
qstest, a LATEX package for unit tests

David Kastrup
David dot Kastrup (at) QuinScape dot de

Abstract

The qstest package was created because of the need to verify in a large LATEX
project that no regressions occur. The test environments ensure that macros
and registers will be set to expected values in test code, and that macro calls
occur in a certain sequence and with certain values. Tests are usually embedded
directly into the source code of .dtx files, thus providing documentation as well
as verification.

It is also possible to compare results of one test run to those of previous runs.
Several log files may be created simultaneously in order to record the results

of tests ordered into various categories.

1 Using qstest

The basic idea of qstest is to let the user specify
a number of tests that can be performed either at
package load time or while running a separate test
file through LATEX. If you are writing .dtx files, it
is a good idea to use docstrip ‘modules’ for speci-
fying which lines are to be used for testing. The file
qstest.dtx from which both the style file as well as
this documentation have been generated has been
written in this manner.

Since the tests should be ignored when the dtx
file is itself compiled, we use this for skipping over
the tests:

〈∗dtx〉
\iffalse
〈/dtx〉

A standalone test file does not need a preamble. We
can load the packages with \RequirePackage and
just go ahead. Let us demonstrate how to build such
a test file by testing the qstest package itself:

〈∗test〉
\RequirePackage{qstest}

1.1 Pattern and keyword lists
See the section “Match patterns and targets” of
the makematch package for an explanation of the
comma-separated pattern and keyword lists. In a
nutshell, both are lists of arbitrary material that is
not expanded but rather used in sanitized (print-
able) form. Patterns may contain wildcard charac-
ters * matching zero or more characters, and may
be preceded by ! in order to negate a match from
an earlier pattern in the pattern list. Leading spaces
before an item in either list are discarded.

1.2 Specifying test sets
\IncludeTests specifies a pattern list matched to
tests’ keyword lists in order to determine the tests
to be included in this test run. The characters * and
! are interpreted as explained above.

For example,
\IncludeTests{*, !\cs}

will run all tests except those that have a test key-
word of \cs in their list of keywords. It is a good
convention to specify the principal macro or envi-
ronment to be tested as the first keyword.

The default is to include all tests. If you are in-
terspersing possibly expensive tests with your source
file, you might want to specify something like

\IncludeTests{*, !expensive}
or even

\IncludeTests{}
in your document preamble, and then possibly over-
ride this on the command line with

latex "\AtBeginDocument{
\IncludeTests{*}}\input{file}"

or similar for getting a more complete test.
\TestErrors defines test patterns that will

throw an error when failing. A test that throws
an error will not also add a warning to the stan-
dard log file with extension log since that would be
redundant.

The default is \TestErrors{*, !fails}, to
have all tests that are not marked as broken throw
an error when they fail.

The throwing of errors does not depend on the
logging settings (see below) for the default log file.

\LogTests receives three arguments. The first
is the filename extension of a log file (the extension

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 193



David Kastrup

log is treated specially and uses package warning
and info commands to log test failures and passes,
respectively). The second is a keyword list that indi-
cates which passed tests are to be logged. The third
is a keyword list specifying which failed tests are to
be logged. Let us open a file logging everything:

\LogTests{lgout}{*}{*}

The choice of lgout is made to make it possible to
also have lgin for comparison purposes: the latter
would be an lgout file from a previous, ‘definitive
run’, renamed and checked into version control, for
the sake of being able to compare the log output
from different versions.

An already open log file stays open and just
changes what is logged. By default, the standard
log (pseudo-)file is already open and logs every-
thing.

Passed and failed tests are not completely sym-
metric with regard to logging: test failures are
logged and/or indicated on the individual failed as-
sertions, while a successful test is only logged and/
or indicated in summary.

With \LogClose you can explicitly close a log
file if you want to reread it in the course of pro-
cessing, or call an executable that would process it.
The standard file with extension log will not actu-
ally get closed and flushed if you do this (though
logging would stop on it), but all others might. An
actual example for this follows after the tests. You
can reopen a closed log file using \LogTests. It will
then get rewritten from the beginning (with the ex-
ception of the standard log file, of course).

1.3 The tests
Tests are performed within the qstest environment.
The environment gets two arguments. The first is
the name of the test recorded in the log file. The
second is a list of test keywords used for deciding
which tests are performed and logged.

Before delving into the details of what kind of
tests you can perform in this environment, we list
the various commands that are given patterns and
thus control what kind of tests are performed and
logged.

\Expect is the workhorse for checking that val-
ues, dimensions, macros and other things are just
what the test designer would expect them to be.

This macro basically receives two brace-delim-
ited arguments1 and checks that they are equal af-

1 The arguments are collected with a token register as-
signment. This gives several options for specifying them,
including giving a token register without braces around it.
It also makes it possible to precede the balanced text with
\expandafter and similar expandable stuff.

ter being passed through \def and sanitized. This
means that you can’t normally use # except when
followed by a digit (all from 1 to 9 are allowed) or #.
If you precede one of those arguments with * it gets
passed through \edef instead of \def. There may
also be additional tokens like \expandafter before
the opening brace. Note that the combination of
\edef and \the〈token variable〉 can be used to pass
through # characters without interpretation. ε-TEX
provides a similar effect with \unexpanded. So if
you want to compare a token list that may contain
isolated hash characters, you can do so by writing
something like
〈∗etex〉
\begin{qstest}{# in isolation}

{\Expect, #, \unexpanded}
\toks0{# and #}
\Expect*{\the\toks0}

*{\unexpanded{# and #}}
\end{qstest}
〈/etex〉

Since the sanitized version will convert # macro pa-
rameters to the string ##, you might also do this
explicitly (and without ε-TEX) as

\begin{qstest}{# in isolation 2}
{\Expect, #, \string}

\toks0{# and #}
\Expect*{\the\toks0}

*{\string#\string#
and \string#\string#}

\end{qstest}

If the token register is guaranteed to contain only
‘proper’ # characters that are followed by either an-
other # or a digit, you can let the normal interpreta-
tion of a macro parameter for \def kick in and use
this as

\begin{qstest}{# as macro parameter}
{\Expect, #}

\toks0{\def\xxx#1{}}
\Expect\expandafter{\the\toks0}

{\def\xxx#1{}}
\end{qstest}

In this manner, #1 is interpreted (and sanitized) as
a macro parameter on both sides, and consequently
no doubling of # occurs.

Before the comparison is done, both argu-
ments are sanitized, converted into printing char-
acters with standardized catcodes throughout.2 A
word of warning: both sanitization as well as us-
ing \meaning still depend on catcode settings, since
single-letter control sequences (made from a catcode
11 letter) are followed by a space, and other single-
character control sequences are not. For this reason,

2 Spaces get catcode 10, all other characters catcode 12.

194 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007



qstest, a LATEX package for unit tests

a standalone test file for LATEX class or package files
will usually need to declare

\makeatletter

in order to make ‘@’ a letter, as is usual in such files.
All of the following expectations would turn out

correct:
\begin{qstest}{Some LaTeX definitions}

{\Expect}
\Expect*{\meaning\@gobble}

{\long macro:#1->}
\Expect*{\the\maxdimen}

{16383.99998pt}
\end{qstest}

Note that there is no way to convert the contents of
a box into a printable rendition, so with regard to
boxes, you will mostly be reduced to checking that
the box dimensions meet expectations.

1.4 Expecting ifthen conditions
\ExpectIfThen is used for evaluating a condition
as provided by the ifthen package. See its docs for
the kind of condition that is possible there. You just
specify one argument: the condition that you expect
to be true. Here is an example:

\RequirePackage{ifthen}
\begin{qstest}{\ExpectIfThen}

{\ExpectIfThen}
\ExpectIfThen{

\lengthtest
{\maxdimen=16383.99998pt}\AND
\maxdimen>1000000000}

\end{qstest}

1.5 Dimension ranges
\InRange checks not whether some dimension is ex-
actly equal to some value, but rather within some
range. We do this by specifying as the second ar-
gument to \Expect an artificial macro with two ar-
guments specifying the range in question. This will
make \Expect succeed if its first argument is in the
range specified by the two arguments to \InRange.

The range is specified as two TEX dimens. If
you use a dimen register and you want to have a pos-
sible error message display the value instead of the
dimen register, you can do so by using the * modifier
before \InRange (which will cause the value to be
expanded before printing and comparing) and put
\the before the dimen register since such registers
are not expandable by themselves.

Here are some examples:
\begin{qstest}{\InRange success}

{\InRange}
\dimen@=10pt
\Expect*{\the\dimen@}

\InRange{5pt}{15pt}
\Expect*{\the\dimen@}

\InRange{10pt}{15pt}
\Expect*{\the\dimen@}

\InRange{5pt}{10pt}
\end{qstest}
\begin{qstest}{\InRange failure}

{\InRange, fails}
\dimen@=10pt \dimen@ii=9.99998pt
\Expect*{\the\dimen@}

\InRange{5pt}{\dimen@ii}
\dimen@ii=10.00002pt
\Expect*{\the\dimen@}

*\InRange{\the\dimen@ii}{15pt}
\end{qstest}

\NearTo requires ε-TEX’s arithmetic and so will not
be available for versions built without ε-TEX sup-
port. The macro is used in lieu of an expected value
and is similar to \InRange in that it is a pseudovalue
to be used for the second argument of \Expect. It
makes \Expect succeed if its own mandatory argu-
ment is close to the first argument from \Expect,
where closeness is defined as being within 0.05pt.
This size can be varied by specifying a different one
as optional argument to \NearTo. Here is a test:

〈∗etex〉
\begin{qstest}{\NearTo success}

{\NearTo}
\dimen@=10pt
\Expect*{\the\dimen@}

\NearTo{10.05pt}
\Expect*{\the\dimen@}

\NearTo{9.95pt}
\Expect*{\the\dimen@}

\NearTo[2pt]{12pt}
\Expect*{\the\dimen@}

\NearTo[0.1pt]{9.9pt}
\end{qstest}
\begin{qstest}{\NearTo failure}

{\NearTo, fails}
\dimen@=10pt
\Expect*{\the\dimen@}

\NearTo{10.05002pt}
\Expect*{\the\dimen@}

\NearTo[1pt]{11.00001pt}
\end{qstest}
〈/etex〉

1.6 Saved results
The purpose of saved results is to be able to check
that the value has remained the same over multiple
passes. Results are given a unique label name and
are written to an auxiliary file where they can be
read in for the sake of comparison. One can use
the normal aux file for this purpose, but it might
be preferable to use a separate dedicated file. That

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 195



David Kastrup

way it is possible to input a versioned copy of this
file and have a fixed point of reference rather than
the last run.

While the aux file is read in automatically at
the beginning of the document, this does not happen
with explicitly named files. You have to read them
in yourself, preferably using

\InputIfFileExists
{filename}{}{}

so that no error is thrown when the file does not yet
exist.

\SaveValueFile gets one argument specifying
which file name to use for saving results. If this is
specified, a special file is opened. If \SaveValueFile
is not called, the standard aux file is used in-
stead, but then you can only save values after
\begin{document}. \jobname.qsout seems like a
useful file name to use here (the extension out is
already in use by pdfTEX).

\begin{qstest}{\SavedValue}
{\SavedValue}

\SaveValueFile{\jobname.qsout}

If this were a real test instead of just documentation,
we probably would have written something like

\InputIfFileExists
{\jobname.qsin}{}{}

first in order to read in values from a previous run.
The given file would have been a copy of a previ-
ous qsout file, possibly checked into version control
in order to make sure behavior is consistent across
runs. If it is an error to not have such a file (once
you have established appropriate testing), you can
just write

\input{\jobname.qsin}
instead, of course.

\CloseValueFile takes no argument and will
close a value save file if one is open (using this has
no effect if no file has been opened and values are
saved on the aux file instead). We’ll demonstrate
use of it later. It is probably only necessary for test-
ing qstest itself (namely, when you read in saved
values in the same run), or when you do the process-
ing/comparison with a previous version by executing
commands via TEX’s \write18 mechanism.

\SaveValue gets the label name as first argu-
ment. If you are using the non-ε-TEX version, the la-
bel name gets sanitized using \string and so can’t
deal with non-character material except at its im-
mediate beginning. The ε-TEX version has no such
constraint.

The second argument is the same kind of argu-
ment as \Expect expects, namely something suit-
able for a token register assignment which is passed

through \def if not preceded by *, and by \edef if
preceded by *. The value is written out to the save
file where it can be read in afterwards.

Let us save a few values under different names
now:

\SaveValue{\InternalSetValue}
*{\meaning\InternalSetValue}

\SaveValue{\IncludeTests}
*{\meaning\IncludeTests}

\SaveValue{whatever}
*{3.1415}

\SaveValue{\maxdimen}
*{\the\maxdimen}

A call to \InternalSetValue is placed into the save
file for each call of \SaveValue. The details are not
really relevant: in case you run into problems while
inputting the save file, it might be nice to know.

\SavedValue is used for retrieving a saved
value. When used as the second argument to
\Expect, it will default to the value of the first ar-
gument to \Expect unless it has been read in from
a save file. This behavior is intended for making it
easy to add tests and saved values and not get er-
rors at first, until actually values from a previous
test become available.

Consequently, the following tests will all turn
out true before we read in a file, simply because all
the saved values are not yet defined and default to
the expectations:

\Expect{Whatever}
\SavedValue{\InternalSetValue}

\Expect[\IncludeTests]{Whatever else}
\SavedValue{\IncludeTests}

\Expect[whatever]{2.71828}
\SavedValue{whatever}

\Expect[undefined]{1.618034}
\SavedValue{undefined}

After closing and rereading the file, we’ll need to
be more careful with our expectations, but the last
line still works since there still is no saved value for
“undefined”.

\CloseValueFile
\input{\jobname.qsout}
\Expect*{\meaning\InternalSetValue}

\SavedValue{\InternalSetValue}
\Expect[\IncludeTests]

*{\meaning\IncludeTests}%
\SavedValue{\IncludeTests}

\Expect[whatever]{3.1415}
\SavedValue{whatever}

\Expect[undefined]{1.618034}
\SavedValue{undefined}

\end{qstest}

196 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007



qstest, a LATEX package for unit tests

Now let’s take the previous tests which succeeded
again and let them fail now that the variables are
defined:

\begin{qstest}{\SavedValue failure}
{\SavedValue,fails}

\Expect{Whatever}
\SavedValue{\InternalSetValue}

\Expect[\IncludeTests]{Whatever else}
\SavedValue{\IncludeTests}

\Expect{2.71828}\SavedValue{whatever}
\end{qstest}

1.7 Checking for call sequences
The environment ExpectCallSequence tells the test
system that macros are going to be called in a cer-
tain order and with particular types of arguments.

It gets as an argument the expected call se-
quence. The call sequence contains entries that look
like a macro definition: starting with the macro
name followed with a macro argument list and a
brace-enclosed substitution text that gets executed
in place of the macro. The argument list given to
this macro substitution will get as its first argument
a macro with the original definition of the control
sequence, so you can get at the original arguments
for this particular macro call starting with #2. As
a consequence, if you specify no arguments at all
and an empty replacement text for the substitution,
the original macro gets executed with the original
arguments.

\CalledName: if you want to get back from the
control sequence with the original meaning in #1 to
the original macro name, you can use \CalledName
on it. This will expand to the original control se-
quence name, all in printable characters fit for out-
put or typesetting in a typewriter font (or use in
\csname), but without the leading backslash char-
acter. You can get to the control sequence itself by
using

\csname \CalledName#1\endcsname

and to a printable version including backslash by
using

\expandafter \string
\csname \CalledName#1\endcsname

Going into more detail, a substitution function
is basically defined using

\protected \long \def

so it will not usually get expanded except when
hit with \expandafter or actually being executed.
Note that you can’t use this on stuff that has to
work at expansion time. This works mainly with
macros that would also be suitable candidates for
\DeclareRobustCommand.

It is also a bad idea to trace a conditional in
this manner: while the substitution could be made
to work when being executed, it will appear like an
ordinary macro when being skipped, disturbing the
conditional nesting.

Only macros occuring somewhere in the call se-
quence will get tracked, other macros are not af-
fected. The environment can actually get nested,
in which case the outer sequences will get tracked
independently from the inner sequence.

Thus, ExpectCallSequence can be used in or-
der to spoof, for example, both input consuming and
output producing macros without knowing the exact
relationship of both.

Apart from specifying macro calls, the call se-
quence specification can contain the following char-
acters that also carry a special meaning:
‘ If this is set in the call sequence, it places the

initial parsing state here. This will make it an
error if non-matching entries occur at the start
of the sequence, which otherwise is effectively
enclosed with

.{}*(〈sequence〉).{}*

meaning that nonmatching entries before the
first and after the last matching item of the
sequence are ignored by default (this makes it
closer to normal regexp matchers). Since the
matching will then start at ‘, you can put
macros before that position that you want to
be flagged if they occur in the sequence, even
when they are mentioned nowhere else (macros
which would be an error if actually called). Also
available as the more customary ^ character,
but that tends to behave worse in LATEX-aware
editors.

’ This indicates the last call sequence element to
be matched. If any traced macros appear after
this point, an error will get generated. Any
immediately following call sequence entries will
not get reached.

. A single dot indicates a wildcard: any of the
tracked control sequences might occur here.
You still have to follow this with macro argu-
ments and a braced replacement text. Wild-
cards are considered as a fallback when nothing
else matches.

(. . . ) Parens may be used for grouping alternatives
and/or combining items for the sake of repeat-
ing specifications, of which there are three:

? If a question mark follows either a macro call,
wildcard call, parenthesized group, or call se-
quence end, the item before it is optional.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 197



David Kastrup

+ A plus sign following an item means that this item
may be repeated one or more times.

* An asterisk following an item means that this item
may be repeated zero or more times.

| A vertical bar separates alternatives. Alternatives
extend as far as possible, to the next bar, to an
enclosing paren group, or to the start and/or
end of the whole call sequence specification if
nothing else intervenes.

Note that in contrast to traditional regexp evalu-
ation, no backtracking is employed: at each point
in the call sequence, the next match is immediately
chosen and a choice cannot (for obvious reasons) be
reverted. It is the task of the user to specify a call se-
quence in a sufficiently non-ambiguous manner that
will make the call sequence tracing not pick dead
ends.

\begin{qstest}{ExpectCallSequence}
{ExpectCallSequence}

\def\e{e} \def\f{f}
\def\g{g} \def\h{h}
\begin{ExpectCallSequence}

{‘\e#1{%
\Expect\expandafter

{\csname\CalledName#1\endcsname}
{\e }%

\Expect*{\meaning#1}
{macro:->e}}+\f#1{}’}

\e \e \e \e \f
\end{ExpectCallSequence}

\end{qstest}

1.8 Ending a standalone test file
One finishes a standalone test file by calling the
LATEX control sequence \quit. This stops process-
ing even when we did not actually get into a doc-
ument. We don’t actually do this here since there
will be further tests in the full documentation file.
However, we will now close the log file we opened
for this demonstration.

\LogClose{lgout}
〈/test〉

2 Conclusion
The package documentation illustrated how one can
embed test cases into the source of a dtx package by
using module guards <test> and docstrip. There
are more possibilities of use, such as using <trace>
guards and embedding \Expect macros and call se-
quence expectations right into code for regular use
instead of doing separate tests. In that way, a de-
bugging version of the package may be extracted us-
ing docstrip. Selecting a subset of trace commands
or assertions to use can easily be accomplished with
the makematch package.

The qstest package in combination with the
dtx documentation format and docstrip allows to
integrate documentation and unit testing. As long
as one does not do actual testing, the qstest pack-
age is not required to be installed for either com-
piling documentation or using the style file. For
that reason, one can safely use it without having
to assume anything about the version (if any) of the
qstest package available to some end user.

198 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007


	Using qstest
	Pattern and keyword lists
	Specifying test sets
	The tests
	Expecting ifthen conditions
	Dimension ranges
	Saved results
	Checking for call sequences
	Ending a standalone test file

	Conclusion

