Do we need a font system in TEX?

Hans Hagen
PRAGMA ADE
http://pragma-ade.com

Abstract

In this article I will reflect on the font system(s) currently built into ConTEXt.
From this perspective I will mention the current directions in the development
of TEX engines and how they may influence ConTEXt. I will also put this in the

context of document layout design.

1 Introduction

This article was written while Taco Hoekwater and I
were working on LuaTEX and ConTEXt MKIV, work
that is ongoing. This process gives us much time
and opportunity to explore new frontiers and recon-
sider existing ConTEXt features. We also use this
process to write down some ideas as they evolve.
Much detail is missing and I assume that the user is
somewhat familiar with fonts.

Since this article is not typeset using my regular
TEX setup I will not give many examples. After
all, it’s just meant as a teaser for users who want
to discuss future font support in TEX (especially in
ConTEXt). In the related presentation I will give a
few examples.

2 Starting point

One of the characteristics of a TEX macro package
is that it provides some kind of font system. Such a
system deals with two issues:
e consistent switching between different styles and
sizes (mostly in text mode)
e handling relative scales of fonts in super- and
subscripts in math mode

The TEXbook and its related plain TEX for-
mat demonstrate what such a system may look like.
However, it sets up a 10-point system and when
users want, for instance, a 12-point setup, more def-
initions are needed. As soon as a user switches be-
tween 10 and 12 points a whole set of commands
needs to be redefined or at least commands need to
adapt their behaviour.

3 Into context

The macro package ConTEXt evolved over time and
in principle permits you to set up your own font
system, but in practice users will use the built-in
font support which is organized as follows.

The main classification is style. Examples of
font styles are serif (rm), sans (ss) and mono (tt) but
math (mm) is also a style. Of course this is a rather

arbitrary classification, but it’s kind of rooted in the
fact that Computer Modern came in these variants.
When I started using the Lucida fonts I introduced
handwriting (hw) and calligraphic (cg) styles and
more are possible.

Next we have style alternatives such as normal,
slanted, bold, italic and the like. Again, these are
rooted in the fonts that came with TEX. Slanted is
kind of artificial and italic is not always really italic,
which is why the term ‘oblique’ is used as well.

Then comes size. In addition to the normal size
one can switch between predefined but configurable
additional sizes: larger ones denoted by the charac-
ters a, b, c, etc., and smaller sizes by x and xx.

Font switches are either written as part of the
source stream or set as property of (structural) ele-
ments. Examples of stream commands are:

\rm \tt \tf \tfx \bf \bfx \bfxx
\sl \sla \slb \tttfx

Style properties are defined and used like this:

\setuphead [subsection] [style=bold]
\definefontalternative[LargeAndBold] [\bfd]
\setuphead [section] [style=LargeAndBold]

If a user is in control of the style, such a system
works rather well. One can conveniently switch to a
different style, alternative and/or relative size.

4 Typefaces

When one is not in control of the document design,
there’s always a chance that one has to deal with
yet another level of organization. Think of a journal
where some articles are typeset with FontFont Meta
for the running text combined with Lucida Math,
and other articles are typeset in Palatino for both
text and math. Add to that yet another choice of
fonts for the headers and footers and we're talking
of three distinctive font setups for one publication.
This is where typefaces come into play. These
are combinations of styles within one collection. One
can for instance define a typeface palatino which is a
combination of Palatino Nova (serif), Palatino Sans

28 TUGDboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



(sans) and Palladio Px (math) completed with Latin
Modern Typewriter (mono). Of course we need to
make sure that we scale the Latin Modern to match
the Palatinos. The following definitions were used
for the reader of the ConTEXt conference in Epen
(2007):
\definetypeface[mainface]
[palatino-nova-regular]
\definetypeface[mainface]
[palatino-sans-regular]
\definetypeface[mainface]
[latin-modern-light]

[rm] [serif]
[default]
[ss] [sans]
[default]
[tt] [mono]
[default]

\definetypeface[extraface] [rm] [serif]
[palatino-nova-regular] [default]
\definetypeface[extraface] [ss] [sans]
[palatino-sans-informal] [default]
\definetypeface [extraface] [tt] [mono]
[latin-modern-light] [default]

These are applied with:

\setupbodyfont [mainface]
\setuplayout [style=
{\switchtobodyfont [extraface,sans]}]

The default parameter selects the scaling model,
in this case not based on design sizes, but derived
from 10-point variants.

To make life (and choosing) even more complex,
users more and more run into fonts that come in dif-
ferent weights (light, regular, medium, dark, ultra),
thus ending up with multiple typeface definitions
becomes the norm. It also means that users will al-
ways have to face the difficulties of font definitions:
the burden of too much choice. What combination
looks best?

\starttypescript [mono]
[latin-modern-regular] [name]
\usetypescript [mono] [fallback]
\definefontsynonym[Mono]
[lmtypewriter10-regular]
\definefontsynonym[MonoItalic]
[Ilmtypewriter10-oblique]
\definefontsynonym[MonoBold]
[Imtypewriter10-dark]
\definefontsynonym[MonoBoldItalic]
[lmtypewriter10-darkoblique]
\stoptypescript

\starttypescript [mono]
[latin-modern-light] [name]
\usetypescript [mono] [fallback]
\definefontsynonym[Mono]
[Imtypewriter10-light]
\definefontsynonym[MonoItalic]

Do we need a font system in TEX?

[lmtypewriter10-lightoblique]
\definefontsynonym[MonoBold]
[Imtypewriter10-regular]
\definefontsynonym[MonoBoldItalic]
[Imtypewriter10-oblique]
\stoptypescript

Did I discuss design sizes yet? Computer Mod-
ern comes in design sizes. Apart from the esthetic
aspect, this made much sense in a time where bit-
map fonts were the rule. I must admit that I have
no other fonts on my machine that come in design
sizes. The core font system of ConTEXt is set up
with design sizes in mind, but later extensions made
defining typefaces based on one design size conve-
nient (normally 10 point). For this reason users will
never deal with the low level font definition system
directly.

Recently we see design sizes come back in an-
other disguise. Instead of variants in terms of size
we get ‘caption’ and ‘display’. Technically one can
embed different design sizes in an OpenType font
but this does not happen often yet.

5 Simple definitions

Occasionally we needed a special font definition, for
instance when typesetting a title page. There we
can use definitions like

\definefont [TitleFont] [SerifBold sa 3.5]

This means as much as: define a font TitleFont
which uses the current SerifBold (symbolic names
are used all over the place in the definitions, aka
typescripts) and scale it to 3.5 times the current
bodyfontsize. This means that we’re freed of hard
coded (and cryptic) font file names.

6 Features

One thing to keep in mind when setting up fonts is
the font encoding. An encoding is a subset of glyphs
out of the whole repertoire available in a font. Font
encodings (not to be confused with file encodings or
input regimes) are a side effect of TEX being an 8-
bit system, a restriction which is removed by Omega
(Aleph), XqTEX and LuaTEX. Other characteristics
are mappings (from upper- to lowercase and reverse)
and, more recently, features as part of OpenType
fonts.

For typesetting the mentioned reader I used
LuaTgX in combination with the experimental Con-
TEXt version MKIV and so the OpenType variants
could be used. The fact that the font itself pro-
vides features puts some demands on the font sys-
tem. How do we pass them to TEX (in the case of

XATEX) or Lua (in the case of LuaTEX)? In XHTEX

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 29



Hans Hagen

one can say:
\font\MyFont=
palatinonova-regular:liga;dlig; at 12pt

But this does not go well with the abstraction
and separation of name and style in ConTEXt. In
LuaTgX one can implement any interface but at the
price of taking care of translating features defined
in the font into something that TEX can deal with.
This is a fundamental difference with XHTEX: it
takes a macro package writer more effort to provide
font support in LuaTEX, but this is compensated by
more flexibility. As with XgTEX we expect macro
package writers to take care of that.

Recent versions of pdfTEX also introduced fea-
tures, like hz optimization and protruding. These
features can be applied to individual fonts as well
as to styles and typefaces. For this we can use the
‘font handling’ subsystem that we will not discuss
in this article. In short, that subsystem deals not
with real font features, but with TEX applying its
own features to a font.

In pdfTEX one can add inter-character spacing
to a font using the low level commands:

\font\MyFont=somefont at 12pt
\letterspacefont
\MyLetterSpacedFont=\MyFont 50

This means that 0.025 em is added on each side
of a character. The problem with this TEX feature
is that it refers to an already defined font. Also, one
has to compensate for spacing before and after the
sequence of characters manually. What complicates
matters even more is that each feature uses a slightly
different interface and that features are applied to
global font definitions. Such low level commands are
not something the average TEX user wants to deal
with so we need some kind of high level interface.

Because the distinction between font features
and TEX features is somewhat fuzzy, we will use the
term features for both. From the user’s perspective
it does not really matter.

7 Interface

For a ConTEXt user, a more natural interface is the
following:

\definefeature [myfeatures]
[ligatures=yes,oldstyle=yes,spacing=.025em]
\definefont [MyFont]
[somefont] [feature=myfeatures]

How do we implement these and other features?
Fonts can have small caps and oldstyle numerals.
One may want these but not always. Here we face
a dilemma: do we need a complete small caps type-
face (many definitions) or is it just an alternative

selection of glyphs. When we set up the base font
system small caps were often of limited availability,
so it ended up as an alternative by default. However,
now that we have enough memory in our machines,
and now that fonts often come with small caps in
all styles and alternatives, we can equally well de-
fine it as an additional typeface. So, we can define
a palatino alongside a palatino-sc and palatino-os.

Consider the regular shapes. In this case a
macro package can decide to create three fonts out
of, say, PalatinoNova-Regular: a normal one, one
with lowercase characters replaced by small caps,
and one with digits replaced by oldstyle numerals.
But the package can also decide to pass the font as it
is to TEX and at some point in the typesetting pro-
cess swap lowercase characters by uppercase ones,
and/or replace digits. This saves two font instances
at the cost of some extra processing. Because the
design of the document often includes a consistent
choice for oldstyle numerals, it makes sense to create
the extra font here, but in the case of small caps I'm
not sure which alternative is better.

You may wonder what this has to do with in-
terfacing so let’s give another example. Sometimes
a large chapter or section head looks better when a
bit of inter-character spacing is applied. Do we cre-
ate a spaced font for just a few occasions or do we
move that to internal (node) processing? Defining
a truckload of extra fonts just because we want to
space a few times does not really make sense. Also,
a spaced font is no real solution because one has to
deal with the begin and end of a spaced sequence
then.

What does a user actually want to tell the sys-
tem? Is it:

some text {\UseMyLetterSpacedFontHere
some text} some text

or maybe:

some text {\LetterSpacedThisText
some text} some text

In the first case the user asks for a font switch,
but in the second case we’re dealing with a property
which is not really related to a font at all, apart from
the fact that the spacing may depend on font charac-
teristics. I can also envision several variants: spac-
ing based on character kerning, or equally spaced
fonts, or slightly randomly spaced.

Or consider that at some point you want to use
the outline variant of a font. This is a drawing prop-
erty, not so much a font property, so again, the sec-
ond approach may make more sense.

So, certain features may influence the interface
as well: are we talking of a feature attached to a font

30 TUGDboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



definition, or is it applied to a range of characters
(glyphs) in the document? In the first case we need
to enable the feature when we define the font, but
in the second case we can do that in the style when
it’s needed. What do users prefer most?

8 Frontends

For over 25 years the TEX engine was essentially
frozen. With e-TEX, some programming features
were added, Omega added directional typesetting
and pdfTEX built in the backend. Speaking for Con-
TEXt none of them really demanded a redesign of the
macro package as a whole or one of its subsystems.
Even XATEX with its font features could be sup-
ported rather easily until the moment that the name
specification was extended to support font names as
well as filenames at which point the low level inter-
face (using brackets) started interfering badly with
the ConTEXt user interface. The greatest differenti-
ation was in the handling of backends and that was
implemented by separating specific backend code
into driver files (think of color support or graphic
inclusion).

The differences in frontends were negligible and
could be dealt with by code branches or selective
macro definitions at format generation time. How-
ever with the evolution of font systems, the frontend
part became more tricky, and not only from the per-
spective of user interfacing. Suddenly we were deal-
ing with features being present or not, or being im-
plemented differently. So, from now on, even with a
consistent user interface the users need to be aware
of what exactly is supported by the frontend and
with the font itself. We have to see where this leads.

9 Math

We have hardly mentioned math, so how about it?
A substantial part of TEX and therefore its font ma-
chinery is dealing with math. Math in TEX is a fam-
ily business. A family groups fonts in sizes: normal,
small and smaller. Following the Plain TEX tradi-
tion we use families for math roman, italic, sym-
bols, extension symbols as well as what we previ-
ously called alternatives (bold and so on).

And there the problem strikes. First our popu-
lation only counts 16 families, which is not enough to
deal with regular, slanted, italic, bold, bold italic, all
kinds of extra symbols, also in variants, and more.
Another complication is that one may want to use
bold text but not bold math or the reverse. Add
to this that TEX is programmed in such a way that
changing families mid-formula is not an option (the
last definition counts), you can imagine that it’s
hard to please users in this area. More families

Do we need a font system in TEX?

would make life easier, but that only partially bal-
ances the equation of demand and supply. Font en-
codings also may play a role here: specific math
encodings and regular text font encodings (not all
math documents are written in English).

10 Daily practice

If after this exploration you’re still with us, we’re
ready to review this system. Over the years the
ConTEXt user base has widened and the range of
applications is impressive. This also means that we
need to provide the current font related subsystems
in future versions. Where do we stand with a font
system that is set up for consistency and convenient
definition of fonts in terms of base characteristics?

My own application of ConTEXt ranges from
special applications, via manuals, to (often) fully
automated generation of documents as part of a big-
ger workflow. For the last group of applications we
have to provide the mechanisms as well as the styles.
Most of the styles that I have to define are proto-
typed in desktop publishing applications. Not only
is any systematic approach to using fonts missing,
also many fonts are mixed together. This means
that in practice one can forget about a proper font
system. Of course I try to fit these into some kind
of system, but since the input is often rather simple
too, font usage is also predictable. I frequently end
up with a simple typeface definition for the main
body font where I also define the math and mono-
spaced variants, because one never knows what fall-
backs are needed.

Life is actually worse: designs are seldom con-
sistent in terms of font usage, color application, (in-
terline) spacing, layout and structure. But these are
the cornerstones of ConTEXt and that means that
in such cases they are much of what ConTEXt pro-
vides (no big deal because we have hooks all over
the place).

11 Open type

At the same time we see OpenType fonts showing
up and these provide features that were not available
and/or were distributed over multiple fonts. On the
one hand, these (often Unicode) base fonts are great,
especially when used with a modern TEX implemen-
tation. Quite often I get specifications in a way that
indicates that the designer thinks in terms of her/his
application. For instance, when 10 pt is specified, in
most cases 10bp (or PostScript points) are meant.
And is an ‘H-height’ the same as an ‘X-height’? I'm
not sure that the abundance of features in Open-
Type fonts will be dealt with consistently and with
care.

TUGDboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 31



Hans Hagen

Here is an example: schoolbooks that teach kids
French are typeset using systems that come precon-
figured for English. Suddenly fonts have language-
related features and you can bet that these are used.
However, in the past, awareness of such features is
dim. How many schoolbooks use the proper French
spacing around colons and semi colons? And how
many use the right French quotation symbols? If it
does not happen today, how about the future? How
consistent will designs be? Just watch how suddenly
we see those relatively unknown ligatures (like st)
show up, simply because they are there. The fact
that these are language dependent does not bother
some users.

As it happens, support for languages in TEX has
always been quite strong. Users are aware of their
language needs, and TEX supports them. Actually,
in many areas TEX provides a lot of detailed control,
and this may conflict with less sophisticated control
driven by fonts. We cannot assume that all font
designers and foundries pay an equal amount of care
to each (often big) OpenType font.

The number of available math fonts is not large.
This means that when those are converted to Open-
Type and use the Unicode encoding, we can get rid
of many nasty tricks at the macro level. There will
be no more need for tricky family magic, nor for font
switches at unfortunate moments: we only have a
few fonts left. Because LuaTEX provides a way to
define virtual fonts on the fly, missing bits and pieces
can be filled in and style alternatives can be pro-
vided even if the math fonts themselves lack them.
Of course this only works out well if we are willing
to rewrite and/or extend parts of macro packages
substantially.

12 Control

So, in addition to the question whether we need
a full-blown font system, we need to ask ourselves
where we let the font drive the machinery (the font
controls TEX) and where we let TEX be in control
(TEX controls the font). In LuaTEX we (the LuaTEX
team) provide access to the font definition mecha-
nisms, which permits macro package writers to let
the font be the driving force. For instance, one can
define a font complete with ligature information and
let TEX do the job. But one can equally well bypass
this mechanism and process node lists (one of TEX’s
internal representations of the typeset text) by us-
ing special Lua code hooked into TEX. Or take the
mentioned kerning around French punctuation: this
can be a font property but also a matter of node pro-
cessing. Because most TEX users leave such details
to macro packages, one can expect both solutions to

show up. Instead of hard coding alternatives in the
TEX kernel, we just provide the machinery to macro
writers.

Recently T had to write a style for a project
and rewrite it many times because automated type-
setting suddenly forces those involved to pin down
designs. It’s often hardly a challenge for a TEX user
to identify the inconsistencies between different vol-
umes of a series of books (equally well one can iden-
tify systematic problems with TEX macros because
they show up each time). When reverse engineer-
ing an existing design inconsistencies creep in, and
quality control depends on which volume is taken
for comparison today. In this case it also happened
that the design of this series was based on a font
that was not only very incomplete, but also buggy.
Familiar characters were missing, names in the en-
coding vector were wrongly applied. So, we had to
come up with a special font encoding that in itself
was wrong with regards to the names used. This
is a bit of a nightmare because a different encoding
results in extra map files as well an extra instance
of hyphenation patterns, i.e. another format file.

In LuaTEX this can be done differently. There
one can add some code to the loader that takes care
of special remapping and filling in gaps with place-
holders. Of course this can be embedded in a higher
level user interface. I already have quite a lot of
experimental code marked to be turned into pro-
duction code some day.

13 Conclusion

When dealing with complex and/or very structured
documents we can benefit from a font system as cur-
rently found in ConTEXt. Users can be sure that
when they switch to another style or alternative,
that the system will follow.

But what about a font system for situations
where TEX has to compete with (or replace) desk-
top publishing? There we can roughly conclude the
following.

e We can stick to a simple font model: one size
for the main text, a few definitions for different
alternatives (regular, bold, italic, bolditalic) be-
cause this is what the designer has available.

e In addition we have to define a truckload of
fonts for all kind of elements (structure, orna-
ments, bits and pieces of the page body, cap-
tions, tables, etc.). We can stick to dumb font
switches since the (structural) editing tools used
don’t permit anything beyond the specs any-
way.

e Small caps, oldstyle numerals, inter-character
spacing in titling, and so on can be applied

32 TUGDboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



when constructing an internal font representa-
tion or handling can be delayed to node pro-
cessing time. Depending on the quality of the
font, some tweaking needs to be done. It is still
open whether we treat them as font features or
as a property of a part of the text.

e Math is a different story. If dealing with third
party input, it’s often more a matter of clean-
ing up than of advanced font trickery. Unicode
math fonts may simplify our life but may as well
complicate it. But whatever solution we end up
with, more families are welcome. We need to be
prepared for exceptions (especially when deal-
ing with specialized math, schoolbook math)
and also need to keep in mind that TEX no
longer dominates this market or at least is fed
with input coming from word processors with
math editing capabilities.

e Advanced features like hz and protruding are of
course possible but will often be interpreted as
errors by QA people. Applying them in TEX is
not complex, but explaining them to designers
may be. Anyway, in most cases ragged right is
to be used, if only because designers don’t trust
systems to do a proper justification. Here TEX’s
25 year reputation of creating nice paragraphs
does not help much.

Do we need a font system in TEX?

It goes without saying that a simple font sys-
tem will be faster than an advanced one normally
used in TEX. So, any time that we lose in pro-
cessing node lists, we may well gain back in a sim-
plified font system. On the other hand, life may
become more complex now that TEX engines pro-
vide more (distinctive) font related features, which
in turn may drive user demand into all directions
possible: I want these ligatures but not those! This
may be compensated for by the fact that we need to
load fewer fonts, and get rid of font encodings and
character/glyph fall-back trickery.

In retrospect, the way the plain TEX format de-
fines fonts is not that bad for most situations where
some third party is responsible for the overall doc-
ument design. The complication arises when one
writes manuals and needs to switch frequently be-
tween sizes and styles.

Actually many dirty tricks used in macro pack-
ages also result from the simple fact that one needs
to typeset user manuals about TEX, which means
that one has to deal with characters in special ways
which in turn may be reflected on the font system.

Of one thing there can be no doubt: the land-
scape of font usage is changing and TEX macro pack-
ages have to adapt.

TUGDboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 33



