
MlBibTEX: Reporting the experience∗

Jean-Michel Hufflen
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
France
hufflen (at) lifc dot univ-fcomte dot fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

This article reports how the different steps of the MlBibTEX project were con-
ducted until the first public release. We particularly focus on the problems raised
by reimplementing a program (BibTEX) that came out in the 1980’s. Since that
time, implementation techniques have evolved and new requirements have ap-
peared, as well as new programs within TEX’s galaxy. Our choices are explained
and discussed.
Keywords TEX, LATEX, BibTEX, reimplementation, reverse engineering, im-
plementation language, program update.

Streszczenie

Artykuł omawia realizację poszczególnych kroków przedsięwzięcia MlBibTEX, w
czasie do przedstawienia pierwszej publicznej wersji. W szczególności skupiamy
się na problemach powstałych przy reimplementacji programu (BibTEX), powsta-
łego w latach 80 zeszłego wieku. Od tego czasu rozwinęły się techniki implemen-
tacyjne, powstały nowe wymagania oraz nowe programy w świecie TEX-owym.
Przedstawiamy i dyskutujemy dokonane wybory.
Słowa kluczowe TEX, LATEX, BibTEX, reimplementacja, reverse engineering ,
język implementacji, aktualizacja programu.

0 Introduction

In 2003, TEX’s 25th anniversary was celebrated at
the TUG1 conference, held in Hawaii [1]. LATEX
[28] and BibTEX [35]— the bibliography processor
usually associated with the LATEX word processor—
are more recent, since they came out in the 1980’s,
shortly after TEX. All are still widely used, such
longevity being exceptional for software. However,
these programs are aging. Of course, recent ver-
sions have incorporated many features absent from
the first versions, which proves the robustness of
these systems. Nevertheless, they present some lim-
itations due to the original conception, and a major
reimplementation may be needed to integrate some
modern requirements. In addition, interactive word
processors have made important progress and are se-
rious rivals, even if they do not yield typesetting of
such professional quality. That is why some projects

∗ Title in Polish: MlBIBTEX: raport z doświadczeń.
1 TEX Users Group.

aim to provide new programs, based on TEX & Co.’s
ideas.2 A first representative example is the LATEX 3
project [32], a second is NTS [27].

MlBibTEX—for ‘MultiLingual BibTEX’—be-
longs to the class of such projects. Let us recall
that this program aims to be a ‘better BibTEX’,
especially regarding multilingual features. For an
end-user, MlBibTEX behaves exactly like ‘classical’
BibTEX: it searches bibliography data base (.bib)
files for citation keys used in a document and then
arranges the references found, writing them to a .bbl
file suitable for LATEX, w.r.t. a bibliography style.
MlBibTEX is written in Scheme,3 it uses XML4 as a

2 Concerning TEX, an additional point is that TEX’s de-
velopment has been frozen by its author, Donald E. Knuth
[26]. If incorporating new ideas to a ‘new TEX’ leads to a ma-
jor reimplementation, the resulting program must be named
differently.

3 The version used is described in [24].
4 EXtensible Markup Language. Readers interested in

an introductory book to this formalism can consult [37].

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 157



Jean-Michel Hufflen

central format: when entries of .bib files are parsed,
they result in an XML tree. Bibliography styles tak-
ing advantage as far as possible of MlBibTEX’s new
features are written using nbst,5 a variant of XSLT6

described in [15]. The stack-based bst language [34]
used for writing bibliography styles of BibTEX can
be used in a compatibility mode [20].

We think that the experience we have gained
in developing MlBibTEX may be useful for other,
analogous, projects. To begin, we briefly review the
chronology of this development. As will be seen,
this development has not been linear, and the two
following sections focus on the problems we had to
face. We explain how we have determined which
criteria are accurate when a programming language
is to be chosen for such an application. Then we
show how the compatibility with ‘old’ data and the
integration of modern features should be managed.

1 MlBibTEX’s chronology

Oct. 2000 MlBibTEX’s design begins: the syntax
of .bib files is enriched with multilingual anno-
tations. Version 1.1’s prototype is written using
the C programming language and tries to reuse
parts of ‘old’ BibTEX’s program as far as pos-
sible.

May 2001 The first article about MlBibTEX is [9].
Later, the experience of developing MlBibTEX’s
Version 1.1 is described in [10].

May 2002 After discussions with participants at
the EuroBachoTEX conference, we realise that
the conventions for bibliography styles are too
diverse, even if we consider only those of Eu-
ropean countries. We realise that this first ap-
proach is quite unsuitable, without defining a
new version of the bst language. So we decide
to explore two directions. First, we develop a
questionnaire about problems and conventions
concerning bibliography styles used within Eu-
ropean countries. Second, we begin a prototype
in Scheme implementing the bst language [11].
Initially, this prototype is devoted to experi-
ments about improving bst in a second version,
1.2.

Jan. 2003 Version 1.2 is stalled. The new version
(1.3) is based on XML formats. The nbst lan-
guage is designed and presented at [12, 13]. We
explain in [14] how the results of our question-
naire have influenced this new direction.

Feb. 2004 It appears to us that MlBibTEX should
be developed using a very high-level program-

5 New Bibliography STyles.
6 eXtensible Stylesheet Language Transformations, the

language of transformations used for XML documents [44].

ming language, higher than C. So we consider
again the prototype in Scheme that we sketched
in 2002. SXML7 [25] is chosen as the represen-
tation of XML texts in Scheme. Some parts of
MlBibTEX are directly reprogrammed from C
to Scheme. As for the other parts, this proto-
type is a good basis for much experiment [16].

Nov. 2004 The version written in C is definitely
dropped, whereas the version in Scheme is mod-
ified to improve efficiency; it becomes the ‘offi-
cial’ MlBibTEX [18].

Sep. 2005 We decided to freeze MlBibTEX’s design
and concentrate only on finishing programming.
Many Scheme functions are rewritten in confor-
mity to SRFIs8 [39].

May 2006 A working version is almost finished,
except for the interface with the kpathsea li-
brary.

May 2007 Public availability of MlBibTEX’s Ver-
sion 1.3.

Let us also explain that MlBibTEX is not our
only task. As an Assistant Professor in our univer-
sity, we teach computer science, and participate in
other projects. As a consequence, MlBibTEX’s de-
velopment has been somewhat anarchic: we hardly
worked on it for two or three months, put it aside
for one or two months, and so on. Last, we have su-
pervised some student projects regarding graphical
tools around MlBibTEX [2, 8], programmed using
Ruby [31], but concerning the development of the
MlBibTEX program itself, we have done it alone.

2 Choice of an implementation language

There are several programming paradigms: impera-
tive, functional, and logic programming. There are
also several ways to implement a programming lan-
guage: interpretation and compilation. Some par-
adigms are more appropriate, according to the do-
main of interest. Likewise, some interpreted lan-
guages are more appropriate if you want to pro-
gram a prototype quickly and are just interested in
performing some experiment.9 But compiled lan-
guages are often preferable if a program’s efficiency
is crucial. In addition, the level of a programming
language has some influence on development: in a
high-level language, low-level details of structures’
implementation do not have to be made explicit, so

7 Scheme implementation of XML.
8 Scheme Requests for Implementation, an effort to coor-

dinate libraries and other additions to the Scheme language
between implementations.

9 Such is the case for the two graphical tools around
MlBibTEX programmed in Ruby by our students [2, 8].

158 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007



MlBibTEX: Reporting the experience

development is quicker, and the resulting programs
are more concise, nearer to a mathematical model.

In addition to these general considerations, let
us recall that we aim to replace an existing program
by a new one. This new program is supposed to
do better than the ‘old’ one. ‘To do better’ may
mean ‘to have more functionalities, more expressive
power’, but for sake of credibility, it is desirable for
the new program to be as efficient as the ‘old’ one.
Let us not forget that TEX and BibTEX are written
using an old style of programming—more precisely,
a monolithic style used in the 1970’s–1980’s—based
mainly on global variables, without abstract data
types. Choosing a language implemented efficiently
is crucial: as a counter-example, NTS, written us-
ing Java, has been reported 100 times slower than
TEX [42, § 5]. That is why we wrote MlBibTEX’s
first version using C, because of its efficiency. In ad-
dition, this language is portable to most operating
systems. And to make our program modular, we de-
fined precise rules for naming procedures [10, § 3].
But two problems appeared.

First, MlBibTEX’s development has not been
a daily task, as mentioned above. Even if we are
personally able to program large applications in C,
it is difficult to put aside a C program and resume
it later: from this point of view, C is not a very
high-level language. Besides, let us not forget that
we are working within an open domain, as natural
languages are. A change may be needed because of
new features concerning languages that had not yet
been integrated into MlBibTEX’s framework. The
higher the level, the more easily such a change can
be applied.

Second, we want end-users of MlBibTEX to be
able to influence the behaviour of this program. For
example, many BibTEX users put LATEX commands
inside values associated with fields of .bib files, in or-
der to increase their expressive power within biblio-
graphical data. These users should be able to spec-
ify how to handle such commands when .bib files are
converted into XML trees. In particular, this is use-
ful if MlBibTEX is used to produce outputs for word
processors other than LATEX [21]. How to do that in
C, without defining a mini-language to express such
functions? In this case, using a script language is a
better choice . . . provided that this language is effi-
cient. Another choice is a Lisp10 dialect, as in Emacs
[40]: end-users can customise Emacs’ behaviour by
writing expressions using the Emacs Lisp language
[30]. This choice is homogeneous: the entire Emacs
editor is expressed in Emacs Lisp, excepting for the

10 LISt Processor.

implementation of low-level functionalities.
Finally, our choice was Scheme, the modern di-

alect of Lisp. We confess that we are personally
attracted by functional programming languages, be-
cause they can abstract procedures as well as data:
in this sense, they are very high-level programming
languages. Concerning Scheme, it seems to us to be
undebatable that it has very good expressive power,
and takes as much advantage as possible of lexical
scoping. In addition, it allows some operations to be
programmed ‘impurely’, by side effects, as in imper-
ative programming, in order to increase efficiency.
However, we use this feature parsimoniously, on lo-
cal variables, since it breaks the principles of func-
tional programming. We have defined precise rules
for naming variables, as we did in C for the first ver-
sion, in order to emphasise the modular decomposi-
tion of our program [19]. Last but not least, Scheme
programs may be interpreted—when software is be-
ing developed—or compiled, in which case they are
more efficient. As an example of a good Scheme im-
plementation, bigloo [38] compiles Scheme functions
by transforming them into C functions, then these
C functions are compiled, in turn.

If we compare the implementations in C and
Scheme, the latter is better, as expected from a
very high-level programming language. But pro-
gramming an application related to TEX using a lan-
guage other than C reveals a drawback: the kpath-
sea library [3] is written in C. Let us recall that
kpathsea implements functions navigating through
the TDS11 [43]. In particular, such functions lo-
calise the files containing the specification of a class
for a LATEX document or a bibliography style when
BibTEX runs. If there is a compatibility mode, for
‘old’ bibliography styles written in bst, the functions
of this compatibility mode should be able to localise
such files too. Likewise, ‘new’ bibliography styles
written in nbst, should be localised by means of
an analogous method. This implies that the lan-
guage—or, at least, an implementation of the lan-
guage—used for our software includes an interface
with C.

Of course, what we expose above proceeds from
general considerations. After all, we do not know
if BibTEX++ [4]—a successor of BibTEX based on
Java, with bibliography styles also written in Java—
is much less efficient than BibTEX. This may not be
the case. The advantages of script languages in such
development appear if we consider Bibulus [46], an-
other successor of BibTEX, written using Perl.12 It

11 TEX Directory Structure.
12 Practical Extraction Report Language. A didactic in-

troduction to this language is [45].

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 159



Jean-Michel Hufflen

has developed more quickly than MlBibTEX, but is
‘less’ multilingual and uses BibTEX when it runs.
That is, Bibulus does not replace BibTEX wholly, as
MlBibTEX attempts to do. In addition, there is an
example where the need of a programming language
at a higher level than C appeared: the project of
moving Ω—a successor of TEX—into a C++ plat-
form [36].

We personally think that an implementation of
NTS in Common Lisp [41]—what was planned ini-
tially—would have been preferable. As mentioned
in [47], the object-oriented features of Common Lisp
(CLOS13) have been added to the language’s basis—
as C++ object-oriented functionalities are added on
top of C—but the language itself is not actually
object-oriented. In [47], this point is viewed as a
drawback. First, we personally think that not every-
thing is an object, from the point of view of conceiv-
ing ideas. Second, Common Lisp, even if it is a func-
tional programming language, allows some opera-
tions to be performed more efficiently by means of
side effects, like Scheme.14 But Common Lisp’s stan-
dard does not specify an interface with C, as Scheme
does, although some implementations provide this
service. However, we personally prefer Scheme: it is
simpler and more modern.

3 Choice of strategy

3.1 Languages

TEX & Co. have been wonderful programs since the
date they came out. Although they behave very
nicely, the syntaxes are quite archaic. TEX’s is not
homogeneous—although LATEX2ε and LATEX 3 [32]
try to correct this point— for example, different de-
limiters are used to change size (‘{\small ...}’)
or face (‘\textbf{...}’). BibTEX’s syntax suffers
from lack of expressive power: for example, the only
way to put a brace within a field’s value is to give
its code number by ‘\symbol{...}’. ‘Semantically’,
TEX’s language provides many intelligent features,
as mentioned in [6], but does not meet a modern
style of programming. Likewise, .bib files’ syntax
can express only ‘verbatim’ values, except for some
‘tricks’ like inserting ‘-’ characters for a range of
page numbers. The specification of structured val-
ues like person or organisation names is easy for
simple cases, but quickly becomes obscure in more
complicated cases [22].

In addition, new syntactic sugar may be needed
to meet some new requirements. As an example, [23]

13 Common Lisp Object System.
14 Emacs Lisp, too, and the components of the Emacs editor

largely use this feature.

points out that the arguments of some macros—
e.g., \catcode—are not easily parseable. As an-
other example, the ConTEXt format [7] implements
a homogeneous expression of setup commands, by
means of a ‘key=value ’ syntax:
\setuplayout[backspace=4cm,topspace=2.5cm]

Nevertheless, is it reasonable to add more and more
syntactic sugar to such old-fashioned syntax? Would
the definition of new languages not be preferable?
Of course, the present languages of TEX and BibTEX
will still remain to be used, due to the huge number
of files using them and developed by end-users. But
if a new language is designed, it should become the
usual way to deal with the new program. Of course,
end-users will have to get used to the new language.
But that can be done progressively and synergy be-
tween developers and users may cause this new lan-
guage to be improved if need be.

In addition, let us remark that in our case, the
new language for bibliography styles (nbst) is close
to XSLT, so we think that users familiar with the
former can get used to the latter easily.

3.2 New services

Now it is admitted that composite tasks are not to
be done by a monolithic program, but by means of
a cooperation among several programs. From this
point of view, the cooperation between LATEX and
BibTEX is exemplary. But BibTEX is too strongly
related to LATEX. BibTEX can be used to build bibli-
ographies for ConTEXt documents, but only because
this word processor belongs to the TEX family. On
the contrary, writing a converter from BibTEX to
HTML15 by means of the bst language is impossi-
ble without loss of quality: for example, the un-
breakable space character is represented by ‘~’—as
in TEX—when names are formatted [22], and this
convention cannot be changed.16 We see that such
problems can be avoided by considering an XML-like
language as a central format. In our case, generat-
ing bibliographies according to formats other than
LATEX’s should be easy since the LATEX commands
end users put into .bib files are removed when these
files are parsed. This point is detailed in [17, 21].

4 Conclusion

Last but not least, we have enjoyed designing and
implementing MlBibTEX, even if this development
backtracked several times. In addition, we think

15 HyperText Markup Language. Readers interested in
an introduction to this language can refer to [33].

16 In fact, there are such converters, an example being
BibTEX2HTML [5], written using Objective Caml [29], a func-
tional programming language.

160 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007



MlBibTEX: Reporting the experience

that this development shows the difficulties related
to such a task. Two parts have to be managed in
parallel. The first part is reverse engineering, that
is, guessing the concept from the program. The sec-
ond: enlarging what already exists. In comparison
with ‘classical’ development of a new program from
scratch, tests concerning the compatibility mode are
easy to perform: we can simply compare what is
given by the two programs, the ‘old’ one becoming
an oracle. But reaching a homogeneous concept is
not obvious if we want to keep backward compatibil-
ity. Nevertheless, we hope that we have done some
satisfactory work.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
written the Polish translation of the abstract, and
to the proofreaders: Karl Berry, Barbara Beeton.

References

[1] William Adams, ed.: TUG 2003 Proceedings,
TUGboat, Vol. 24:1. July 2003.

[2] Cédric Bassetti and Christian Bon:
Interactive Specification of bibliography styles
for MlBIBTEX. Report of student project.
University of Franche-Comté. May 2006.

[3] Karl Berry and Olaf Weber: Kpathsea
library. http://tug.org/kpathsea/.

[4] Emmanuel Donin de Rosière: From Stack
Removing in Stack-Based Languages to
BIBTEX++. Master’s thesis, ENSTB, Brest.
2003.

[5] Jean-Christophe Filliâtre and Claude
Marché: The BIBTEX2HTML Home Page.
June 2006. http://www.lri.fr/~filliatr/
bibtex2html/.

[6] Jonathan Fine: “TEX as a Callable
Function”. In: EuroTEX 2002, pp. 26–30.
Bachotek, Poland. April 2002.

[7] Hans Hagen: ConTEXt, the Manual.
November 2001. http://www.pragma-ade.
com/general/manuals/cont-enp.pdf.

[8] Stéphane Henry and Jérôme Voinot:
Interface for MlBIBTEX. Getting
Bibliographical Entries Interactively.
Report of student project. University of
Franche-Comté. May 2005.

[9] Jean-Michel Hufflen : « Vers une extension
multilingue de BibTEX ». Cahiers GUTenberg,
Vol. 39–40, p. 23–38. In Actes du Congrès
GUTenberg 2001, Metz. Mai 2001.

[10] Jean-Michel Hufflen: “Lessons from a
Bibliography Program’s Reimplementation”.

In: Mark van den Brand and Ralf Lämmel,
eds., LDTA 2002, Vol. 65.3 of ENTCS.
Elsevier, Grenoble, France. April 2002.

[11] Jean-Michel Hufflen: Interaktive
BIBTEX-Programmierung. DANTE,
Herbsttagung 2002, Augsburg. Oktober 2002.

[12] Jean-Michel Hufflen: Die neue Sprache
für MlBIBTEX. DANTE 2003, Bremen. April
2003.

[13] Jean-Michel Hufflen: “Mixing Two
Bibliography Style Languages”. In: Barrett R.
Bryant and João Saraiva, eds., LDTA
2003, Vol. 82.3 of ENTCS. Elsevier, Warsaw,
Poland. April 2003.

[14] Jean-Michel Hufflen: “European
Bibliography Styles and MlBibTEX”.
TUGboat, Vol. 24, no. 3, pp. 489–498.
EuroTEX 2003, Brest, France. June 2003.

[15] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.
July 2003.

[16] Jean-Michel Hufflen: “A Tour around
MlBibTEX and Its Implementation(s)”.
Biuletyn GUST, Vol. 20, pp. 21–28. In
BachoTEX 2004 conference. April 2004.

[17] Jean-Michel Hufflen: “MlBibTEX: Beyond
LATEX”. In: Apostolos Syropoulos, Karl
Berry, Yannis Haralambous, Baden
Hughes, Steven Peter and John Plaice,
eds., International Conference on TEX, XML,
and Digital Typography, Vol. 3130 of LNCS,
pp. 203–215. Springer, Xanthi, Greece. August
2004.

[18] Jean-Michel Hufflen: Beschreibung der
MlBIBTEX-Implementierung mit Scheme.
DANTE 2004, Herbsttagung, Hannover.
Oktober 2004.

[19] Jean-Michel Hufflen: “Implementing a
Bibliography Processor in Scheme”. In:
J. Michael Ashley and Michel Sperber,
eds., Proc. of the 6th Workshop on Scheme
and Functional Programming, Vol. 619
of Indiana University Computer Science
Department, pp. 77–87. Tallinn. September
2005.

[20] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006
conference. April 2006.

[21] Jean-Michel Hufflen: “MlBibTEX Meets
ConTEXt”. TUGboat, Vol. 27, no. 1,

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 161



Jean-Michel Hufflen

pp. 76–82. EuroTEX 2006 proceedings,
Debrecen, Hungary. July 2006.

[22] Jean-Michel Hufflen: “Names in BibTEX
and MlBibTEX”. TUGboat, Vol. 27, no. 2,
pp. 243–253. TUG 2006 proceedings,
Marrakesh, Morocco. November 2006.

[23] David Kastrup: “Designing an Implemen-
tation Language for a TEX Successor”. In:
Proc. EuroTEX 2005, pp. 71–75. February
2005.

[24] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson,
Norman I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes,
Eugene Edmund Kohlbecker, Jr, Donald
Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5

Report on the Algorithmic Language
Scheme”. HOSC, Vol. 11, no. 1, pp. 7–105.
August 1998.

[25] Oleg E. Kiselyov: XML and Scheme.
September 2005. http://okmij.org/ftp/
Scheme/xml.html.

[26] Donald Ervin Knuth: “The Future of TEX
and METAFONT”. TUGboat, Vol. 11, no. 4,
pp. 489. December 1990.

[27] Joachim Lammarsch: “The History of NTS”.
In: EuroTEX 1999, pp. 228–232. Heidelberg
(Germany). September 1999.

[28] Leslie Lamport: LATEX: A Document
Preparation System. User’s Guide and
Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1994.

[29] Xavier Leroy, Damien Doligez, Jacques
Garrigue, Didier Rémy and Jéróme
Vouillon: The Objective Caml System.
Release 0.9. Documentation and User’s
Manual. 2004. http://caml.inria.fr/pub/
docs/manual-ocaml/index.html.

[30] Bill Lewis, Dan LaLiberte, Richard M.
Stallman and the GNU Manual Group:
GNU Emacs Lisp Reference Manual.
http://www.gnu.org/software/emacs/
elisp-manual/.

[31] Yukihiro Matsumoto: Ruby in a Nutshell.
O’Reilly. English translation by David L.
Reynolds, Jr. November 2001.

[32] Frank Mittelbach and Rainer Schöpf:
“Towards LATEX 3.0”. TUGboat, Vol. 12,
no. 1, pp. 74–79. March 1991.

[33] Chuck Musciano and Bill Kennedy: HTML
& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[34] Oren Patashnik: Designing BIBTEX
Styles. February 1988. Part of the BibTEX
distribution.

[35] Oren Patashnik: BIBTEXing. February 1988.
Part of the BibTEX distribution.

[36] John Plaice and Paul Swoboda: “Moving
Omega to a C++-Based Platform”. Biuletyn
Polskiej Grupy Użytkowników Systemu
TEX, Vol. 20, pp. 3–5. In BachoTEX 2004
conference. April 2004.

[37] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[38] Manuel Serrano: Bigloo. A Practical Scheme
Compiler. User Manual for Version 2.9a.
December 2006.

[39] Scheme Requests for Implementation.
February 2007. http://srfi.schemers.org.

[40] Richard M. Stallman: GNU Emacs Manual.
January 2007. http://www.gnu.org/
software/emacs/manual/.

[41] Guy Lewis Steele, Jr., Scott E. Fahlman,
Richard P. Gabriel, David A. Moon,
Daniel L. Weinreb, Daniel Gureasko
Bobrow, Linda G. DeMichiel, Sonya E.
Keene, Gregor Kiczales, Crispin Perdue,
Kent M. Pitman, Richard Waters and
Jon L White: Common Lisp. The Language.
Second Edition. Digital Press. 1990.

[42] Philip Taylor, Jiři Zlatuška and Karel
Skoupý: “The NTS Project: From
Conception to Implementation”. Cahiers
GUTenberg, Vol. 35–36, pp. 53–77. May 2000.

[43] TUG Working Group on a TEX Directory
Structure: A Directory Structure for TEX
Files. http://tug.org/tds.

[44] W3C: XSL Transformations (XSLT).
Version 1.0. W3C Recommendation. Edited
by James Clark. November 1999. http:
//www.w3.org/TR/1999/REC-xslt-19991116.

[45] Larry Wall, Tom Christiansen and Jon
Orwant: Programming Perl. 3rd edition.
O’Reilly & Associates, Inc. July 2000.

[46] Thomas Widman: “Bibulus—a Perl XML
Replacement for BibTEX”. In: EuroTEX 2003,
pp. 137–141. ENSTB. June 2003.

[47] Jiři Zlatuška: “NTS: Programming
Languages and Paradigms”. In: EuroTEX
1999, pp. 241–245. Heidelberg (Germany).
September 1999.

162 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007


