
Conventional scoping of registers—An experiment in εXTEX

Gerd Neugebauer
In Lerchelsböhl 5
64521 Groß-Gerau (Germany)
gene (at) gerd-neugebauer dot de

www.gerd-neugebauer.de

Abstract

TEX provides groups as a means to restrict the visibility of registers. This con-
struction is well known in the TEX world but does not coincide with groups as
known from other programming languages. If we refrain from storing the register
value in a global array we can come to the alternate solution of storing it in the
control sequence used to access it. With this variant we can provide a means to
define an arbitrary number of registers which follow the same scoping rules as
variables in Pascal-like languages.

εXTEX is a reimplementation of TEX in Java. It is developed with extensibility
and configurability in mind. The idea of an alternative storage for registers can be
implemented in εXTEX as an extension. We show which steps are required for such
an implementation. In this manner the extensibility of εXTEX is demonstrated.

1 Registers and scoping

plain.tex provides macros to handle the allocation
of registers. For this document we want to restrict
our considerations to count registers. The other reg-
ister types can be handled analogously. Here the
macro \newcount can be used to allocate a new
count register:

\newcount\abc

{\abc = 42

\showthe\abc

}

In TEX any changes to registers are recorded.
When the group closes, the old values are restored.
Thus any changes to registers in a group are auto-
matically local. This can be overwritten with the
keyword \global.

Let us have a look at the same construction in
another programming language. As an example we
use Java. The same considerations hold for many
languages of the Pascal family.

{ int abc = 42;

System.out.println(abc);

}

The grouping reduces the scoping of the vari-
able abc. It is defined within the group and not
visible outside. If a variable with the same name is
defined before the group then this variable is hidden
by the new definition in the group.

The explicit declaration of the local variable in
Java arranges things so that the new variable is ac-
tivated and any previous declaration is hidden.

2 Storage in TEX

Coming back to TEX an alternative interpretation
comes to mind. Whenever a register is modified in
a group then an automatic declaration of a new vari-
able is introduced and initialized.

One way to come closer to conventional pro-
gramming languages with TEX would be to intro-
duce typed variables following the conventional rules
for scoping and initializing.

TEX stores the values of registers in TEX mem-
ory. This memory is written to the format file when
a \dump is performed. Besides the register values,
(macro) code is stored in TEX memory.

All we need is a primitive which behaves like a
count register but stores the value somewhere else —
making it accessible via the primitive only.

3 εXTEX

The εXTEX project (→ http://www.extex.org) has
the aim to produce a reimplementation of TEX. The
implementation language for this reimplementation
is Java. The major design decisions put modularity
and configurability into the forefront.

As one consequence εXTEX is assembled out of
many components. Those components provide de-
fined interfaces. This makes it simple to write re-
placements for existing components and provide new

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 151

http://www.extex.org


Gerd Neugebauer

components to extend the system. This extensibil-
ity makes it easy to experiment to some extent with
new ideas. In the following setions we will see one
example of such an experiment.

εXTEX is currently under development. Even
though large pieces are in place, εXTEX is not yet
ready for production. Any help to get things finished
is very welcome. If you are interested in participat-
ing in εXTEX development, contact the developers
on the developer list, which can be found via the
εXTEX web site.

4 Writing a new primitive for εXTEX

According to our considerations we want to have a
new primitive which behaves like a count register
but stores the value within the code and not in the
context. In addition we need a primitive \integer
to dynamically create such integers. Then we can
write the following TEX code:

{\integer \abc = 42

\showthe\abc

}

First we start with implementing the code for
the count-equivalent. This code needs to have sev-
eral properties to behave like a count register:
• It needs to assign a new value when executed.

This means that

\abc=123

works if \abc has the meaning of the new prim-
itive.

• It needs to act as an assignment; this means
that \afterassignment has to be taken into
account. This mean its token is expanded after
the assignment has taken place.

• It needs to be advanceable. This means that
the following works:

\advance\abc by 123

• It needs to be multiplyable. This means that
the following works:

\multiply\abc by 123

• It needs to be divideable. This means that the
following works:

\divide\abc by 123

• It needs to provide the count value upon re-
quest. This means that the following works:

\count0=\abc

• It needs to provide value for primitives \the
and \showthe. This means that the following
works:

\showthe\abc

• It needs to expand to the tokens making up its
value.

5 Providing a definition

To start with we create a new class. This class lives
in a package named extex.tutorial. In addition
we use a bunch of imports from εXTEX. Since the
imports are usually filled in by the IDE, we omit
them (like the comments which are assumed to be
filled in by the reader).1

package extex.tutorial;

import org.extex.core.count.Count;

// a bunch more imports omitted

Next we declare the class. It is derived from an
abstract base class which takes care of the assign-
ment. Each of the properties we want to have is de-
clared with the help of an interface. Advanceable
describes that the primitive can be used after the
primitive \advance, Divideable describes that the
primitive can be used after the primitive \divide
and so on. Each of these interfaces contains a single
method which needs to be implemented.

public class IntPrimitive

extends
AbstractAssignment

implements
Advanceable,

Divideable,

Multiplyable,

CountConvertible,

Theable,

ExpandableCode {

Since we want to store a count value with the
code we first create a private field. The data type
Count encapsulates a count value. It has the meth-
ods to access and manipulate it. In its core it con-
tains a long value to store a number in.

private Count value = new Count(0);

But before we come to implement the interfaces
we have to define a constructor. The constructor

1 To be honest, the exact package structure of εXTEX is
subject to some changes until the final version 1.0 is released.

152 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



Conventional scoping of registers — An experiment in εXTEX

takes one argument — the name of the primitive —
and passes it to the constructor of the super-class.

public IntPrimitive(String name) {

super(name);
}

Now we can start with the first method assign.
It takes four parameters with the following inter-
faces:
Flags contains the indicators for the prefix argu-

ments like \global. The primitive can consume
the flags and react differently upon their values.
Since our primitive does not use prefixes this
argument is simply ignored.

Context contains the equivalent to the TEX mem-
ory — anything contributing to the state of the
interpreter is stored here. The Context is also
stored in a format when \dump is invoked.

TokenSource provides access to the scanner and the
parsing routines. It can be used to acquire fur-
ther tokens or even higher order entities.

Typesetter contains the typesetter of the system.
The typesetter produces nodes which might be
stored in boxes and finally sent to the backend.
The primitive can send characters or instruc-
tions to the typesetter or simply request some
information from it.
We will see these parameters again with each of

our methods.

public void assign(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

source.getOptionalEquals(context);

Count newValue = CountParser.parse(

context, source, typesetter);

value.set(newValue);

}

The implementation first consumes an optional
equal sign and then parses a following count value.
Finally we can set the internal count to this new
value.

Assume that we have assigned the new primi-
tive to the control sequence \abc— we will see the
details later. Then we can do the following:

\abc = 1234

This simply assigns a new value to the vari-
able. But we have also used the infrastructure of
an assignment. Thus the tokens stored in the token

register \afterassignment are inserted after the as-
signment:

\afterassignment=\x

\abc = 1234

\y

Right now we can assign a new value to the
variable. Since we want to see what we have done,
we implement the method the which converts the
value back into tokens to be used by the primitives
\the and \showthe.

public Tokens the(Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException,

CatcodeException,

ConfigurationException {

return context.getTokenFactory().

toTokens(value);

}

The main task of creating a list of tokens is
provided by a token factory. This is an application
of the factory pattern. The factory is attached to
the context and can be retrieved from it.

Next we have to take care of \advance. In
εXTEX the implementation of \advance decouples
the operation from the implementation of the prim-
itive. Thus it is possible to add further primitives
which can be used after \advance. This goal is
reached with the help of the interface Advanceable.
When the token has the meaning of code which im-
plements this interface then the control is passed to
the methods defined in the interface to carry out the
operation. We use this feature to make our primitive
applicable to \advance.

The method uses the parsing routines in εXTEX
to acquire the optional keyword by and the value for
a count register. This value is added to the variable
stored in this primitive.

public void advance(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context, "by");

Count by = CountParser.parse(

context,

source,

typesetter);

value.add(by);

}

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 153



Gerd Neugebauer

The same technique used for \advance is used
for \divide as well. Thus we just have to implement
the associated interface Divideable and provide the
following method:

public void divide(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context, "by");

Count by = CountParser.parse(

context,

source,

typesetter);

value.divide(by);

}

And once again the same trick for \multiply:
We implement the interface Multiplyable and pro-
vide the following method:

public void multiply(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context, "by");

Count by = CountParser.parse(

context,

source,

typesetter);

value.multiply(by);

}

Converting into a count value is expressed with
the interface Countconvertible which has one me-
thod convertCount. This method delivers the count
value as long. Since we have the variable in our
private field we can just take the value from there.

public long convertCount(

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

return value.getValue();

}

Finally we provide a means to use the primi-
tive in an expandable context. When tokens are ex-
panded — in contrast to executed — we simply push
the tokens representing the value to the token source.
Thus they are read and processed afterwards.

public void expand(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

try {

source.push(

context.getTokenFactory().

toTokens(value));

} catch (CatcodeException e) {

throw new InterpreterException(e)

}

}

The method is slightly complicated by the han-
dling of an exception which might come from the
creation of the tokens. This exception is simply
remapped and passed upwards.

This is all we need to do to implement the new
primitive.

}

6 Putting things into place for testing

Now we are finished writing our new primitive as a
Java class. But how can we make use of it? First of
all we have to compile it with a Java compiler and
put it into a jar — say, abc.jar. εXTEX is installed
in a directory. This installation directory contains a
subdirectory named lib. All jars contained in this
directory are automatically considered when classes
are loaded. Thus we put abc.jar into this directory.

Next we make use of a quick extension mech-
anism to try out our fine new primitive. Later we
will use the configuration mechanism of εXTEX for
this purpose. But now we simply use the dynamic
extension mechanism which allows us to bind some
Java code to a primitive. To do so we need to load
the unit jx. Units in εXTEX are collections of prim-
itives. For instance there is a unit tex containing
the TEX primitives.

One of the primitives contained in εXTEX — i.e.
in the unit extex— is the primitive \ensureloaded.
It takes one argument in braces which is the name of
a unit and loads this unit if has not yet been loaded
into the interpreter.

This primitive is used now to load the unit jx:

\ensureloaded{jx}

After the unit jx has been loaded we can make
use of the primitive \javadef provided by this unit.
This primitive is similar to the primitive \def. It
takes a control sequence and a list of tokens enclosed

154 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007



Conventional scoping of registers — An experiment in εXTEX

in braces. The control sequence gets a new meaning.
This meaning is determined by the Java class named
in the tokens argument:

\javadef\abc{extex.tutorial.IntPrimitive}

Now we can use the primitive \abc as shown
above. This is enough for testing. Nevertheless it
is discouraged since it uses an implementation spe-
cific extension. The recommended way is to use the
configuration facility described later.

7 Defining new variables

The definition of each new variable with \javadef
is a little bit clumsy. Our original plan was to define
any new variable with \integer. It takes a control
sequence and the initial value. This can be accom-
plished with a small definition of the following kind:

\def\integer#1{%

\javadef#1{extex.tutorial.IntPrimitive}%

#1}

This approach works but has the disadvantage
that the resulting macro does not interact properly
with \afterassignment. The primitive \javadef
is an assignment. Thus the afterassignment token
would be inserted just after the definition but before
the initial value has been read.

To overcome this problem and gain some more
insight into the definition of primitives in εXTEX we
implement this primitive in Java as well.

The class itself is started as shown before. Since
the task is much simpler we do not need to declare
a lot of implemented interfaces.

package extex.tutorial;

// a bunch of imports omitted

public class IntDef

extends AbstractAssignment {

The constructor propagates the name to the su-
per class — as before.

public IntDef(String name) {

super(name);
}

Finally we have to implement the assign me-
thod. Here we can make use of the TokenSource to
acquire a control sequence. Now we create a new
instance of our class IntPrimitive. The argument
is the name of the variable. This name is extracted
from the control sequence token.

Now we can use the method assign of this new
instance to assign the initial value. Finally we bind

the new instance to the control sequence token. This
binding makes use of an optional prefix argument
\global. The prefix is read and cleared in one step.
The clearing avoids an error message about unused
prefix arguments.

The \global prefix allows us to define a global
variable — even within a group. This extension was
not on our initial agenda, but is easily implemented.

public void assign(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

CodeToken cs =

source.getControlSequence(

context,

typesetter);

IntPrimitive code =

new IntPrimitive(cs.toString());

code.assign(Flags.NONE,

context,

source,

typesetter);

context.setCode(cs,

code,

prefix.clearGlobal());

}

Now we are finished and can use the primitive.

}

We have postponed the configuration of εXTEX
until we have the primitive. Now we can fill this
omission.

8 Configuring εXTEX

The encouraged way of extending εXTEX is by con-
figuring a new unit. The configuration of a unit is an
XML file following a particular schema. The outer
tag is unit. It can have attributes. The mandatory
attribute we are using is the attribute name which is
used to specify the name.

As an inner tag we are using primitives. In-
side this tag all additional primitives of this unit are
listed with define specifications. The defines need
attributes. The attribute name specifies the name of
the control sequence to assign the definition to. The
attribute class specifies the Java class. This class
needs to implement the interface Code. This class is
instantiated and bound to the control sequence.

The configuration file tutorial.xml has the
following contents:

<unit name="tutorial">

<primitives>

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 155



Gerd Neugebauer

<define name="integer"

class="extex.tutorial.IntDef"/>
</primitives>

</unit>

We have placed the compiled Java files in a
jar. The configuration file tutorial.xml has to be
placed in the same jar file. To be found, it has to
be placed in a certain package. This is the package
config.unit. Now we can load it like we have done
with the unit jx:

\ensureloaded{tutorial}

9 Aliasing variables

With the variables introduced here we can use \let
to create aliases for a variable. \let creates a new
binding for a control sequence to the same code as
an existing control sequence. With our implemen-
tation in mind it is immediately apparent that a
modification of one variable at the same time also
modifies all aliased variants. This is illustrated in
the following example:

\integer\x=42

\let\y=\x

\x=123

\showthe\y

In this code \x and \y share the same content.
After assigning 123 to \x this value also shows up
when printing \y.

This trick can be used to access a variable which
is hidden by a local variable. In this case you can
make an alias before defining the local variable:

\integer\x=42

% . . .

{\let\y=\x

\integer\x=123

\showthe\y

}

10 Variables and name spaces

In [1], namespace support for εXTEX was presented.
Namespaces primarily act on primitives. This col-
lides with the access to registers via one primitive —
for instance \count for all count registers. The allo-
cation macro \newcount from plain can be used to
assign a control sequence to a certain count register.
This control sequence is subject to the name space
visibility. Nevertheless the control sequence can be
bypassed.

With the variables introduced in this paper we
can overcome this deficiency. The variables intro-
duced interact in a natural way with the namespace
concept of εXTEX.

11 Conclusion

We have seen an alternate way of defining variables
in εXTEX. The scoping follows the rules of conven-
tional programming languages. In contrast to regis-
ters, the number of variables is limited only by the
memory available.

The implementation for εXTEX has demonstrat-
ed the extensibility and configurability of the sys-
tem. It has also shown that the proposed definition
of variables leads to the desired results.

References

[1] Gerd Neugebauer. Namespaces for εXTEX. In
Volker RW Schaa, editor, Proceedings EuroTEX
2005, pages 67–70, 2005.

156 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007


	Registers and scoping
	Storage in TeX
	XTeX
	Writing a new primitive for XTeX
	Providing a definition
	Putting things into place for testing
	Defining new variables
	Configuring XTeX
	Aliasing variables
	Variables and name spaces
	Conclusion

