex has been compiled success-
fully with all cross-references resolved), when we com-
pile (twice) the issue file, it will produce one big PDF
comprising all inner pages of the paper volume; this
is sent to the printer. It will also produce the pages of
the cover, and an XML file with all the metadata for
this volume. In fact, as a side effect, you’ll also find
in each article subdirectory a hyperlinked PDF with
a first page added, so that everything is ready at once
for shipping both the paper and electronic editions of
that issue.

Architecture
LATEX is a “document preparation system”; it oper-
ates at the document level. I’m not convinced by sys-

tems that address the abovementioned issues by con-
sidering articles as subdocuments of a master docu-
ment: they require a high level of normalisation of
the sources to avoid conflicts (different macros with
same names, cross references, etc.), many redefinitions
of standard user commands which is very risky since
users like shortcuts, and would yield broken links
when you provide an article on its own. We can’t ex-
pect that mathematicians will obey such strict rules,
nor TEXnicians! Thus the relevant document unit in
a journal is an article, preferably isolated in a spe-
cific directory in order to avoid conflicts with input
of figure names, etc. It should be compiled individu-
ally and produce a nicely hyperlinked and searchable
vector PDF. The metadata relevant to the article are
standard: authors’ data, title, abstract, keywords, sub-
ject classification, dates, bibliography. The volume,
issue, page numbers are not part of the article itself,
as it can be moved at any time without affecting its
scientific content, thus without edits. Of course, an
article is prepared for a journal, so that info should
be present in the article file, and determine the layout
and many typographical options.

Starting from the obvious observation that no-
body but TEX knows how long an article is, when
considering its source, I eventually understood that the
only reliable solution for setting error-free page num-
bers was to ask TEX to do so. Of course, you could
compile a volume with a perl script that would com-
pute things, compile articles, examine the produced
PDF to deduce page numbers, modify the articles, re-
compile, etc. These are heuristics, and will be broken
at the first discrepancy between the paper volume and
the model volume assumed by the script. In some
sense, as long as articles have a “bibliographical” refer-
ence, we’re still in the retrodigitisation paradigm when
producing an electronic edition: it is the paper model
that endows the article with its metadata, so it is by
assembling the paper volume that we can deduce the
required data to get the final articles. But, more gener-
ally, the same applies to purely electronic serial publi-
cations: even the table of contents of an incrementally
growing online volume is something that is generated
as the last step when the latest article is added. Only
flat repositories like arXiv can bypass this question.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 47

Thierry Bouche

Implementation
Articles
As far as articles are concerned, the cedram class is
simply amsart, with a few features added. Namely:

• some extra metadata fields (provision for bilin-
guism, journal dates, . . .);
• the automatic inclusion of a configuration file at

\begin{document};
• a ‘lastpage’ trick;
• the facility to store the literal TEX code of a macro

argument or an environment’s contents and write
it to auxiliary files in various formats (by over-
loading standard macros);
• hooks added in the presentation code so that all

known layout options can be easily implemented;
• some ad hoc definitions for various theorem styles;
• a journal option to load the journal file defining all

constant metadata and make-up for that journal;
• some more class options, mostly for compatibility

(by default, the class requires hyperref, pdflatex,
T1 encoding, Latin Modern fonts, . . .).

There is a light version called ‘special’ for things
that should look like an article but do not have its full
features (editorial statements, e.g.).

When compiling an article at its final stage, it
reads a possible configuration file that might override
options and provide the needed metadata (issue info,
first page), writes out the screen-optimised PDF (with
a first page added, kind of an offprint cover, meant
to identify more clearly the article origin when it will
travel the net on its own), a .cdrsom file which con-
tains a TEX command providing all the data pertain-
ing to this article that could be used to generate the
corresponding TOC line in whatever format, and a
.cdrxml file that contains an XML-like snippet with
all the metadata for this article.

Volumes
A volume is made using the same cedram class, with
an option ‘Volume’, so that all the typographical op-
tions are the ones of the journal. There are some spe-
cific options to this mode of operation, such as ‘Cou-
verture’ which will generate the cover, ‘CouvTires’ the
covers for author’s (paper) offprints . . .

Let me explain what it does line by line, which
will show how it works, and why it is so simple and
reliable.

\documentclass[francais,CG,Volume,Couverture]{cedram}

This sets the volume mode for Cahiers GUTenberg
(CG), with French hyphenation patterns for the edi-
torial material surrounding articles, and will generate
a cover.
\IssueInfo{}{46-47}{avril}{2006}
\SetFirstPage{1}
\SpecialNo{Les fontes (Brest 2003)}

These set variables: issue number (CG has no vol-
umes), month and year of publication, starting page
number of the first article, title of the issue when rel-
evant. These variables are available during the whole
LATEX run, as well as written to auxiliary files.
\begin{document}
\makefront

In article mode, many things happen at the point
of \begin{document} — but not in volume mode, as
far as I can tell! The \makefront call could have
been automated here. In any case, this command
sets \pagestyle{empty}, and inputs CG-front.tex,
which in turn inputs the definition files for the front
matter (title page, administrative data, summary). It
also inputs a void file that can be populated locally for
special occasion issues. The summary is a container
constant source file making use of the issue variables
and inputting a summary data file with some fixed
name which is generated later on (thus the necessity of
two runs to complete an issue). In fact, the summary
is a ‘special’ item, thus a complete LATEX file which
is compiled during the run, in a subprocess similar
to the ‘article’ case below. The \makefront macro
ejects all remaining material to be printed, goes to the
next odd page, and sets the page counter of the master
document to the value given by \SetFirstPage.

\includearticle{devroye}

This is the main operation, but maybe the sim-
plest one. It is so simple that I include its entire defi-
nition here:
\def\includearticle#1{%

\IncludeArticle[2]{#1/}{#1}%
\ifx\@empty\articlesXML

\gdef\articlesXML{#1/#1.cdrxml}%
\else

\g@addto@macro\articlesXML{ #1/#1.cdrxml}%
\fi
\ifx\@empty\articlesSOM

\gdef\articlesSOM{#1/#1.cdrsom}%
\else

\g@addto@macro\articlesSOM{ #1/#1.cdrsom}%
\fi

48 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

A pdfLATEX-based automated journal production system

As we can see, \includearticle is just a short-
hand for the more general \IncludeArticle that as-
sumes that the article’s master TEX file resides in a
subdirectory with the same basename. Moreover, it
stores in a macro the list of .cdrxml and .cdrsom
files that will be dealt with at the end of the run.
Going back a few lines in cedram.cls, we have:
\def\IssueInfo#1#2#3#4{%
\tkkv={\ScreenMode\issueinfo{#1}{#2}{#3}{#4}}%
\issueinfo{#1}{#2}{#3}{#4}}

\let\articlesXML\@empty
\tkkp={\setpage}
\def\pdflatex{%

pdflatex --shell -interaction=nonstopmode }
\newcommand\IncludeArticle[3][2]{%
\cleararticlepage
\immediate\write18{echo ’\the\tkkv

\the\tkkp{\thepage}’ > #2#3.cfg}%
\immediate\write18{cd #2 && \pdflatex #3}%
\ifcdr@redoBibtex
\immediate\write18{cd #2 && bibtex #3}%
\immediate\write18{cd #2 && \pdflatex #3}%
\immediate\write18{cd #2 && \pdflatex #3}%
\fi
\immediate\write18{cd #2 && \pdflatex #3}%
\includepdf[pages={#1-},noautoscale]{#2#3.pdf}%

}

The main article operation is thus the following.

1. The last page is ejected and, depending on the
journal style, we go to the next odd page before
dealing with the article.

2. The issue info has been stored globally and is
written to the auxiliary file for the article, to-
gether with the current page number (a traditional
\write could have been used here as well).

3. Then, the article is recompiled; this will use the
given information because it reads the just created
.cfg file at \begin{document}. Optionally bib-
tex and further pdflatex calls are executed.

4. Finally, the newly generated PDF is included (ex-
cept, of course, for its first page) in the master
volume being produced.

The trick here is that we can trust the page counter
of the master document: this is the actual paper vol-
ume to be printed! Thus we can reasonably be sure
that the value of \thepage is the correct value for the
first page of the next article, which will be included
precisely at this page. And this will remain true next

time as we input the final PDF of the article right
away.
\includepub{pubyannis}
\makeback
\end{document}

These last lines show that we can add advertising,
or anything else. The counterpart of \makefront is
\makeback: it includes almost static pages (instruc-
tions to authors, subscription info, etc.). In fact, many
things happen at \end{document}, which is the only
place where everything is known about the issue in
final form: an XML file is written by processing the
master’s and all articles’ XML snippets, summary data
is generated by concatenation of all articles’ summary
lines, and the cover is built by compiling the adequate
template.

Metadata and format questions
As long as printer and screen (Web) PDF files are con-
sidered, the described system has proved to work quite
effectively. But, when you wish to produce versatile
metadata from LATEX source, you can expect troubles.
All typeset material is done by LATEX, thus the above-
mentioned .cdrsom files are perfect, thanks to the
possibility of redefining any necessary macro on the
fly to have different views on the same data (for in-
stance, one journal has three summaries in it: one in
French, with corresponding abstracts, another in En-
glish, both at the beginning of the paper volume, and
another one set differently on the back cover, where
actual titles are used: this is why I store nine fields in
the .cdrsom files).

Apart from pragmatic reasons discussed earlier,
there is a fundamental reason to prefer TEX source as
the master for all metadata: math authors write their
papers with TEX, and validate their scientific content
on the printed result, which is where last minute cor-
rections happen. With a full XML process, outputting
TEX code after automated transformations, the cor-
rection process would be much more difficult to con-
trol, and could yield cases where there is simply no
way to obtain the desired physical representation of
the article, which is at the present time still the only
long-term reference for the scientific content of the
paper.

The first version of the cedram tools assumed a
lot of postprocessing of the ‘pseudo’ XML files output
by LATEX. We had the TEX code somewhat sanitised,

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 49

Thierry Bouche

textual material converted to UTF-8 with variable suc-
cess, and math expressions exposed as GIFs on our
Web interface, thanks to latex2html.

My first idea in this respect was to use the kind of
trick that is exploited in hyperref to produce properly
encoded PDF bookmarks in order to write Unicode
files. I was not able to achieve this myself. I also
had a look at TEX4Ht which sounds like a good con-
version tool from TEX to XML or HTML+GIF as an
alternate presentation format. I gave up because of
the huge number of parameters and files necessary to
understand before producing output only somewhat
similar to my expectations.

I am currently experimenting with Tralics [1],
which might be the killer application: instead of ask-
ing pdflatex to write out a pseudo XML snippet for
each article, that will need further processing, it can
easily write structured code tweaked for Tralics, where
all the data is the literal unexpanded TEX string, leav-
ing all the conversion process from TEX data to Tral-
ics, which is very good at doing so.

It even parses BibTEX files, but might also easily
be used to structure thebibliography environments!
For example, here is an excerpt from the file generated
by the compilation of our example article.
\begin{xmlelement}{article}
\xmlbibcite {b8}{8}
\xbox{pagedeb}{149}
\xbox{pagefin}{166}
\begin{xmlelement}{auteur}

\xbox{nomcomplet}{\firstname {Luc}
\lastname {Devroye}}

\xbox{prenom}{Luc}
\xbox{nom}{Devroye}

{\killparcode\begin{xmlelement}{adresse}{McGill
University,\\ etc.\end{xmlelement}}

\end{xmlelement}
{\killparcode\begin{xmlattelement}[fr]{titre}%
Formatons\\ les formats de
fonte !\end{xmlelement}}

\begin{biblio}
\bibitem{b8}J.~\textsc{Andr\’e}
\pointir « Ligatures \& informatique »,
\emph{Cahiers GUTenberg}, \no22,
p.~61--86, 1995. \end{biblio}

\end{xmlelement}

After some minor configuration, thanks to the
fact that Tralics rather deeply understands TEX macros,
Tralics will generate a wonderful, valid, XML, with all
text converted to Unicode, and math to MathML. This
XML can be exploited at once on our Web sites.

The only remaining question is whether the world
is ready for MathML. Recent tests show that the qual-
ity of the display of MathML expressions in current
browsers has drastically increased: it is now similar
to TEX in readability (which relies a lot on fine po-
sitioning of sub- or superscripts), and it considerably
enhances accessibility to the math content on the Net.
The only remaining difficulty is that, as Tralics is a full
TEX interpreter, it cannot generate easily a mixed for-
mat sanitising the text strings to well-formed Unicode
XML but keeps a verbatim copy of the math formulas
in TEX, which might be the most practical for many
of our users in the near future . . .
<?xml version=’1.0’ encoding=’iso-8859-1’?>
<article>
<pagedeb>149</pagedeb>
<pagefin>166</pagefin>
<auteur>
<nomcomplet>Luc Devroye</nomcomplet>
<prenom>Luc</prenom>
<nom>Devroye</nom>
<adresse>McGill University,\\ etc.</adresse>

</auteur>
<titre xml:lang="fr">Formatons les formats

de fonte !</titre>
<biblio type=’flat’>
<bib_entry crossref=’cite:b8’>
<reference>8</reference>
<bibitemdata>J. <hi rend=’sc’>André</hi>

« Ligatures & informatique »,
<hi rend=’it’>Cahiers GUTenberg</hi>,
no 22, p.~61–86,
1995.</bibitemdata>

</bib_entry>
</biblio>

</article>

References
[1] José Grimm, “Tralics, a LATEX to XML

Translator”, TUGboat 24:3 (2003), Proceedings
of EuroTEX 2003, pp. 377–388.

50 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

	Introduction
	Good solutions to complex problemsare simple
	Principles
	Implications
	User interface

	Architecture
	Implementation
	Articles
	Volumes

	Metadata and format questions

