makematch, a EITEX package for pattern matching with wildcards

David Kastrup
David dot Kastrup (at) QuinScape dot de

Abstract

The makematch package has been factored out from the gstest package and
has the purpose of matching patterns with wildcards against targets. There is a
generalization provided for matching (ordered) pattern lists against (unordered)
target lists, in which case one can use commata or other separators (including
spaces) for separating the list elements. The wildcard * matches zero or more
arbitrary characters. Prepending ! to a pattern will cause a match of it to revert

possible matches from earlier in the pattern list.
Matching, for example, the pattern list

test*, !testlOxb, !fails
with the target list

fails, test20

will lead to a non-match: while test20 is matched by the pattern test*, the
additional matching pattern !fails later in the list reverts this match.

Both pattern and target lists get ‘sanitized’ (converted into a unique printing
form where no TEX characters are interpreted specially) and compiled into a form
which makes the matching itself quite efficient.

1 Using makematch

The basic idea of makematch is to compile patterns
and targets (and/or lists of them) and match the
former to the latter. This functionality is used ex-
tensively in QuinScape’s gstest package for unit
testing. We’ll use that package for documenting us-
age of makematch; the following construct skips the
tests when makematch.dtx is used as a standalone
file.

(xdtx)
\iffalse

(/dtx)

(+test)
\RequirePackage{makematch,gstest}
\IncludeTests{*}

makematch requires IATEX to be based on e-
TEX, which should be standard for current TEX dis-

tributions.

1.1 Match patterns and targets

This package has the notion of match patterns and
targets. Patterns and targets get sanitized at the
time they are specified; this means that nothing
gets expanded, but replaced by a textual representa-
tion consisting of spaces (with catcode 10) and other
characters (catcode 12). Control words are usually
followed by a single space when sanitized.

Patterns and targets are actually generalized to
pattern and target lists by this package: you can,
when specifying either, instead give a list by using
an optional argument for specifying a list separator
(the lists used in gstest are comma-separated).

Target lists are unordered: the order of targets
in them is irrelevant. Leading spaces in front of each
target get stripped; all others are retained.

Pattern lists similarly consist of a list of pat-
terns, with leading spaces stripped from each pat-
tern. In contrast to target lists, the order of pattern
lists is significant, with later patterns overriding ear-
lier ones. Also in contrast to target lists, empty pat-
terns are removed.

There are two special characters inside of a
pattern: the first is the wildcard * which matches
any number of consecutive characters (including the
empty string) in a target. Wildcards can occur any-
where and more than once in a pattern.

The second special character in a pattern is only
recognized at the beginning of a pattern, and only if
that pattern is part of a pattern list (namely, when
a list separator is specified).! If a pattern is pre-
ceded by ! then the following pattern, if it matches,
causes any previous match from the pattern list to
be disregarded.

1 And if ! is not the list separator of the list.

190 TUGDboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

makematch, a INTEX package for pattern matching with wildcards

So for example, the pattern list {*,!foo}
matches any target list that does not contain the
match target foo.

An empty target list {} is considered to contain
the empty string. Thus the pattern * matches every
target list, including empty ones, while the pattern
list {} does not match any keyword list, including
empty ones.

1.2 The interface

The \MakeMatcher command takes two mandatory
arguments. The first is a macro name. This macro
will become the new matcher. The second argu-
ment of \MakeMatcher is the pattern to match. An
optional argument before the mandatory ones can
be used for specifying a list separator, in which case
the first mandatory argument becomes a pattern list
(only in this case are leading ! characters before list
elements interpreted specially).

\begin{gstest}{\MakeMatcher}{\MakeMatcher}
\MakeMatcher\stylefiles{*.sty}
\MakeMatcher\headbang{!*}
\MakeMatcher[,]\truestylefiles
{*.sty,!.thumbnails/*, !*/.thumbnails/*}

The matcher constructed in this manner is called
with three arguments. The first argument is a con-
trol sequence name containing a match target (or
target list) prepared using \MakeMatchTarget (see
below).

Alternatively, the first argument can be a brace-
enclosed list (note that you'll need two nested levels
of braces, one for enclosing the argument, one for
specifying that this is a list) which will then get
passed to \MakeMatchTarget (see below) for pro-
cessing before use. The inner level of braces inside
of the first argument may be preceded by a brack-
eted optional argument specifying the list separator
for this list.

The second argument of the matcher is exe-
cuted if the pattern list for which the matcher has
been built matches the keyword list. The third is ex-
ecuted if it doesn’t. List separators of pattern and
keyword list are completely independent from each
other. So, we expect the following to result just in
calls of \true (a call of \false is turned into a failed
expectation):

\begin{qstest}{\Makematcher literal}
{\MakeMatcher}
\begin{ExpectCallSequence}
{\true{}\false{}}
‘. #1{\Expect*{\CalledName#1}{true}}+’}
\stylefiles
{{xxx/.thumbnails/blubb.sty}}
{\true}{\false}

\truestylefiles
{{xxx/.thumbnails/blubb.sty}}
{\false}{\true}

\headbang
{{xxx/.thumbnails/blubb.sty}}
{\false}{\true}

\stylefiles
{[]{x.sty.gz .thumbnails/x.sty !x}}
{\true}{\false}

\truestylefiles
{[]{x.sty.gz .thumbnails/x.sty !x}}
{\false}{\true}

\headbang
{[]{x.sty.gz .thumbnails/x.sty !x}}
{\true}{\false}

\end{ExpectCallSequence}
\end{qstest}

So how do we create a sanitized keyword list in
a control sequence?

\MakeMatchTarget is called with two manda-
tory arguments, the first being a control sequence
name where the keyword list in the second argument
will get stored in a sanitized form: it is converted
without expansion to characters of either “other” or
“space” category (catcodes 12 and 10, respectively),
and any leading spaces at the beginning of an ele-
ment are removed. Without an optional bracketed
argument, nothing more than sanitization and lead-
ing space stripping is done. If an optional bracketed
argument before the mandatory arguments is spec-
ified, it defines the list separator: this has to be a
single sanitized character token (either a space or a
character of category “other”) that is used as the list
separator for the input (the finished list will actually
always use the macro \, as a list separator).

\begin{gstest}{\Makematchery,
&\MakeMatchTarget})
{\MakeMatcher,),
\MakeMatchTarget}
\MakeMatchTarget\single
{xxx/.thumbnails/blubb.sty}
\MakeMatchTarget[]
\multiple{x.sty.gz
.thumbnails/x.sty !x}
\begin{ExpectCallSequence}
{\true{}\false{}/
‘. #1{\Expect*{\CalledName#1}
{true}}+’}
\stylefiles{\single}{\true}{\falsel}
\truestylefiles\single{\false}{\true}
\headbang\single{\false}{\true}
\stylefiles{\multiple}{\true}{\falsel}
\truestylefiles\multiple{\false}{\true}
\headbang\multiple{\true}{\false}
\end{ExpectCallSequence}
\end{gstest}

TUGDboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 191

David Kastrup

After a match process \MatchedTarget will contain
the target matched by the last matching pattern (if
several targets in a match target list match, only
the first of those is considered and recorded), re-
gardless of whether the corresponding pattern was
negated with !. After a successful match, you can
call \RemoveMatched with one argument: the con-
trol sequence name where the list was kept, and
the match will get removed from the list. If every
list element is removed, the list will be identical to

\@empty.
\begin{gstest}{\MatchedTarget}
{\MakeMatcher, },
\MakeMatchTarget,,
\MatchedTarget}

\MakeMatchTarget\single
{xxx/.thumbnails/blubb.sty}
\MakeMatchTarget[J\multiple
{x.sty.gz .thumbnails/x.sty !x}
\begin{ExpectCallSequence}
{\true{}\false{})
‘. #1{\Expect*{\CalledName#1}
{true}}+’}
\stylefiles{\single}
{\true}{\false}
\Expect*{\single}
{xxx/.thumbnails/blubb.sty}
\Expect*{\meaning\MatchedTarget}
*{\meaning\single}
\RemoveMatched\single
\Expect*{\meaning\single}
{macro:->}
\truestylefiles\single
{\false}{\true}
\headbang\single
{\false}{\true}
\stylefiles{\multiple}
{\true}{\false}
\Expect*{\MatchedTarget}
{.thumbnails/x.sty}
\RemoveMatched\multiple
\Expect\expandafter{\multiple}
{x.sty.gz\, Ix}
\truestylefiles\multiple
{\false}{\true}
\Expect*{\meaning\MatchedTarget}
{undefined}
\headbang\multiple
{\true}{\false}
\Expect*{\MatchedTarget}{!x}
\RemoveMatched\multiple
\Expect*{\multiple}{x.sty.gz}
\end{ExpectCallSequence}
\end{gstest}
\end{gstest}

1.3 Notes on sanitization

Note that sanitization to printable characters has
several consequences: it means that the control se-
quence \, will turn into the string \ followed by the
end of the keyword. Note also that single-character
control sequences with a nonletter name are not fol-
lowed by a space in sanitization. This means that
sanitization depends on the current catcodes. Most
particularly, sanitizing the input \@abc12 will turn
into \@abc 12 when @ is of catcode letter, but to
\@abc12 when @ is a nonletter.

So sanitization cannot hide all effects of cat-
code differences. It is still essential since otherwise
braces would cause rather severe complications dur-
ing matching.

Another curiosity of sanitization is that explicit
macro parameter characters (usually #) get dupli-
cated while being sanitized.

This is the end of the documentation section,
so we end our test file setup by complementing the
beginning:

(/test)
(*dtx)
\fi

(/dtx)

2 Conclusions and outlook

makematch sets out to solve the task of pattern
matching with wildcards in a very efficient manner.
One basic restriction for some applications might
be that it is restricted to comparing sanitized to-
ken lists. This has the effect that it is not possible
to hide material from matching by enclosing it in
braces. On the other hand, TEX will strip enclosing
braces around a matched argument, making it un-
reliable to repeat matches or what to expect from a
matched string.

In a later version, possibly starred forms of the
commands will be provided that omit the sanitiza-
tion. Those will not be able to match several char-
acters with a meaning particular to TEX (such as
#, { or }), but will probably come handy in other
situations, like parsing keyword lists yielding TEX
arguments. While it is possible to do this with the
current code, using \scantokens for turning them
active again, this can cause matches leading to un-
paired braces, and it will not make it possible to
hide commata from the matching by enclosing them
in braces.

192 TUGDboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

	Using makematch
	Match patterns and targets
	The interface
	Notes on sanitization

	Conclusions and outlook

