‘ Font verification and comparison in examples

KAREL PISKA

Institute of Physics, Academy of Sciences
182 21 Prague, Czech Republic

piska (at) fzu dot cz

Abstract

This contribution demonstrates several techniques for verifying and comparing fonts widely used with TEX: META-
FONT fonts and outline fonts in the PostScript Type 1 and OpenType formats. The aim is to generate various
proofsheet files in PDF or PostScript with node and control points, control vectors and hinting zones for the subsequent

visnal scanning of graphic glyph representation, calculations of differences between metric data (e.g. character widths),

between contour curves for different versions or releases, etc., thus accomplishing the anditing process more quickly and
efficiently. Numerous tools— METAFONT, METAPOST, (pdf (B)IEX, dvips, gv, FontForge, MetaTypel, TFXtrace,
mftrace, tlutils, awk, sed, sort and other programs— are used. Resulting differences “greater than negligible” often

indicate problems with compatibility, sometimes they may signal a bug undetected even for a long time. The examples
are mostly taken from the current TEX Live 2005. The results of wverification of CM, EC, LM, CS and other fonts
available from TEX Live or CTAN, comparison for compatibility and consistency and the information about differences

and bugs will be reported.

Introduction

A short version of the article (low level font oriented
and technical) is presented here. After a brief explana-
tion of font elements important for typesetting with
TEX (metrics and glyph images) we will show a lim-
ited number of illustrations. The motivation of the
work was to prepare tools and intermediate results in
a textual (lists, tables) and a visual form to find, detect
and demonstrate differences, mistakes, cases of incon-
sistency and incompatibility and, in the next step, to
improve past, current or future fonts.

Font types and font data
TFM character dimensions

The tfm (TEX font metric) files contain four dimen-
sions for each character [1]:

o charwd, the width
charbt, the height above the baseline
chardp, the depth below the baseline

>«

charic, the character’s “italic correction”

These define the size of each character’s “bounding
box” which TEX needs to typeset. For formatting text
TEX uses only metric information and does not need
glyph shapes. The tfm files also contain information
about ligatures and kerning pairs defining the space

TUGboat, Volume 27 (2006), No. 1— Proceedings of EuroTEX 2006

adjustment between two adjacent characters. The dvi
output produced by TEX contains only references to
glyphs. The real glyphs are absent in dvi and are
included into the final output in PS/PDF by device
drivers (e.g. dvips) or by pdf TEX. The t£m files can be
converted by the tftopl program to human-oriented
property list files. We can read, edit and process them
in this text form more easily. afm is a metric format
for Type 1 PostScript fonts. The tfm and afm formats
represent and store metric data differently. The afm
bounding box has a different meaning, and in afm the
glyph width is defined by the WX parameter.

ec-1lmr10.tfm/pl:
(CHARACTER C y
(CHARWD R 0.5278)
(CHARHT R 0.43055)
(CHARDP R 0.194443)
(CHARIC R 0.008)

Imr10.afm:
C 121 ; WX 527.77777 ; Ny ; B 19 -205 508 431 ;
During our processing we check, compare and test
for compatibility the metric data, especially the charac-
ter widths, ligatures and kerning pairs crucial for type-
setting, taking into account TEX’s font limitations: A
font contains at most 256 character codes, 255 dif-
ferent nonzero widths, at most 15 different nonzero

Karel Piska

heights, 15 different nonzero depths, and 63 different

nonzero italic corrections.

Difference between TEX and outline fonts

The ‘native’ TEX font formats (pk/tfm) have no more
than 256 characters, no character names, and any com-
parison using TEX is based on character sets defined by
available encodings. On the other hand, the PostScript
Adobe Type 1 fonts (pfb/afm) have glyph names,
may contain many glyphs, but only 256 of which can
be encoded, their encodings may be flexible, and all
glyphs may be compared by names. Additionally, in
OpenType (otf) many glyphs are encoded and avail-
able. Therefore, operations with an outline font could
be independent of the TEX limitations and all glyphs
present in the font can be processed.

Font tables and font specimens with TEX

To test completeness of a font’s glyph set, we start
with font tables and font specimens. For this task,
testfont.tex (available from macros/plain/base
on CTAN) from the basic TEX distribution, as well
as fonttabs (texmf/tex/csplain/fonttabs.tex),
and OFS [4] developed by Petr Ol$ak can be recom-
mended.

METAFONT and bitmap fonts

METAFONT generates the metric tfm files and a bit-
map representation of glyphs for a selected device
(‘mode’). The shapes of bitmap fonts are represented
as a bitmap (a matrix of pixels) in any resolution. Un-
fortunately, probably no reference resolution exists.
We run METAFONT and dvips with modes avail-
able from the widely distributed modes.mf (CTAN:
fonts/modes):

mf ’\mode=’$MOD’;’ input font.mf

dvips -mode $MOD -D $RES

and with the corresponding resolutions, for example

MOD 300 600 1200 2400 2602 5333
RES cx 1ljfour 1jfzzz supre proof crs
to test fonts for all designed sizes and also for various
(low, middle and high) resolutions. There is no di-
rect correlation between correctness or incorrectness
of shapes in different design sizes or different resolu-

tions (magnifications).

Outline fonts
Outline fonts, e.g. Adobe PostScript Type 1 and Open-
Type, are represented by their outline contour curves

AAA
AA |

Figure I: csbx10 A at various resolutions; the shape of the
accent changes.

independent of resolution. Of course, rendering al-
ways depends on an output device for both outline
and bitmap fonts. Good outline fonts that should be
rendered properly elsewhere, for example, may be em-
bedded in a PDF document and are more flexible than
bitmap fonts because “rerendering” of a bitmap font
for any device often causes a loss of quality. The aim
of testing outlines is to verify consistency (font and
glyph elements are unified for all fonts of a font fam-
ily, preserved for all design sizes) and compatibility of
versions, changes may be only improvements or cor-
rections of mistakes (not producing new mistakes).

Proofs of METAFONT fonts

csbx10: A

Our approach is not to prove correctness of METRA-
FONT programs but to check their products —glyphs
in the pk format. Because it is impossible to choose
one resolution to verify, we test the glyphs at various
resolutions. Fig. 1 shows tests of A from the csbx10
font at following resolutions: 300, 600, 1200, 2602, and
5333 dpi. The last is the result of mftrace (autotracing
bitmaps). We can detect a bug in CS fonts (from TEX
Live 2005) — serif upper case accents depend on reso-
lution (mode). We thus also observe a consequence
of such bugs: the results of conversion to the outline
font by autotracing high resolution bitmaps cannot be
correct.

cmbx9/cmbx10: y
The next example illustrates behavior of “y” in the
bold Computer Modern fonts (see Fig. 2 with 600,

TUGDboat, Volume 27 (2006), No. 1 —Proceedings of EuroTEX 2006

Yy
Y Y
A

Figure 2: cmbx10 y: an artifact in the tail.

Figure 3: Standard proofsheet from MetaTypel.

1200, 5333 dpi, and mftrace) where a strange scrap is
generated. This bug in CM is very small, its occurrence
is rare and well hidden (only in some sizes), unlike the
previous easily evident bug in CS. A similar effect can
be observed for cmbx9, cmbx7, cmbx8 (see also [2]).
Probably, weaker correlations suppress this defect for
cmbx5, cmbx6, cmbx12, and cmbx17.

The role of METAFONT today

METAFONT fonts may be simple or very complex,
therefore debugging of a bitmapped glyph representa-
tion may be difficult. Although probably the users do
not expect bitmap fonts in distributions today, META-
FONT and METAPOST are still and will continue to
be very important tools for font developers.

TUGDboat, Volume 27 (2006), No. 1 —Proceedings of EuroTEX 2006

Font verification and comparison in examples

V4 v

(10

ole

Figure 4: Outline font proofs.

(’7

Figure 5: Extrema points and hints.

N

1 1

Proofs of outline fonts

Figure 3 shows the proofing page produced from the
Latin Modern sources directly by programs from the
MetaTypel package [3]. The following pictures in
Fig. 4 demonstrate my own variants of proofsheets
for screen and printer to recognize better the tinest
details (using zoom) invisible in the previous figure
because of mutual overlapping of such small details,
e.g. the control points and vectors. Figures 4 and 5
also raise questions about an optimal approximation
and a hinting strategy: To add the nodes at extrema
or not, how to hint accents, etc.

FontForge [5], an open source font editor devel-
oped by George Williams, allows us to read and gener-
ate various font formats. We can also use it for check-
ing and analyzing fonts, importing TEX font bitmaps,
and exporting glyph outline curves in eps for subse-
quent processing.

Karel Piska

AccAc cmrl0
ec-lmr10
cmrl(
ec-lmr10
AeAe cmrl0
ec-lmr10
cmrl0
ec-lmr10

Figure 6: Kerning pairs in a visual form.

ajlaj ec-lmr10g.g9. 3

ec—lmrlOl,oo
ajlaj ec-lmrl0g.99.3
ec—lmrlOl,oo
billdl ec—lmrlOo_gg,g
bilbdl ec—lmrl()l,og
bilfdi ¥ ec—lmr100,99_3
il ec—lmrl()l,oo

Figure 7: Kerning changes in LM.

Comparison of metric data

Analyzing the metrics we detect (automatically) cases
of agreement or disagreement in dimension and kern-
ing values. In Fig. 6 we present a small part of the com-
parison between the CM and LM tfm files in the T1
(ec-lm) encoding. cmr10 and ec-1mr10 are compati-
and absence

n "n.n n
E I

ble in relation to the kerns "P" :
of kerns for "F", T,y wyn vyn .
In ec-1mr10 new kerning pairs have been intro-
duced: "A"™ : "c","d","e","o".
Fig. 7 demonstrates the changes between two ver-
sions of LM.
\newlength{\bbox}\newlength{\cbox}%
\def\fboxsep{Opt}\def\fboxrule{0.1pt}
\def\pair#1#2{},

\settowidth{\bbox}{#1#2}%
\settowidth{\cbox}{\mbox{#1}\mbox{#2}}/

"n.n n
P

74

/..\'
- 2 \

Figure 8: A color mix.

\addtolength{\bbox}{-\cbox}/
\fbox{#1}\kern-0.2pt\kern\bbox\fbox{#2}%
\fbox{#1#2}}
\pair{a}{j}
A short KTEX macro \pair calculates the shift
between two “kerned” boxes.

Comparison of glyph images

We will demonstrate two techniques:
e color mix with pdfTEX for visual scan
e outline comparison for outline fonts

Color mix with pdfIEX

Generating of comparative proofsheets using pdfTEX
for mixing colors is possible for both bitmapped and
outline fonts. Searching for differences needs subse-
quent human visual postprocessing. In our examples,
the combination of red and cyan produces pink in the
intersection. Here is the TEX code:

\usepackage{graphicx}
\def\Default{\pdfliteral{0 g O G}}
\pdfpageresources{/ExtGState

<< /Luminosity

<< /Type /ExtGState /BM /Luminosity >>

>>}
\def\Acolor{l O O rgl}) red
\def\Bcolor{0 1 1 rg}) cyan

\renewcommand\C{\char#1}%

\Default \fbox{\makebox[0Opt][1]%
{\pdfliteral{/Luminosity gs \Acolor}\Afont\Cl}/
{\pdfliteral{\Bcolor}\Bfont\C}}%

Fig. 8 demonstrates data from two samples:

left outline font 1mbx10 (ver. 0.99.3) [cyan] vs. bit-
map font csbx10 [red]

right Imbx10 (ver. 0.99.3) [cyan] vs. Imbx10 (ver. 1.00)
[red] (both outline Type 1)

In a grayscale printing the red color looks dark, the
cyan is lighter, and the intersection is the lightest.

TUGDboat, Volume 27 (2006), No. 1 —Proceedings of EuroTEX 2006

/

C i _
Dl
L

Figure 9: Improvement of outline approximation.

Comparison of outline fonts

Some elements of two outline fonts allow an auto-
matic comparison. We can compare two fonts with
a common glyph repertoire, e.g. to test two releases,
alternatives, extensions or subsets of any font, or to
test two similar fonts for differences. We compare all
the glyphs available in both fonts by their names au-
tomatically and detect the following differences:

e presence and absence of a glyph with a given name
(This may mean that a new glyph has been added
or an old glyph has been removed, a glyph has
been renamed, or sometimes, a glyph name may

be invalid)

e different glyph shapes (at least one segment is dif-
ferent)

e different glyph widths (even after rounding to in-
teger in the glyph coordinate space)

In the examples, the contour curves of the first
(older) font are black. The contour curves of the sec-
ond (newer) font are red and the filled glyph area is
yellow. The glyph box frames in the older font are
blue. The black and dark lines denote the older ver-

sion in printing without colors.

TUGboat, Volume 27 (2006), No. 1—Proceedings of EuroTEX 2006

Font verification and comparison in examples

@

Figure 10: Modification and correction.

Figures 9 and 10 show differences between LM
0.99.3 and LM 1.00. In Fig. 9 the dollaroldstyle
from 1mr10 has been improved (its conversion to out-
lines is better). Fig. 10 gives information about the
modification of the acute accent and correction of
glyph width in the 1mbx10 font.

Conclusion

Techniques extending and complementary to existing
testing tools have been presented in various examples,
to help font authors and maintainers in their time
comsuming and expensive work. The results of tests
were or may be applied as warnings, bug reports or
suggestions. They were or are used for verification of
the Type 1 version of public Indic fonts [6] available
from CTAN and for tests of the LM fonts.

References
[1] Donald Knuth. The METAFONTbook.

[2] Bogustaw Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk. “Programming PostScript
Type 1 Fonts Using MetaTypel: Auditing,
Enhancing, Creating. TUGboat 24:3, pp.
575-581, Proceedings of the XIV EuroTEX 2003
conference, Brest, France, 24-27 June 2003.

[3] MetaTypel distribution. £tp://bop.eps.gda.
pl/pub/metatypel.

[4] Petr Ol$dk. The OFS font management system.
ftp://matf.feld.cvut.cz/pub/olsak/ofs

[5] George Williams. FontForge: an outline font
editor. http://fontforge.sourceforge.net

[6] CTAN:fonts/ps-typel/indic

75

