
Managing order relations in MlBibTEX∗

Jean-Michel Hufflen
LIFC (EA CNRS 4157)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
France
hufflen (at) lifc dot univ-fcomte dot fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

Lexicographical order relations used within dictionaries are language-dependent.
First, we describe the problems inherent in automatic generation of multilin-
gual bibliographies. Second, we explain how these problems are handled within
MlBibTEX. To add or update an order relation for a particular natural language,
we have to program in Scheme, but we show that MlBibTEX’s environment eases
this task as far as possible.
Keywords Lexicographical order relations, dictionaries, bibliographies, colla-
tion algorithm, Unicode, MlBibTEX, Scheme.

Streszczenie

Porządek leksykograficzny w słownikach jest zależny od języka. Najpierw omó-
wimy problemy powstające przy automatycznym generowaniu bibliografii wielo-
języcznych. Następnie wyjaśnimy, jak są one traktowane w MlBibTEX-u. Do-
danie lub zaktualizowanie zasad sortowania dla konkretnego języka naturalnego
umożliwia program napisany w języku Scheme. Pokażemy, jak bardzo otoczenie
MlBibTEX-owe ułatwia to zadanie.
Słowa kluczowe Zasady sortowania leksykograficznego, słowniki, bibliografie,
algorytmy sortowania leksykograficznego, Unikod, MlBibTEX, Scheme.

0 Introduction

Looking for a word in a dictionary or for a name
in a phone book is a common task. We get used
to the lexicographic order over a long time. More
precisely, we get used to our own lexicographic or-
der, because it belongs to our cultural background.
It depends on languages. This problem is particu-
larly acute when we deal with managing multilin-
gual bibliographies, as in our program MlBibTEX—
for ‘MultiLingual BibTEX’. Let us recall that this
program aims to be a ‘better’ BibTEX [15], the bibli-
ography processor usually associated with the LATEX
word processor [12]. When it builds a ‘References’
section for a LATEX document, BibTEX uses a bib-
liography style to determine the layout. Some bib-
liography styles are unsorted, that is, the order of
bibliographical items within the bibliography is the
order of first citations of these items throughout the
document. However, most of BibTEX’s styles sort

∗ Title in Polish: Zarządzanie zasadami sortowania lek-
sykograficznego w MlBIBTEX-u.

these items w.r.t. the alphabetical order of authors’
names. But the bst language of bibliography styles
[14] only provides a SORT function [13, Table 13.7]
suitable for the English language, the commands for
accents and other diacritical signs being ignored by
this sort operation.

The purpose of this article is to show how this
problem is solved in MlBibTEX’s first public release.
In practice, this version deals only with European
languages using the Latin alphabet. The MlBibTEX
program is written using the Scheme programming
language [10]. A standardised library providing sup-
port for Unicode [22] has been designed [18, §§ 1.1
& 1.2], but we cannot say that the present version
of Scheme is Unicode-compliant, even if some imple-
mentations include partial support.1 So some parts
of our present implementation of order relations are
temporary, but we think that this implementation

1 At the time of finishing the revised version of this article,
the proposal for Scheme’s next standard has just been ratified
and is now the ‘official’ sixth version of this language [19, 18].
See http://www.r6rs.org for more details.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 101

Jean-Michel Hufflen

• The Czech alphabet is: a < b < c < č < d < . . . < h < ch < i < . . . < r < ř < s < š < t < . . . z < ž.
• In Danish, accented letters are grouped at the end of the alphabet: a < . . . < z < æ < ø < ‌a.
• The Estonian language does not use the same order for unaccented letters as the usual Latin order; in addition,

accented letters are either inserted into the alphabet or alphabeticised like the corresponding unaccented letter:
a < . . . < s ∼ š < z ∼ ž < t < . . . < w < õ < ä < ö < ü < x < y.

• Here are the accented letters in the French language: à ∼ â, ç, è ∼ é ∼ ê ∼ ë, î ∼ ï, ô, ù ∼ û ∼ ü, ÿ.
When two words differ by an acccent, the unaccented letter takes precedence, but w.r.t. a right-to-left order:a

cote < côte < coté < côté. Two ligatures are used: ‘æ’ (resp. ‘œ’), alphabeticised like ‘ae’ (resp. ‘oe’).
• There are three accented letters in German— ‘ä’, ‘ö’, ‘ü’—and three lexicographic orders:

– DINb-1: a ∼ ä, o ∼ ö, u ∼ ü;
– DIN-2: ae ∼ ä, oe ∼ ö, ue ∼ ü;
– Austrian: a < ä < . . . < o < ö < . . . < u < ü < v < . . . < z.

• The Hungarian alphabet is:

a ∼ á < b < c < cs < d < dz < dzs < e ∼ é < f < g < gy < h < i ∼ í < j < k < l < ly < m <
n < ny < o ∼ ó < ö ∼ ő < p < . . . < s < sz < t < ty < u ∼ ú < ü ∼ ű < v < . . . < z < zs

Some double digraphs must be restored before sorting:

ccs → cs+cs, ddz → dz+dz, ggy → gy+gy, lly → ly+ly, nny → ny+ny, ssz → sz+sz, tty → ty+ty

The same for the double trigraph: ddzs → dzs+dzs.
• The Polish alphabet is:

a < ą < b < c < ć < d < e < ę < . . . < l < ł < m <
n < ń < o < ó < p < . . . < s < ś < t < . . . < z < ż

• The Romanian alphabet is: a < ă < â < b < . . . < i < î < j < . . . s < ş < t < ţ < u < . . . < z.
• The Slovak alphabet is:

a < á < ä < b < c < č < d < ď < dz < dž < e < é < f < g < h < ch < i < í < j < k < l < ĺ <
ľ < m < n < ň < o < ó < ô < p < q < r < ŕ < s < š < t < ť < u < ú < . . . < y < ý < z < ž

• The Spanish alphabet was a < b < c < ch < d < . . . < l < ll < m < n < ñ < o < . . . < z until 1994. Now the
digraphs ‘ch’ and ‘ll’ are no longer viewed as single letters in modern dictionaries, and the words using ‘ñ’ are
interleaved with words using ‘n’.

• In Swedish, accented letters are grouped at the end of the alphabet: a < . . . < z < ‌a < ä < ö.

a Using a left-to-right order for this step is common mistake even for French people. But the accurate order is right-to-left,
as specified in [7].

b Deutsche Institut für Normung (German Institute of normalisation).

Figure 1: Some order relations used in European languages.

could be easily updated for future versions dealing
with Unicode.

In the first section, we show how diverse lex-
icographic orders used throughout European coun-
tries are. This allows readers to estimate this diver-
sity and to realise the complexity of this task. We
also explain why this problem is made more diffi-
cult when we consider it within the framework of
bibliographies. Then we show how order relations
operate in MlBibTEX and how they are built. We
also give some details about the common and differ-
ent points between x

◦
ındy [13, § 11.3] and MlBibTEX,

both being programs using multilingual order rela-
tions. Reading this article does not require advanced
knowledge of Scheme;2 in fact, we think that a non-

2 Readers can refer to [20] for an introductory book about
Scheme.

programmer should be able to specify a new order
relation. We give more technical details in an an-
nex, for users that would like to experiment more
themselves. In particular, we explain how to deal
with languages using the Latin 2 encoding, despite
our implementation being based on Latin 1.

1 European languages and
lexicographic orders

Figure 1 gives an idea of the diversity of order re-
lations used throughout some European countries.
In this figure, ‘a < b’ denotes that the words be-
ginning with a are ‘less than’ the words beginning
with b, whereas ‘a ∼ b’ expresses that the letters
a and b are interleaved, except that a takes prece-
dence over b if two words differ only by these two let-
ters. Roughly speaking, there are two families of lan-

102 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Managing order relations in MlBibTEX

guages in the realm of associated lexicographic or-
ders. Accented letters are sometimes fully viewed as
‘real’ letters, distinct from unaccented ones: exam-
ples are given by some Slavonic languages. In other
languages, accented letters are sorted as if there
were no accent. The precedence of a unaccented
letter over an accented one is determined in various
ways: it follows a left-to-right order in Irish, Ital-
ian, and Portuguese, a right-to-left order in French.
The Estonian language ‘mixes’ the two approaches:
some accented letters— ‘õ’, ‘ä’—are alphabeticised,
some— ‘š’, ‘ž’—are interleaved. Last, some letter
groups may be viewed as a single letter and alpha-
beticised as another letter. For example, the Hun-
garian words beginning with ‘cs’ are alphabeticised
separately from the words beginning with ‘c’. In
fact, the ‘c-’ entry in a Hungarian dictionary con-
tains words beginning with ‘c’ and not with ‘cs’.
The ‘c-’ entry is followed by the ‘cs-’ entry, before
the ‘d-’ entry.

Anyway, it is apparent that there cannot be a
universal order encompassing all lexicographic or-
ders. Besides, these orders aim to classify words of
a dictionary, that is, common words belonging to
a language, even if some dictionaries may include
some proper names. When bibliographies are gen-
erated, order relations are used to sort bibliograph-
ical items, most often w.r.t. authors’ names. These
names may be ‘foreign’ proper names if we consider
the language used for the bibliography. So names
can include characters outside of this language’s al-
phabet. As a consequence, an order relation for sort-
ing a bibliography should be able to deal with any
letter, since any letter may appear in foreign names.
A good choice is to associate such a foreign letter
with a letter belonging to the ‘basic’ Latin alpha-
bet, so this foreign letter is interleaved with the ba-
sic letter, which takes precedence over the foreign
letter if two words differ only by these two letters.
If we consider the English language, this means that
accented letters are interleaved with unaccented let-
ters, but unaccented letters take precedence. Most
implementations of order relations proceed in this
way.

Unicode provides a default algorithm to sort all
its characters. This algorithm is based on a sort key
table, DUCET3 [23]. It is also based on a decom-
position property for composite characters. For ex-
ample, the ‘ô’ letter, whose name and code point—
given using hexadecimal numbers—are:

latin small letter o with circumflex,
U+00F4

3 Default Unicode Collation Element Table.

can be decomposed into these ‘simpler’ characters:
latin small letter o, U+006F
combining circumflex accent, U+0302

The sort algorithm requires several passes. To de-
scribe it roughly, an information about weight, given
by sort keys, is associated with each string. Then
this information is re-arranged according to sort lev-
els, w.r.t. letters, w.r.t. accents, etc. Finally, a binary
comparison between bytes is done, level by level, un-
til the two strings can be distinguished. This algo-
rithm can be refined for a particular language, by
using a specialised sort key table, possibly including
sort keys for accented letters and digraphs viewed as
single letters. This modus operandi would be diffi-
cult to put into action within MlBibTEX. First, we
do not have complete support for Unicode:4 for ex-
ample, we cannot directly deal with characters such
as the ‘combining circumflex accent’, not included
in the Latin-1 encoding. But we keep the idea about
decomposition, replacing the combining characters
by ASCII5 characters. For example, the ‘combining
circumflex accent’ will be replaced by the ‘^’ char-
acter. To sum up, our order relations are based on
a 3-step algorithm:
• replace composite characters (‘foreign’ letters

or composite characters not viewed as single let-
ters) when extracting successive letter groups
and compare the two results,
• refine the sort with accent information when

accented letters are interleaved with others,
• test the case: when two words differ only in

case, an uppercase letter takes precedence over
a lowercase one, according to a left-to-right or-
der.

2 Generating order relations

Let us recall that MlBibTEX can apply BibTEX’s
bibliography styles using a compatibility mode [6],
but in order to take advantage of MlBibTEX’s multi-
lingual features as far as possible, it is better to use
the nbst6 language [4], close to XSLT7 [24], the lan-
guage of transformations used for XML8 documents.
Let us recall that parsing a bibliography data base
(.bib) results in the representation of an XML tree in
Scheme [11]; this nbst language includes an element
for sorting selected subtrees of an XML document
[4, App. A], this element being analogous to XSLT’s
[24, § 10]. For example, the following two elements

4 See the annex.
5 American Standard Code for Information Interchange.
6 New Bibliography STyles.
7 eXtensible Stylesheet Language Transformations.
8 eXtensible Markup Language.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 103

Jean-Michel Hufflen

can be used to sort bibliographical items by the first
author’s last name, and then the items left unsorted
by this first step are sorted by the first author’s first
name:9

<nbst:sort
select="author/name[1]/personname/last"
language="german"/>

<nbst:sort
select="author/name[1]/personname/first"
language="german"/>

Due to the language attribute’s value, this sort op-
eration will use the lexicographic order for the Ger-
man language. Such an order relation is to be speci-
fied in Scheme, as a 2-argument function taking two
strings s0 and s1 and returning a ‘true’ value (#t)
if s0 is strictly less than s1, a ‘false’ value (#f) oth-
erwise. The best way to define such a function is
to derive it from a generator of order relations, as
shown in Figure 2. This <mk-order-relation gen-
erator has four arguments.
• A list whose elements are separator characters,

viewed as less than any letter. Usually, this list
contains only the space character, in which case,
the <space-only variable can be used. This
is not universal: for example, space characters
are ignored when words are sorted in Hungarian
(cf. the definition of the <hungarian? variable
in Figure 2).
• An alphabet, given w.r.t. the increasing order,

as a list of strings. If the ‘classical’ alphabet
is used—unaccented letters of the Latin alpha-
bet, sorted according to the usual order— just
put the ‘false’ value (cf. the definition of the
<english? variable).
• An association list for additional sequences of

characters, each sequence being followed by a
replacement and a weight.
• A function related to the sense of the second

step: when the first is finished and the second
is about to start, weights appear in reverse or-
der, so put reverse!10 (resp. identity—the
identity function) to put the second step into
action according to a left-to-right (resp. right-
to-left) order. Cf. the use of these two values
for <french? and <english?.

9 Let us notice that this illustrative example would be
too restrictive for an ‘actual’ bibliography style: there may
be several authors, and some authors may be denoted by an
organisation name, in which case the element’s name is not
personname, but othername.

10 Some Schemers could observe that this function does
not belong to pure functional style, because it is potentially
destructive [17]. But it is more efficient than the reverse
function and the weight list is not shared with other lists.

It should be noted that only lowercase letters have
to be specified, the equivalent relations among up-
percase letters will be deduced.

Let us come back to associations for additional
sequence characters. There are default associations,
comparable to the information given by the decom-
position property in Unicode. For example:

é 7→ e + |’|
where “ |’| ” denotes the default weight of the “ ’ ”
character. MlBibTEX knows such decomposition in-
formation for each accented letter of Latin 1. These
default associations can be overridden by alphabet-
specific associations given to the function building
orders. Weights are managed as follows.
• By default, the weight of each component of an

alphabet—appearing within the second argu-
ment of <mk-order-relation—is 1.
• If we consider only one substitution, that is, a

word W0 where a sequence S0 is to be replaced
by a sequence S1 with a weight w1, this substi-
tution resulting in a word W1. The W0 word
will be alphabeticised first if w1 < 1, put after
otherwise.

Here are some examples.
• In French, the only accent put on the ‘o’ letter

is circumflex. When ‘ô’ is replaced by ‘o’ for
the first step, we must ensure that ‘ô’ will be
ranked after ‘o’ if two words differ only by these
two letters at the same position. We must also
ensure that the other accented letters based on
‘o’— in ‘foreign’ words will be put after. So the
weight of the replacement of ‘ô’ by ‘o’ is 2, as
it can be seen in Figure 2 (cf. the definition of
<french?). The default weights for accents are
higher, so this accented letter is ranked before
the other accented letters based on the ‘o’ let-
ter and possibly used in languages other than
French.
• Similarly, the two accents allowed on the ‘a’ let-

ter are grave and circumflex, the correct order
being a < à < â. So the replacement of ‘à’
(resp. ‘â’) by ‘a’ for the first step is 2-weight
(resp. 3-weight).
Given a language, if a character belongs neither

to separators, nor to the alphabet, it is ignored, un-
less it is an accented letter included in default asso-
ciations.11

Given an alphabet’s specification—the second
argument of the <mk-order-relation function—

11 As a consequence, some ‘exotic’ letters are ignored out-
side their own language, because they cannot be related to
another letter of the Latin alphabet. For example, that is the
case for the ‘þ’ letter of the Icelandic language.

104 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Managing order relations in MlBibTEX

(define <english (<mk-order-relation <space-only #f ’() reverse!))
(define <austrian?
(<mk-order-relation
<space-only
’("a" "ä" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "ö" "p" "q" "r" "s" "t" "u"

"ü" "v" "w" "x" "y" "z")
’() reverse!))

(define <czech?
(<mk-order-relation
<space-only
’("a" "b" "c" "\\v{c}" "d" "e" "f" "g" "h" "ch" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "\\v{r}"

"s" "\\v{s}" "t" "u" "v" "w" "x" "y" "z" "\\v{z}")
’() reverse!))

(define <danish?
(<mk-order-relation
<space-only
’("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w"

"x" "y" "z" "æ" "ø" " ‌a")
’(("aa" (" ‌a" . 2))) ; In Danish, ‘aa’ is equivalent to ‘ ‌a’.
reverse!))

(define <estonian?
(<mk-order-relation
<space-only
’("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "z" "t" "u" "v"

"w" "õ" "ä" "ö" "ü" "x" "y")
’(("\\v{s}" ("s" . 2)) ("\\v{z}" ("z" . 2))) reverse!))

(define <french?
(<mk-order-relation <space-only #f

’(("à" ("a" . 2)) ("â" ("a" . 3)) ("è" ("e" . 2)) ("é" ("e" . 3))
("ê" ("e" . 4)) ("ë" ("e" . 5)) ("î" ("i" . 2)) ("ï" ("i" . 3))
("ö" ("o" . 2)) ("ù" ("u" . 2)) ("ü" ("u" . 3)) ("ÿ" ("y" . 2)))

identity))
(define <german-din-1?
(<mk-order-relation <space-only #f ’(("ä" ("a" . 2)) ("ö" ("o" . 2)) ("ü" ("u" . 2))) reverse!))

(define <german-din-2?
(<mk-order-relation
<space-only #f ’(("ä" ("a" . 2) ("e" . 2)) ("ö" ("o" . 2) ("e" . 2)) ("ü" ("u" . 2) ("e" . 2)))
reverse!))

(define <hungarian?
(<mk-order-relation
’() ; In Hungarian, a space character is irrelevant when words are sorted.
’("a" "b" "c" "cs" "d" "dz" "dzs" "e" "f" "g" "gy" "h" "i" "j" "k" "l" "ly" "m" "n" "ny" "o" "ö"

"p" "q" "r" "s" "sz" "t" "ty" "u" "ü" "v" "w" "x" "y" "z" "zs")
‘(("á" ("a" . 2)) ("é" ("e" . 2)) ("ccs" ("cs" . 2) ("cs" . 2))

("ddz" ("dz" . 2) ("dz" . 2)) ("ddzs" ("dzs" . 2) ("dzs" . 2)) ("ggy" ("gy" . 2) ("gy" . 2))
("í" ("i" . 2)) ("lly" ("ly" . 2) ("ly" . 2)) ("nny" ("ny" . 2) ("ny" . 2)) ("ó" ("o" . 2))
("\\H{o}" ("ö" . 2)) ("ssz" ("sz" . 2) ("sz" . 2)) ("tty" ("ty" . 2) ("ty" . 2))
("ú" ("u" . 2)) ("\\H{u}" ("ü" . 2))))

reverse!))
(define <polish?
(<mk-order-relation
<space-only
’("a" "{\\aob}" "b" "c" "\\’{c}" "d" "e" "{\\eob}" "f" "g" "h" "i" "j" "k" "l" "{\\l}" "m" "n"

"\\’{n}" "o" "ó" "p" "q" "r" "s" "\\’{s}" "t" "u" "v" "w" "x" "y" "z" "\\.{z}")
’() reverse!))

Figure 2: Building order relations for some European languages.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 105

Jean-Michel Hufflen

(define mk-hungarian-word-sectioner ; Building a generator of sectioning functions for Hungarian words.
(<mk-otoken-generator ’() ; The first three arguments of the <mk-order-relation

’("a" "b" "c" "cs" ...) ; function in the definition of the <hungarian? variable:
’(("á" ("a" . 2)) ...))) ; cf. Figure 2.

(define g ; Definition of a zero-argument function that will
(mk-hungarian-word-sectioner "sz\\H{o}l\\H{o}")) ; section the word ‘szőlő’ (‘grape’).

(g) =⇒ ("sz" . 1) ; The successive equivalent letters, digraphs, etc. of this word are returned in turn, with
(g) =⇒ ("ö" . 2) ; the corresponding weight.
(g) =⇒ ("l" . 1)
(g) =⇒ ("ö" . 2)
(g) =⇒ #f ; The word is finished, so all the calls of the g function will return the ‘false’ value, from now on.

Figure 3: How to section Hungarian words.

MlBibTEX notices the possible presence of multi-
character sequences (e.g., digraphs or trigraphs). If
need be, it builds a lexical analyser able to return the
longest sequence of characters belonging to this al-
phabet,12 an example of use being given in Figure 3.
Let us mention that these analysers extract as few
sequences of characters as possible. For example, if
we have to compare a word beginning with ‘a’ and
a word beginning with ‘b’ in English, only the first
letters— "a" and "b"—are extracted because that
is sufficient to determine the result.

Regarding the implementation, the encoding of
the sequences of an alphabet w.r.t. an increasing or-
der is implemented by means of hash tables,13 which
ensures efficiency. Let us not forget that these order
relations are used to sort bibliographical items, and
sorting requires many calls to the function modelling
an order relation.

3 MlBibTEX vs. x
◦
ındy

x
◦
ındy [9] and MlBibTEX do not aim to perfom the

same task, since x
◦
ındy is an index processor. How-

ever, both have common points: they reimplement
‘old’ programs belonging to TEX’s galaxy—make-
index [13, § 11.2] and BibTEX—with a particular
focus on multilingual features, they are both writ-
ten using a Lisp14 dialect: Common Lisp [21] for
x
◦
ındy, Scheme for MlBibTEX. Of course, the suc-

cessive steps used for putting an order relation into
action—needed to arrange the successive entries of
an index—also exist in x

◦
ındy. But the specification

12 Such lexical analysers are implemented by means of
tries. In MlBibTEX, this structure is also used to manage
the information related to language identifiers, as explained
in [5].

13 A hash table has a set of entries, and can efficiently map
an object to another object. This structure is described in [1]
from a general point of view, our implementation of hash
tables in MlBibTEX is inspired by [8].

14 LISt Processor.

of an order relation is different because it is done
step by step. There are forms:

define-alphabet define-letter-group
merge-rule sort-rule

to specify an alphabet, a letter group, and the re-
placement of a pattern. If a sort procedure is quite
close to the standard way used in English, it is prob-
ably easier to use x

◦
ındy’s forms, because only small

changes have to be expressed. In MlBibTEX, we
chose to develop fewer functions, which encapsulate
the complete making of an order relation. This al-
lows a global view of a new order relation and makes
easier some coherence tests among the information
about this relation.

4 Conclusion

The availability of these language-dependent order
relations within a unique program has been planned
through the use of the language attribute, as speci-
fied in the W3C15 recommendation about XSLT [24,
§ 10]. However, these relations have been imple-
mented only partially in most of XSLT processors.
Of course, our implementation also only partially
provides this service, because we are limited to Eu-
ropean languages. But we think that the orders we
define are correct w.r.t. these languages and they
are actually running. Our implementation is clearly
influenced by the Unicode collation algorithm. It
is a first step towards general algorithms for lexico-
graphic orders, and a first version subject to changes
when we explore other languages or get criticisms
from end-users. In many domains, improvement has
come about because first versions existed. We think
that will be also the case for our functions.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
written the Polish translation of the abstract. I

15 World Wide Web Consortium.

106 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Managing order relations in MlBibTEX

also thank Gyöngyi Bujdosó, Hans Hagen, Karel
Horák, Dag Langmyhr, who helped me fix some er-
rors. Thanks to Karl Berry and Barbara Beeton,
who proofread the revised version.

A How to use MlBibTEX’s functions

A.1 Getting started

To use the functions dealing with multilingual or-
dering, change your current directory into the src
subdirectory of MlBibTEX’s main directory, launch
a Scheme interpreter, and proceed as follows:

(load "common.scm") ; Loading general
; definitions.

(load "orders.scm") ; Loading all the
; definitions related to orders. This causes
; the other files needed to be loaded, too.

Then you can use the functions described in Fig-
ure 2. Use a R5RS-compliant Scheme interpreter
[10] and one able to deal with the Latin 1 encoding:
bigloo [16], MIT Scheme [3], and PLT Scheme [2] are
suitable.16 There is also a file performing some tests:
tests/test-orders-unacc.scm.

Now we describe the conventions used within
strings resulting from parsing a .bib file. These con-
ventions are supposed to be followed by the argu-
ments of the functions modelling order relations, so
you have to know them. You can directly type ac-
cented letters belonging to the Latin 1 encoding:

"Frank Böhmert"

In Scheme, the ‘ " ’ character being the delimiter of
constant strings, it must be escaped by a ‘\’ charac-
ter if it belongs to a string:

"\"Perry Rhodan\" Series"

If you are interested in strings using other en-
codings (in particular, the Latin 2 encoding, used in
Eastern Europe), you cannot specify them directly;
you must use the LATEX command producing accents
and other diacritical signs not included in Latin 1.
For example, ‘Henryk Mikołaj Górecki’ should be
typed ‘ "Henryk Miko{\\l}aj Górecki" ’ because
‘ó’ belongs to Latin 1, but ‘ł’ does not. Remem-
ber that the ‘\’ escape character must be itself es-
caped within a string. If such an accent command
has no argument—e.g., the ‘\l’ command—write
this command between braces, as suggested by the
previous example. Use braces for the argument of
an accent command, as in ‘ "Rezs\\H{o} Kókai" ’
for ‘Rezső Kókai’.17

16 In fact, these three Scheme interpreters include partial
support of Unicode, as mentioned in the introduction.

17 In fact, these letters belonging to the Latin 2 encoding
are all defined as Scheme variables in the file orders.scm, e.g.:

Now you can type some expressions and evalu-
ate them:
(<english? "coté" "côte") =⇒ #t ; True.
(<french? "coté" "côte") =⇒ #f ; False.

Of course, you can define new order relations
according to the modus operandi we explain in § 2
and try to model some ‘exotic’ order relations.18

A.2 Testing decomposition

To see how words are sectioned into successive let-
ters, digraphs, etc. according to a particular alpha-
bet, then use the <mk-otoken-generator function
to build a generator of functions sectioning words for
a particular language. This <mk-otoken-generator
function is automatically called when we apply the
<mk-order-relation function, and its three argu-
ments are the second, third and fourth arguments of
the <mk-order-relation function. As an example,
Figure 3 shows how to build and use such a genera-
tor for Hungarian words.

A.3 Going further

If you want to use MlBibTEX for producing bib-
liographies— in which case you have to load more
files by means of evaluating the expression:

(load "mlbibtex.scm")
—and would like to change the association of a lan-
guage with an order relation, use such an expression:
(c-language->order-relation
"german"
<german-din-2?) =⇒ #t

This causes <-german-din-2? to be the order rela-
tion used for German. If another relation was previ-
ously associated with this language,19 it is replaced
by this new value, the <-german-din-2? function.
If no order relation was known for this language,20
the association is created. The result is #t if the
association succeeds, #f otherwise (for example, a
string whose value is an unknown language).

(define <l-slashed-string "{\\l}")
(define <o-double-acute-string "\\H{o}")

. . . and used only by means of these variables. Of course,
this complicates the definitions given in Figure 2, but when
Scheme is Unicode-compliant, we will only have to change
these definitions.

18 It can be noticed that all the names of the Scheme func-
tions described above begin with ‘<’. A convention within the
source files of MlBibTEX is that all definitions made in the
same file have the same prefix. That allows a ‘kind of modu-
larity’, even if Scheme’s standard does not provide a way to
emphasise modular decomposition. Of course, we recommend
you choose a not-yet-used prefix for your own definitions.

19 In fact, when MlBibTEX is initialised, the order relation
for the German language is the <german-din-1? function.

20 . . . in which case the default order relation is the
<english? function.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 107

Jean-Michel Hufflen

References

[1] Alfred V. Aho, Ravi Sethi and Jeffrey D.
Ullman: Compilers, Principles, Techniques
and Tools. Addison-Wesley Publishing
Company. 1986.

[2] Matthew Flatt: PLT MzScheme: Language
Manual. Version 360. August 2004.
http://download.plt-scheme.org/doc/
360/pdf/mzscheme.pdf.

[3] Chris Hanson, the MIT Scheme team
et al.: MIT Scheme Reference Manual, 1st
edition. March 2002. Massachusetts Institute
of Technology.

[4] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.
July 2003.

[5] Jean-Michel Hufflen: Managing Languages
within MlBIBTEX. In revision. June 2005.

[6] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006
conference. April 2006.

[7] ISO-IEC CD 14651: International String
Ordering—Method for Comparing Character
Strings and Description of a Default Tailorable
Ordering. May 1996.

[8] Panu Kalliokoski: Basic Hash Tables.
September 2005. http://srfi.schemers.
org/srfi-69/.

[9] Roger Kehr: x
◦
ındy Manual. February 1998.

http://www.xindy.org/doc/manual.html.
[10] Richard Kelsey, William D. Clinger,

Jonathan A. Rees, Harold Abelson,
Norman I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes,
Eugene Edmund Kohlbecker, Jr, Donald
Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5

Report on the Algorithmic Language
Scheme”. HOSC, Vol. 11, no. 1, pp. 7–105.
August 1998.

[11] Oleg E. Kiselyov: XML and Scheme.
September 2005. http://okmij.org/ftp/
Scheme/xml.html.

[12] Leslie Lamport: LATEX: A Document
Preparation System. User’s Guide and
Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1994.

[13] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,

Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion.
2nd edition. Addison-Wesley Publishing
Company, Reading, Massachusetts. August
2004.

[14] Oren Patashnik: Designing BIBTEX
Styles. February 1988. Part of the BibTEX
distribution.

[15] Oren Patashnik: BIBTEXing. February 1988.
Part of the BibTEX distribution.

[16] Manuel Serrano: Bigloo. A Practical Scheme
Compiler. User Manual for Version 2.9a.
December 2006.

[17] Olin Shivers: List Library. October 1999.
http://srfi.schemers.org/srfi-1/.

[18] Michael Sperber, William Clinger, R. Kent
Dybvig, Matthew Flatt, Anton van
Straaten, Richard Kelsey and Jonathan
Rees: Revised6 Report on the Algorithmic
Language Scheme—Standard Libraries.
September 2007. hhtp://www.r6rs.org.

[19] Michael Sperber, William Clinger, R. Kent
Dybvig, Matthew Flatt, Anton van
Straaten, Richard Kelsey, Jonathan
Rees, Robert Bruce Findler and Jacob
Matthews: Revised6 Report on the
Algorithmic Language Scheme. September
2007. hhtp://www.r6rs.org.

[20] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The
MIT Press, McGraw-Hill Book Company.
1989.

[21] Guy Lewis Steele, Jr., Scott E. Fahlman,
Richard P. Gabriel, David A. Moon,
Daniel L. Weinreb, Daniel Gureasko
Bobrow, Linda G. DeMichiel, Sonya E.
Keene, Gregor Kiczales, Crispin Perdue,
Kent M. Pitman, Richard Waters and
Jon L White: Common Lisp. The Language.
Second Edition. Digital Press. 1990.

[22] The Unicode Consortium: The Unicode
Standard Version 5.0. Addison-Wesley.
November 2006.

[23] The Unicode Consortium, http:
//unicode.org/reports/tr10/: Unicode
Collation Algorithm. Unicode Technical
Standard #10. July 2006.

[24] W3C: XSL Transformations (XSLT).
Version 1.0. W3C Recommendation. Edited
by James Clark. November 1999. http:
//www.w3.org/TR/1999/REC-xslt-19991116.

108 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

