
New hyphenation techniques in Ω2

YANNIS HARALAMBOUS
Département Informatique, ENST Bretagne, CS 83 818, 29 283 Brest Cedex 3, France
yannis dot haralambous (at) enst dash bretagne dot fr

Abstract
By replacing the internal hyphenation engine of TEX by an external Omega2 module, we are able to solve all short-
comings related to hyphenation and to add new features: segmentation of compound words, excentricity, preferential
hyphenation.

Introduction
Ever since a computer hyphenated the word “God”
and ruined a night’s sleep of an RCA employee, there
has been quite a lot of literature on hyphenation:1 it is
a complex linguistic operation, permanently in use (at
least for languages that are hyphenated), and requiring
high efficiency. Nevertheless there are some flaws in
TEX’s approach to hyphenation, as well as some areas
where extra features could be helpful.

The flaws are mainly (a) the fact that hyphenation
patterns are stored in the format, so that one needs
to know in advance which languages will be used in
the document and create the appropriate format file;
(b) in some contexts, words are not hyphenatable be-
cause they are not preceded by glue (for example, a
word preceded by a penalty, or the first word of a
paragraph); (c) font or color changes prohibit hyphen-
ation, so that a word like “différance” cannot be hy-
phenated; and (d) special hyphenations such as Ger-
man backen becoming bak-ken are possible (through
the discretionary primitive) but cannot be automatic.

New features have been suggested on many occa-
sions: for example, it would be very useful for some
languages to prioritize hyphenation between word
components rather than between syllables in the same
component. In German, the priority list is even three-
fold: first comes hyphenation between components,
then hyphenation inside the last component, and last
and least: hyphenation inside the other components.
Another useful extra feature is weighted hyphenation:
for example, in French, words starting with “con”
should not be hyphenated at that location, but this
restriction should not be absolute: if one cannot do

1See, in particular, [1, 6, 7, 8, 10, 11, 12, 13, 14].

otherwise, it should be allowed to hyphenate never-
theless (a typical example is the word “conscience”
which can be hyphenated only after “con”). So one
should be able to specify a penalty value for each hy-
phen. Another useful feature would be interaction
with the user in case of ambiguity requiring morpho-
logical, syntactical or even semantic input: a typical
case is already stated in The TEXbook: “rec-ord” (the
noun) vs. “re-cord” (the verb). Whenever the algo-
rithm detects such an ambiguity, the user should be
warned and, why not, asked to disambiguate.

In languages like Greek there is no requirement
for hyphenating between word components.2 Never-
theless, although it is allowed, it looks silly to hyphen-
ate a word such as Παπαχατζηχαραλαµπó- πoυλoς
after the two first letters. In such cases it would be
useful to prioritize hyphenation towards the middle
of the word rather than near its borders.

In this paper we present the new hyphenation
module of Omega2, which solved the problems men-
tioned and provides infrastructure for the extra fea-
tures described above.

2The reader may wonder why there is such a requirement for Ger-
man and not for Greek, which uses as least as many compound
words as German. Here is a possible explanation: in German, com-
pound words are separated by a glottal stop. For example, Satzende
will be pronounced “zats[break]ende” to distinguish the compo-
nents Satz (= sentence) and Ende (= end). The visually similar
Sitzende will be pronounced continuously “zitsende” (= sitting). In
Greek, however, there is no glottal stop: συνάδελφoς (= colleague)
is pronounced continuously “sinathelfos” although it is composed
by συν (= plus, together) and αδελφoς (= brother). This feature of
the modern Greek language has influenced hyphenation practice. In
fact, there are two ways to hyphenate this word in Greek: in mod-
ern dêmotikê [5] it will be hyphenated phonetically συ-νά-δελ-φoς
(which contradicts component segmentation), and in kathareuousa
it will be hyphenated etymologically συν-άδελ-φoς . The question
of whether kathareuousa hyphenation patterns should give priority
to word components is open.

98 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

New hyphenation techniques in Ω2

Description
A module for Omega2 is a binary reading and writing
horizontal node lists serialized in XML. It is hooked
into Omega2 at two possible locations: one is inside
the end graph procedure (§1096 of [9], just before the
call of line break: that’s when a complete paragraph
is sent to the paragraph builder). The second location
(which has not been implemented yet) is inside the
paragraph builder, for a given vertice of the graph of
break nodes.

To say it simply: a module extracts horizontal
node lists from Omega’s stomach, modifies them, and
puts them back so that typesetting can go on.

But there is something more in Omega2: instead
of character nodes, we use texteme nodes [3], so that
we clearly separate glyphs from characters and that we
can add arbitrary name/value pairs to each node.

In our case, the hyphenation module will study
the paragraph, apply the hyphenation algorithm to
textemes and add a “potential hyphenation point”
property to some of them. The value of this prop-
erty is not simply a boolean but rather a penalty, so
that the paragraph builder will automatically priori-
tize some hyphenation points (for example, those be-
tween word components).

Problems solved
Let us see how our approach solves the five problems
described in the first section.

Problem a: Preloading of patterns
Omega2 does not preload any patterns in the format
file. Patterns contained in external files are dynami-
cally loaded by the module (and subsequently kept in
cache), whenever they are needed.

Problem b: Unhyphenatable words
This problem has always been a nightmare for TEX
users: now and then, for reasons which seem obscure
to the average user, a word will not be hyphenated,
resulting in a horrible overfull box. Most of the time
the reason is the fact that the word is preceded by
something which is not glue. Indeed, according to
§891 of [9], a “potentially hyphenatable part” of a para-
graph is a sequence of nodes p0 p1 . . . pm where p0 is a
glue node, p1 . . . pm−1 are character, or ligature or what-
sit or implicit kern nodes, and pm is a glue or penalty or

insertion or adjust or mark or whatsit or explicit kern
node (see also [4]).

Since now hyphenation is external to Omega, we
can define our own rules. One can apply the original
TEX rules so that we obtain the same results. Or
one can define new rules and obtain potentially better
results.

Problem c: Font or color change
This problem comes from the fact that, as often in
TEX, the rules for hyphenatable words we described
above are not complete. Other restrictions arrive as
we read §891: a whatsit node found after p1 will be
the terminating node pm and all character nodes that
do not have the same font as the first character node,
will be treated as nonletters. That means that a special
primitive or a font change inside a word prohibits
hyphenation after them.

In fact, the use of textemes allows us to inject into
text properties which will not disable hyphenation. A
less typical example is vertical offset: up to now, the
TEX logo was not a word, but a graphical construc-
tion using glyphs. Using texteme properties to spec-
ify the lowering of letter ‘E’ it will be at last possible
to hyphenate the title of the well-known journal Die
TEXnische Komödie!

As said in the previous section, since we define our
own rules, this restriction can very well be abandoned.

Problem d: Special hyphenations
There is no miracle for that: the various special cases
have been hard-coded in the module (one could imag-
ine a syntax for including them in the patterns, but
the author considers that their extreme rarity does not
justify a syntax enhancement).

New features
Penalties
As said in [9] §145, a discretionary node produces
either a hyphen penalty or an ex hyphen penalty de-
pending on its pre-break text. This penalty can be
changed by the user, but on a global level only, and
certainly not separately for each hyphen point. In
Omega2, there are 65,536 hyphenation penalty regis-
ters. Patterns can contain a hyphenation register num-
ber (the default register being 0). The hyphenation
engine will transmit the highest register number value
to the paragraph builder through a texteme property.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 99

Yannis Haralambous

1

2

3 ENDBEGIN

Figure 1: Finite-state engine of SiSiSi

The paragraph builder will use the penalty value of
that register.

It is up to the user to take advantage of these penal-
ties to prioritize hyphenation between word compo-
nents, or simply to make the paragraph builder prefer
a given hyphenation point rather than some other.

The obvious question which remains is: how do
we calculate the various hyphenation penalties in the
case of, for example, word component boundaries.

Excentricity
To prioritize hyphenation points that occur near the
middle of words, we have introduced a number called
excentricity factor (a deliberate neologism). This num-
ber is the slope of a linear function giving the hyphen-
ation register number according to the distance of an
hyphenation point from the center of the word: if φ
is the factor, i the position of the letter in the word
and c the center of the word, then the hyphenation
penalty register will be 0 for letter c , int((c ·i)· s) when
c> i and int((i · c + 1) · s) otherwise. So, for example,
the word

Πα|πα|χα|τζη|χα|ρα|λαµ|πó|πoυ|λoς

with an excentricity factor of, for example, φ= 0.33,
will be hyphenated with penalties contained in the
following registers:

Πα|3πα|3χα|2τζη|1χα|0ρα|0λαµ|1πó|1πoυ|2λoς

It is up to the user to choose the penalty values
for each of registers 0, 1, 2, 3. With a higher slope, we
get more registers and are able to control hyphenation
penalties more finely.

A Finite-State Engine
There are two ways to calculate word component
boundaries. Either by using again patterns (as sug-
gested by Antoš in [1]), or by using a finite-state en-
gine, as used by spelling checkers such as huspell.

2

3

4

1

7

5

6

ENDBEGIN

Figure 2: Finite-state engine of huspell

Let us develop the second case. A first approach
to word component detection through a finite state en-
gine was SiSiSi (= Sichere sinnentsprechende Silbentren-
nung für die deutsche Sprache = “Reliable and Sense-
Conveying Hyphenation for the German language”),
a TEX extension developed in the early nineties by
Barth and Steiner [2] based on their work on hyphen-
ation from the eighties. In SiSiSi a word is segmented
in three parts: a series of prefixes, a single stem and a
series of suffixes. This can be described by the finite-
state engine in fig. 1: states 1, 2 and 3 are resp. the
one of prefix, stem and suffix. We have twelve tran-
sitions BEGIN→1 BEGIN→2 1→1 1→2 2→*1 2→*2
2→3 2→END 3→*1 3→*2 3→3 3→END, where the
asterisk (or • on the figure) means that going through
this transition we enter a new word component.

This approach has been proven to have relatively
low efficiency (the SiSiSi system was strongly relying
on interaction with the user to find and store excep-
tions to rules).

Another word segmentation approach is the one
of spelling checkers. Ispell-based checkers (like huspell,
which seems to be the most advanced variant) use a
“file of affixes” containing lines of the like:
SFX A lig elig [^aeiouhlräüö]lig

which means: there is a set of rules called A con-
taining this rule; this rule says: when you see a word
ending by some string matching the regular expression
/[^aeiouhlräüö]lig/ then strip lig and add elig.
These rules generate new word forms from the exist-
ing ones, whenever the latter satisfy the requirements.
Similar rules exist for prefixes (starting with PFX).

We have modeled this approach as a finite-state
machine with 7 states and 32 transitions. The 7 states
are: (1) prefix, (2) stems which are not modified by an

100 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

New hyphenation techniques in Ω2

SFX or PFX rule, (3) stems which have been modified
by a PFX rule (after modification), (4) stems which
have been modified by a SFX rule (after modification),
(5) stems which have been modified by both a PFX and
a SFX rule (after modification), (6) stem which cannot
be combined with either a prefix or a suffix, (7) suffix.
It should be noted that only 1, 2, 4 and 6 can be at
word begin, and only 2, 3, 6 and 7 can be at word
end. The reader can find a graphical representation of
this engine in fig. 2.

Here are the transitions: BEGIN→1 BEGIN→2
BEGIN→4 BEGIN→6 1→2F 1→3F 1→4F 1→5F
2→*1 2→*2 2→*4 2→*6 2→7F 2→END 3→*1 3→*2
3→*4 3→*6 3→7F 3→END 4→7F 5→7F 6→*1
6→*2 6→*4 6→*6 6→END 7→*1 7→*2 7→*4 7→*6
7→END. Those marked by an ‘F’ are conditional tran-
sitions: they only apply whenever left and right string
belong to the same “family.” Families are necessary be-
cause of the regular expressions in SFX and PFX rules.

We will see in the next section how this informa-
tion is included in the patterns file.

Patterns file
TEX users are used to patterns files containing a pat-
terns primitive and, in many cases, a hyphenation prim-
itive for exceptions. These files sometimes also contain
lccode commands because only characters with non-
zero lccode are recognized by TEX’s hyphenation algo-
rithm. This part of the code works also as a mapper
to equivalence classes, so that patterns can be writ-
ten using those classes rather than explicit characters.
For example, in the case of Greek one can map all
combinations of letter alpha and diacritics to a single
equivalence class and use that class in the patterns.
That way, one has fewer patterns and the result is the
same (provided, of course, that hyphenation rules are
independent of diacritics).

In our new hyphenation patterns files we keep
the same pseudo-commands \patterns and \hyphen
ation—“pseudo” because these files are not read by
TEX anymore, but by a tool of our own, called inittrie,
written in C. These files, for which we recommend
the file extension .pat, are compiled into compressed
binary form (file extension .hyp) by inittrie. This
binary form contains a certain number of tries, exactly
as formerly stored in TEX format files.

Here is a detailed description of the ingredients of
.pat files.

(left|right)hyphenmin
The primitives lefthyphenmin and righthyphenmin are
used in TEX to specify the minimal number of letters
to leave on a line, or to allow on the next line. In our
case, these values are included in the patterns file, so
that there is no need to worry about them in the TEX
file, or Babel language file, etc.

equivalents
The argument of this command consists of a big num-
ber of character pairs, separated by blanks. These char-
acter pairs play the same role as lccode instructions in
TEX. In each pair, the first character is a character con-
sidered to be a letter by the hyphenation algorithm,
and the second one is its equivalence class. These char-
acters are, of course, all written in Unicode UTF-8. In
fig. 3 the reader can see this command displayed under
Mac OS X.

patterns
Patterns are described in the same way as in TEX hy-
phenation files, with an extra convention: numbers
between brackets specify the number of the hyphen-
ation penalty register requested. So, for example, the
hypothetical pattern
.con8s

for French language can be replaced by
.con8[17]s

so that the value of hyphenation penalty register 17
will be used.

segmenthyphenpenalty
Using this pseudo-command one can specify the hy-
phenation penalty register to be used between word
components. Default value is 1.

segmenthyphencharacter
Through this pseudo-command one can specify the
hyphenation character to be used between word com-
ponents. Default value is the hyphen. In cases like
Thai, where we really segment a sentence into words
(and words into syllables), the segment hyphenation
character will be empty.

segmentpatterns
The syntax of the argument of this pseudo-command
is the same as for patterns. These patterns will be used
to obtain word components rather than syllables. The
other two arguments specify the number of hyphen-

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 101

Yannis Haralambous

Figure 3: Table of equivalents

ation penalty register to be used, and the requested
secondary hyphenation character.

transitions
To use a finite-state engine, we need the commands
\transitions, \references and \segments instead
of the command \segmentpatterns. In the argu-
ment of the \transitions command we will write
transitions in the syntax given above: strings BEGIN
and END for beginnings and ends of words, numbers
for all other transitions, the string -> between origin
and destination of a transition. Example: BEGIN->1
BEGIN->2 1->1 1->2 2->*1 2->*2 2->3 2->END
3->*1 3->*2 3->3 3->END for the SiSiSi model. The
asterisk means that the given transition produces a
new segment. A destination followed by an F means
that there is a filter: the transition occurs only if origin
and destination belong to the same family.

references
This command contains “references”. A reference is a
set of families. The idea is the following: a segment
very often belongs to several families (meaning that it
can be combined with many other segments, in order
to form components and words). Instead of writing

all the families to which each segment belongs, we will
in fact use a single number. This number will be an
index to the set of families to which it belongs, its
reference.

The syntax is shown by the following example:
2368=/843/844/845/921/943

meaning that segments followed by number 2368 be-
long to families 843, 844, 845, 921 and 943. When
checking whether a transition is allowed, our algo-
rithm will not check if the references are the same,
but rather if they have a non-empty common set of
families. References are separated by blanks.

segments
Segments are classified by the state to which they be-
long. The argument of \segments looks like:
\segments{
1: %prefixes
a2083 abba2084 agyon2084 alá2084 b2085
be2084 bele2084 benn2084 benn-2084
billió2086 c2087 d2088 e2089 egy2086
egybe2084 el2084 ...
2: %original stems
aba3 abafala3 abafalva3 abaffy5 abafi6
abafája3 abajgat8 abakteriális9 ...
3: %pre-altered stems
...

102 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

New hyphenation techniques in Ω2

4: %post-altered stems
...
ab2 abafal2 abafalv4 abafáj2 abajga7
abalehot2 abar2 abaújharaszt14
abaújszakal18 abaújszin2 abaújtorn2
abd2 abell25 abelov2 ...
5: %prepost-altered stems
...
6: %stems without affixes
...
7: %suffixes
abbak2137 abbakat2138 abbakba2138
abbakban2138 abbakból2138 abbakhoz2138
abbakig2138 abbakkal2138 abbakká2138
abbaknak2138 ...
}

A number followed by a colon denotes a state. Seg-
ments are separated by blanks. They are followed by
reference numbers.

If the finite-state engine does not require family
filtering, then the references command will be empty
and segments will not be followed by any number.

lastsegmentpriority
Whenever this option is included in the patterns file,
the hyphenation points in the last segment have their
hyphenation penalty registers increased by a given
amount.

excentricity
Gives the excentricity factor.

References
[1] Antoš D., “PATLIB, Pattern

Manipulation Library”, Master Thesis,
Masaryk University Brno, 2001.
http://www.fi.muni.cz/~xantos/
patlib/thesis/thesis-p.pdf

[2] Barth W., Steiner H., “Deutsche
Silbentrennung für TEX 3.1”, Die TEXnische
Komödie, 1, 1992, pp. 33-35.
http://www.dante.de/dante/DTK/dtk92_1/
dtk92_1_barth_steiner_deutsche.html and
http://www.ads.tuwien.ac.at/research/
SiSiSi.html

[3] Haralambous Y., Bella G., “Injecting
Information into Atomic Units of Text”,
in Proceedings of the ACM Symposium
on Document Engineering, Bristol, 2005.
http://omega.enstb.org/yannis/pdf/
fp10174-haralambous.pdf

[4] Haralambous Y., “Voyage au centre de TEX :
composition, paragraphage, césure”, Cahiers
GUTenberg 44-45, 2004, pp. 3-53. http://
omega.enstb.org/yannis/pdf/voyage.pdf

[5] Haralambous Y., “From Unicode to
Typography, a Case Study: the Greek
Script”, Proceedings of International
Unicode Conference XIV, Boston, 1999, pp.
b.10.1–b.10.36. http://omega.enstb.org/
yannis/pdf/boston99.pdf

[6] Haralambous Y., “A Small Tutorial on the
Multilingual Features of PATGEN2”, in
electronic form, available from CTAN as
info/patgen2.tutorial, 1994.

[7] Haralambous Y., “Using PATGEN to Create
Welsh Patterns”, submitted to TUGboat, 1993.

[8] Haralambous Y., “Hyphenation Patterns for
Ancient Greek and Latin”, TUGboat 13 (4),
1992, pp. 457-469. http://omega.enstb.org/
yannis/pdf/ancgreek92.pdf

[9] Knuth D.E., Computers & Typesetting, Vol. B:
TEX, The Program, Addison-Wesley, 1986.

[10] Raichle B., “Hyphenation patterns for words
containing explicit hyphens”, CTAN/language/
hyphenation/hypht1.tex, 1997.

[11] Scannell K, “Hyphenation Patterns for
Minority Languages”, TUGboat 24 (2), 2003,
pp. 236–239. http://www.tug.org/TUGboat/
Articles/tb24-2/tb77scannell.pdf

[12] Sojka P., “Hyphenation on Demand”, TUGboat
20 (3), 1999. http://www.tug.org/TUGboat/
Articles/tb20-1/tb62sched.pdf

[13] Sojka P., Ševeček P., “Hyphenation in TEX —
Quo Vadis?” TUGboat 16 (3), pp. 280–289,
1995. http://www.tug.org/TUGboat/
Articles/tb16-3/tb48soj1.pdf

[14] Sojka P., “Notes on Compound Word
Hyphenation in TEX”, TUGboat 16 (3),
pp. 290–297, 1995. http://www.tug.org/
TUGboat/Articles/tb16-3/tb48soj2.pdf

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 103

