
Practical journal and proceedings publication on paper and on the web

Péter Szabó
Budapest University of Technology and Economics,
Dept. of Computer Science and Information Theory,
H-1117 Hungary, Budapest, Magyar tudósok körútja 2.
pts (at) cs dot bme dot hu
http://www.inf.bme.hu/~pts/

Abstract

Although TEX is a reliable, high-quality and well-understood tool for authors
writing their conference and journal articles, editors and typesetters face a much
more difficult task when they want to compose articles for actual journal publica-
tion or preprints. We present organisational and software solutions for problems
editors of journals and proceedings might face. As case studies we present is-
sues and some conclusions regarding the production of the proceedings for two
conferences we organised (EuroTEX 2006 and the non-TEX-related LME 2006
conference).

1 Introduction

We address problems during typesetting a collec-
tion of articles—usually a conference proceedings
or a journal issue, from now on referred to as a “col-
lection”. There are three parties cooperating: the
authors, the editors and the printshop. Using our
terms, an “editor” is someone who accepts articles
from the authors, reviews articles, proofreads arti-
cles, typesets articles, or compiles a list of articles
into a collection. We assume that editors work on
LATEX article-like documents, and they convert any
document they receive to this format. We also as-
sume that the document class has already been de-
signed by the typographer. We discuss converting
articles to LATEX format, editing individual articles,
and compiling a collection to be printed by the print-
shop, and also publishing it on the web as a set of
PDF files.

We assume that time to be spent on editing is
short, there are only a few editors, and not all the
editors have a complete understanding of the whole
publication process— some of them only review ar-
ticles, others deal only with web pages, etc. We
assume that there is a chief editor who would be
able to do the whole job (except for peer review) if
there was enough time.

We use two conferences we organised in 2006 as
case studies. One of them is EuroTEX 2006, an in-
stallment of the annual conference of the European
TEX community. Authors usually submit articles as
TEX source (most of them writing LATEX source us-
ing the document class the editors proposed), and
the submitted material is of high typographic qual-

ity. That is, paragraphs, pages, tables and graph-
ics look nice; graphics are in a scalable (vector) file
format; extensive bibliographies arrive in a BibTEX
format; and the layout is reasonably separated from
the text so that editors can change the layout easily.

The other conference is LME GNU/Linux Con-
ference 2006, known as LME 2006. It is one of the
annual conferences of the Hungarian Linux and Unix
community. Articles submitted are of varying lin-
guistic and typographic quality. Most authors have
never heard of TEX; many of them haven’t ever writ-
ten an article before. They use plain text editors or
OpenOffice (or an equivalent word processor) when
writing documents. Editors have a lot of work to do
with each article: file format conversion (from Open-
Office to LATEX), and proofreading and typesetting
are slow. Some authors send graphics of extremely
low quality or with unreadable captions—editors
have to ask for a better version. They usually forget
the bibliography or submit incomplete or incorrect
entries—editors have to correct and supplement it.

We present the technology we found useful and
best practices we have developed as a list of practical
suggestions, some of them in imperative style. This
is not meant to imply, however, that our solution is
the only one feasible.

2 Organising work

Because of time pressure it is important that editors
can work in a software environment most comfort-
able for them, and that they always have access to
all the information they need. It is also important
that document compilation works in a reasonably
uniform way, so that e.g. line breaks don’t depend

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 125

Péter Szabó

on the computer the document was compiled on.
It is recommended that all work be done as soon

as possible. For example, the mailing list and the
repository can be created, mail client, chat client,
repository client software and TEX distributions and
companion programs (like Ghostscript, OpenOffice
and sam2p) can be installed way before the first
article is submitted. The same applies to creating a
document class (possibly from a layout designed by
a typographer), collecting mail and chat addresses
of each editor, providing access to the repository for
the editors, and a little planning about the workflow.

2.1 The repository

The repository is a shared file store used by the ed-
itors. In a simplest case it is a shared folder on a
server to which all editors have read and write ac-
cess. However, using a version control system (such
as Subversion [1]) is strongly recommended, because
of these advantages:1

• All past versions of files are available. If some-
thing goes wrong today, one can check out yes-
terday’s state from the repository, and continue
from there. We can also easily see what has
changed, so there is a good starting point for
finding what went wrong. Once the latest work-
ing version is identified, it is possible to revert
to it easily.

• Each editor has their own (partial) copy of the
repository. If the repository is lost in a server
crash, editors can combine their copies and start
a new repository. (This is quite inconvenient,
but still a lot better than having to rewrite the
whole collection from scratch.)

• Each write to the repository (called “commit”)
is logged (who did it, when it happened, what
files were affected and how). Thus if something
goes wrong, we can find out who is capable of
fixing the problem (usually the editor who in-
troduced the problem is capable of fixing it, or
he can provide the most relevant information
for somebody else to fix it).

• If there are two different versions of the same
file, there is no confusion as to which one is
relevant (or more recent). The version control
system automatically takes care of propagating
changes in the right direction, without the need
for manual review. This is a lot better than
having several copies of the same file in a shared
folder without knowing how they derived from

1 The same advantages apply to software development—
an area where version control systems have been used for
decades with great success.

each other and which one is relevant for future
work.

• Synchronising working copies is easy. If an edi-
tor makes a change, he executes a commit oper-
ation (which copies all local changes back to the
repository), notifies others (usually on the mail-
ing list) to update, and the other editors exe-
cute an update operation (which copies changes
from the repository to their local copy). This
works even if two or more editors are making
changes on the same text file. If a conflict arises
(i.e. two people made changes on the same line
of a file), it has to be resolved by hand. Con-
flict resolution is distributed: the editor who
was slower to make his change has to resolve
the conflict. The chief editor is freed from the
work of comparing different versions of the same
file received in e-mail.

• If an editor uses several computers, a version
control system provides seamless synchronisa-
tion between each local copy.

• Most version control systems provide a read-
only web view. (We used SVN::Web for Sub-
version.) This is useful to allow the world to
know the progress of the editing process. Au-
thors or other organisers can be given access
to the repository’s web view, so that they can
download recent and old versions of the files,
they can view the differences with the file ver-
sions, and they can see a history of changes by
examining the commit log.

Editors mustn’t be allowed to share files in any other
way than using the repository. The most common
objection is that they haven’t used such a system be-
fore, and there is no time to learn it now. However, if
the chief editor writes a short tutorial about the ver-
sion control system and the repository, and he helps
other editors to install it (preferably via phone or
voice chat), the learning time can be reduced to one
or two hours. Using a version control system really
pays off in both time and reliability. The size of the
project being small isn’t a valid argument against
it either, because advantages are present even for
single-file projects.

The chief editor must design the repository tree
structure, and enforce it by moving files. It is not
a problem that editors don’t fully understand the
structure, because with a good version control sys-
tem (such as Subversion), files and folders can be
moved and renamed easily. Some rules we used
with EuroTEX 2006: all filenames must be lower
case English (with some additional restrictions on
the allowed characters); file name length is not lim-
ited; all files received from the authors must be put

126 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Practical journal and proceedings publication on paper and on the web

in the folder art/00from_author/articlename, all
files needed by the article must be copied to art/
01recompiled/articlename, and compiled there
with only minimal modifications (in case of compila-
tion problems, the author must be notified), and all
compiled articles must be copied to and typeset in
art/02typeset/articlename (with possibly a lot
of modifications); the local texmf tree is in texmf, all
necessary packages and fonts must be added there.

Everything possibly needed by editors should
be added to the repository. This includes scripts,
libraries, fonts and TEX packages used, and also tu-
torials and guidelines. Software which is easy to in-
stall from packages (e.g. MiKTEX and Ghostscript)
should not be added, however, but should be men-
tioned in a guideline along with the recommended
version of each package. Files that can be regen-
erated (such as temporary files like .aux files and
output files like .dvi and .pdf) shouldn’t be added,
except for milestone versions of output files (e.g. the
.ps file sent to the printshop or the .pdf file sent to
the proofreader).

Some version control systems distinguish be-
tween text and binary files. The difference must be
understood, and files must be added in the proper
mode. Both file types have advantages.

Editors should be encouraged to immediately
correct each mistake they find in the repository. If
they are not sure whether their correction is good,
an easy solution is to ask them to contact the chief
editor via chat, commit the change, and let the chief
editor review it immediately. (The web view can be
used to quickly get an overview on the changes.)
The downside is that a wrong change might be in
a repository for a few minutes. To avoid that, ver-
sion control systems offer branches, but branches are
usually too complicated to learn and use for newbies.

Sometimes editors forget to add a few files to
the repository (for example, they add a nonstandard
document class, but they forget to add the nonstan-
dard packages loaded by the document class). This
mistake can be prevented by asking the editors to
have two working copies, and if they add a file in
one working copy, they should recompile in the other
one. Under Linux using strace is an alternative so-
lution: running strace -e open latex foo prints
all the files opened by latex when compiling foo.tex.

2.2 Mailing list

There should be a mailing list to which authors, ed-
itors and organisers can post; and editors and or-
ganisers can read the posted messages. (Multiple
mailing lists can be created if a large traffic vol-
ume is expected.) Authors should be encouraged to

upload their articles to the web and post URLs to
the mailing list. Alternatively, somebody should be
made responsible for receiving articles from authors,
adding them to the repository, and notifying editors
about the article. It is generally a bad idea to receive
articles on the mailing list, mostly because articles
might be several dozen megabytes long.

The mailing list should be used only for notifi-
cation and discussion, not for data transfer. All data
to be worked on should be added to the repository,
and others should be notified on the mailing list to
update their working copy and do the appropriate
action on the file. If there is a consistent proposal
during a discussion, it also should be added to the
repository instead of the mailing list.

2.3 Phone

Using the phone is the most efficient way that two
distant parties can cooperate in real time. A phone
call is extremely useful when one of the coworkers
needs help (e.g. the commit resulted in a conflict,
and the other party doesn’t know how to resolve it),
or when actions have to be synchronised (e.g. an
editor commits a change he is not sure about, and
the chief editor reviews it immediately).

When working on a computer connected to the
Internet, one can make voice calls for free. Using
Internet voice calls also gives the benefit of having
free hands, so one can use his ears, eyes, mouth and
fingers at the same time to solve a problem. Laptop
users shouldn’t rely on the built-in microphone of
their laptop because of the terrible sound quality
and the echo experienced on the other side of line.
An external headset or a multimedia earphone (even
as cheap as 5 euros) is a minimum.

2.4 Chat

Sometimes it might be feasible to use some chat
(instant messaging) application instead of making a
phone call. It is recommended that each editor have
a chat account, and be online while working. How-
ever, we note that cooperation can be much more
successful using the phone, because on the phone
parties have each other’s exclusive attention, with
only a very few possible events to interrupt or sus-
pend the conversation.

The chief editor should be registered in as many
instant messaging networks as needed, and should
use a multi-protocol client such as Gaim. Editors
should use a client that beeps or pops up a window
when a new message arrives, so they notice the mes-
sage immediately. Web-based clients are thus out,
because they don’t notify the receiver.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 127

Péter Szabó

2.5 Software

It is important to have software recommendations
(including version numbers) for editors, so if the
compilation output on two machines differs, it might
be solved easily by switching to the recommended
software.

On Unix we used teTEX 2 and 3 with some
packages downloaded from CTAN to our local texmf
tree. For TEX source editing one could use any text
editor; we recommended Kile and Kate. On Win-
dows we used MiKTEX as a TEX distribution and
TEXnicCenter (and even Textpad) for editing.

We experienced font rendering problems and
other bugs with Ghostscript 8.1x, so we recommend-
ed to upgrade to Ghostscript ≥ 8.53.

As additional tools, we used the latest sam2p
for raster image conversion, the latest pdfconcat for
PDF concatenation and the pdftops tool from the
Xpdf distribution for PDF to PostScript conversion.

We had our Subversion repository on a Unix
server. For security, we allowed read-write access
using svn+ssh:// only. Users were authenticated
using SSH public keys. We forced the svnserve com-
mand for these users in the authorized_keys file
of SSH, with the parameters –tunnel-user=... -t
-r We also used an authz-db file in svnserve.
conf to further tune access. SVN::Web was our read-
only web frontend to Subversion. We patched it
a little so that it could display commit log mes-
sages and files in a character set other than UTF-8.
As a Windows client we recommended TortoiseSVN
with PuTTY’s pageant utility to avoid typing the
passphrase for the public key again and again. We
also prepared a tutorial on generating an SSH public
key and setting up TortoiseSVN on Windows.

Our chief editor relied on the common scripting
facilities of Unix (shell scripts, GNU Make and Perl),
which helped his work a lot. However, other editors
could work without those scripts if they wanted to,
and they were in no way forced to understand the
scripts. The recommended use of scripting was doc-
umented for them in a tutorial.

3 Tasks of the editors

Once papers start arriving, editors can start work-
ing on them. Although version control systems allow
parallel modifications to the same file, this might re-
sult in conflicts, so we recommend that editors an-
nounce on the mailing list when they start or stop
working on an article.

Usually one editor is able to typeset an arti-
cle perfectly, except for proofreading, which should
be done by as many people as possible. For LME

2006 each paper was reviewed by two experts, and
checked for spelling and linguistic mistakes by two
proofreaders, and we found errors even after that.

3.1 File format conversion

Recent versions of OpenOffice 2.0 contain a LATEX
export filter, which can be used to convert word pro-
cessor documents to LATEX. The filter handles para-
graph breaks, bold and italic, emits simple Latin-1
and Latin-2 accented characters properly (without
the inputenc package), and can export math formu-
las (we didn’t test this feature thoroughly, because
for LME 2006 we had only simple math formulas in
documents). Since our documents had a lot of dis-
play verbatim material, and the export filter emitted
it line-by-line, escaping each special character dif-
ferently, we wrote a Perl script postootex.pl which
post-processes the output of the export filter, that
is, converts consecutive typewriter lines to a verba-
tim environment. The export filter was also quite
loose on exporting font changes, it emitted super-
fluous \rmfamily, \mdseries, and font size change
etc. commands even when there was no change at
all. So we added code to the Perl script to remove
these. We wanted a LATEX document that is easy
to read and edit for humans, so we converted the
markup input to Latin-2 (e.g. \’a to á). We also
made the script remove the multitude of unneces-
sary braces inserted randomly by the export filter.
Lists and enumerations were emitted almost prop-
erly, but the export filter insisted on reproducing the
exact list formatting (margins, item width, etc.), so
we removed this too, but with that we lost the list
depths, so we had to check each nested list by hand.
Exporting of tables, figures and floats was so pre-
liminary that we decided to retype these elements
by hand.

The usefulness of a custom Perl script to con-
vert TEX sources might sound questionable. We de-
cided to write a script after frustration during the
manual cleanup of the export filter’s output on a
5-page document. We wrote the script so it tries
to follow the LATEX syntax closely enough that it
doesn’t get confused e.g. by nested braces in an un-
delimited macro argument, and thus can clean up
the source file reasonably well. The script didn’t try
to fix rare problems— its sole purpose was to save
the editor the time of manually cleaning up the most
common export glitches.

Raster images in OpenOffice documents didn’t
get converted (the \includegraphics command got
exported, but it pointed to a nonexistent file). For-
tunately, the OpenOffice document was a ZIP file,
which contained the images as PNG and JPEG files,

128 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Practical journal and proceedings publication on paper and on the web

which we could convert with sam2p to EPS and PDF.
We didn’t even try to export vector graphics, be-
cause authors sent such ugly figures that we decided
to redraw them. We used Dia to redraw the figures,
but we weren’t satisfied with its formatting capa-
bilities. It was a nightmare to change the visual
appearance of the elements from the default.

None of the authors using OpenOffice supplied
a structured bibliography, so we had to create the
corresponding BibTEX source files by hand. The
most tedious part of this task was to convert all
URLs within the document to citations, and add
fairly verbose entries to the bibliography database,
looking up more information about the cited work
on the Internet.

For EuroTEX 2006, most authors followed the
guidelines and used the LATEX document class we
proposed, so no file format conversion was needed.
Unfortunately, the final column width and font dif-
fered from those in the class we proposed earlier, so
we got quite a number of overfull hboxes when re-
compiling articles. We also received articles in plain
TEX (!) and ConTEXt, which we converted to LATEX
by hand, heavily using the search and replace func-
tionality in our text editor.

For EuroTEX 2006 one of the authors sent a
beautifully typeset article in PDF format, which we
decided to include in the collection as is. Since the
fonts and the column sizes were correct, we only had
to add the running header and footer. We did this
by importing the pages of the PDF file one-by-one
as boxes with the pdfpages LATEX package.

3.2 Article compilation

We prepared shell scripts for Unix which set environ-
ment variables, run mktexlsr in the local texmf tree,
and build TEX formats with the necessary hyphen-
ation patterns. This way it is easy to ensure that
all editors work in the same environment. Should
any difference arise (e.g. two editors have a different
version of a LATEX package installed, and they get
different output), it can be resolved by adding the
file to the local texmf tree.

It is important that all documents be compil-
able automatically. If an editor manages to compile
a document, he should immediately write a shell
script to perform the compilation. E.g. if LATEX
has to be run at most five times with a couple of
BibTEX and makeindex runs in between, the shell
script should contain the relevant commands in the
proper order. It is not important to optimize for the
number of LATEX runs—a possibly badly compiled
document is a lot worse than a slowly but correctly
compiled one. For clarity, another shell script should

be written that cleans up any temporary and out-
put files. A Makefile can be used instead of shell
scripts, but dependencies must not be indicated—
a compilation should recompile the whole document
from scratch. All scripts must share the same in-
terface, so they can be called in a batch when the
whole collection is recompiled, e.g. like this:

for DIR in *; do
(cd "$DIR" && ./recompile.sh)

done

If the document contains raster images, they
should be converted to both EPS and PDF, these
files added to the repository, and the filename speci-
fied without extension in the parameter of \include
graphics. This way the document is compilable
with both LATEX and pdfLATEX. We recommend
sam2p for raster image conversion.

We decided that the recompilation of external
graphics should not be part of the document com-
pilation process. That is, when the document con-
tains a figure drawn in Xfig, the Fig to EPS conver-
sion isn’t run when the document is compiled au-
tomatically. This gives us the advantage that even
those editors can compile the document (and cor-
rect errors in the text) who don’t have the appropri-
ate graphics editors or converters installed. Asking
them to install that extra software is not always fea-
sible, because some graphics software needs specific
operating systems or libraries.

All documents should be compiled to PDF with
a fixed name (we used compiled.pdf for interme-
diate compilations and final.pdf for milestones).
The reason why we are using PDF instead of Post-
Script is that PDF files are easier to manipulate (e.g.
concatenate, add hooks) and they are also easier to
preview in the web environment, so even visitors of
the web view of our version control system can view
milestones of typeset articles in PDF format. Using
pdfLATEX is recommended (because it can break a
line in the middle of a hyperlink, and it has some
nice typographic add-ons), but if the document com-
piles with LATEX only, it should be converted to Post-
Script with dvips, and then converted to PDF.

Bitmap fonts must be avoided—a PDF with
bitmap fonts looks ugly in Acrobat Reader, it is large
and it renders slowly. Most TEX fonts are available
in vectorised (usually Type 1) format today (either
in distributions or from CTAN). For example, the
Bluesky fonts are the Type 1 outlines of Computer
Modern (CM), the base TEX font family. If the ar-
ticle uses the EC fonts, then the CM Super Type 1
outlines can be embedded to PDF, or the Latin Mod-
ern (LM) fonts can be used instead—but be aware

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 129

Péter Szabó

of the slightly different metrics and character shapes
(such as the letter “ő ”) between EC and LM.

Font installation and use can be cumbersome
even if the font files are there in the proper folder of
the local texmf tree. To avoid this problem, we used
a custom Perl script dff.pl which wraps execution of
all tools which embed fonts (currently pdflatex, dvips
and dvipdfm) and provides the proper environment
variables, command line arguments and font map
files to these tools so that the right fonts will be
found and used. The script also ensures that pdflatex
and dvips use the same font map file.

The error and warning messages LATEX emits
are useful, because they identify possible problems
in the article. We decided to abort automatic com-
pilation when a LATEX error is encountered, and thus
force the editor to fix the error. We were quite per-
missive with warnings (including overfull box indi-
cations): we allowed compilation to continue, but
wrote a Perl script which looks for warnings in the
article log files, and we checked all these warnings
after each milestone compilation. Finally we man-
aged to get rid of all warnings. At some points we
had to cheat, for example with long URLs in the
bibliography it is quite hard to avoid the underfull
hbox warning, so we just disabled this warning there
by setting \hbadness=10000.

We used log analysis not only to find overfull
boxes, but also badly embedded or missing fonts,
and even articles accidentally omitted from the table
of contents.

3.3 Editing

When reaching this point, the document is a valid
LATEX article, with all its graphics converted to em-
beddable formats; the source markup is cleaned up
enough for humans to edit; and there is a shell script
that recompiles the article to PDF from scratch.

Simple editing is a straightforward task, which
we took advantage of in LME 2006: we had a lot of
volunteers for proofreading, so we quickly set up a
tutorial for them on using the version control sys-
tem, told them which files to start editing, and they
could start contributing their changes.

We used standard tools for proofreading and
typesetting corrections: the output-to-source nav-
igation feature of the DVI previewer, and the big
black \overfullrule to spot overfull boxes. For
pages with complicated graphics or transformations,
we previewed the PDF file instead of the DVI file.
Xpdf was our preferred choice for PDF previewing,
because it doesn’t have unnecessary GUI elements
in its window, and it allows reloading the PDF file
with a single keypress.

3.4 Concatenation

A collection is just a concatenation of the articles—
except for the need for continuous page numbering
to be maintained, a table of contents has to be gen-
erated, and there are some extra pages at the begin-
ning and at the end.

We added the extra pages by introducing two
special articles: 01Begin and 99End. The cover
pages (two pages at the beginning and two others
and the end) were part of these articles, but we had
to strip these pages and send them separately to the
printshop. Since we had to convert the document to
PostScript anyway, the page range options to pdftops
solved the problem.

We didn’t generate the table of contents auto-
matically; instead, we wrote a driver file which listed
all the articles (with author, title and starting page
number) in the order we wanted them to appear in
the collection, and we typeset the driver file during
the compilation of 01Begin.

Automatic recompilation of the collection can
work only if individual articles are already compiled
automatically. We wrote a shell script which recom-
piled the whole collection. It also took care of prop-
agating page numbers between articles. After each
article compilation it counted the number of pages,
modified the starting page number of the next arti-
cle in both the driver file and in a helper file which
would be \input by the document class. It took
care of inserting an empty page so that each article
began on an odd page. At the end it recompiled the
two special articles in order to get the table of con-
tents right. (No further compilation was necessary
since we designed the TOC in such a way that the
number of pages it occupied was constant.)

First we tried concatenating the PDFs using
the pdfconcat tool. Unfortunately it doesn’t sup-
port PDF outlines (i.e. the table of contents tree)
properly, so we switched to Ghostscript. Although
Ghostscript 8.5x has support for concatenating out-
lines, the support had other glitches which prevented
it from working with PDFs generated by TEX. We
prepared a small fix for that (which modified some of
the PDF-writing operators such as linkdest), which
also made hyperlinks work within the article. We
also needed hyperlinks from the TOC to the article,
but this was easy because we could use page-based
links instead of symbolic ones, since we already knew
the starting page number of the article.

We also tried the pdfpages LATEX package for
concatenation, but this package didn’t support out-
lines or hyperlinks in source PDF files.

It was a key design principle in our workflow

130 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Practical journal and proceedings publication on paper and on the web

to have automatic compilation. Since the work of
the editors is judged based on the quality of the fi-
nal output (both in print and the web), and humans
tend to make mistakes (especially if they try to rush
when the deadline is approaching), we wanted to
have a document compilation policy which allows
as few mistakes as possible in the final compilation.
The more special cases the editors have to remem-
ber, and the more steps they do manually, the more
mistakes they make. Automatic compilation mini-
mizes these mistakes. It also increases the reliability
of the editing process since if the computer of the
chief editor gets broken during the editing, he can
check out all the articles from the repository, and
recompile the whole collection on any other com-
puter with a single command. Unix shell scripts,
Perl scripts and Makefiles helped us a lot for au-
tomating the compilation process.

3.5 Preparing for print

[3] gives a good technical introduction to the prob-
lems editors face when sending the work to the print-
shop, and it also gives several solutions for each
problem (with both free and proprietary tools).

Printshops usually expect the text as colour-
separated PostScript files. The cover pages have to
be sent separately. The psselect tool can be used
to select and reorder pages from a PostScript doc-
ument, and options can be specified for pdftops to
emit only a certain page range when converting from
PDF to PostScript.

For high quality colour output one can use spot
colours with the xcolor LATEX package. As a sim-
ple alternative solution, one can create a PostScript
document with colour, and later separate it. Sepa-
ration means creating four copies of each PostScript
page, each of these being grayscale, and the bright-
ness values are used as C, M, Y and K components
in the CMYK colour space. Aurora [2] is an old
but working free tool which can do this conversion
in pure PostScript. Using Aurora one processes the
PostScript (or PDF) document four times, with set-
tings for the individual component. Aurora wraps
the setgray, setrgbcolor, etc. PostScript operators so
that they will activate only one component of the
specified colour. It also modifies the image and
colorimage operators that draw raster images, but
unfortunately it doesn’t understand the image dic-
tionary syntax introduced in PostScript Language
Level 2. To overcome this, we implemented it in
PostScript code which we load right after Aurora.
Our code converts a PostScript image dictionary to
a non-dictionary call of image or colorimage, and it
also decodes indexed images manually.

The solution is quite slow (partly because of
Aurora and partly because of our code); it processes
a page with a colour image in about 10 seconds—
but at least it is correct, because it hooks all affected
operators at the proper place. Fortunately, we expe-
rience the slowdown only for raster images—colour
text and vector graphics are rendered as quickly as
without separation.

To make the job of the printshop easier, we
prepared a script which separates the pages of a
PostScript file to grayscale and non-grayscale. We
took care of colour raster images manually, and we
autodetected non-grayscale colours everywhere by
looking at the colour-changing operators in the out-
put of pdftops. Since this PostScript output has a
quite simple syntax, we could find colour changes
using regular expressions. Once the non-grayscale
pages were found, we selected them with psselect,
and renumbered the pages (back to the original)
with a Perl script.

Printshops expect crop marks on each page.
The crop LATEX package can generate those marks.
A few test pages should be sent to the printshop in
advance so they can confirm that they get the crop
marks where they expect them. In our case study
projects we didn’t use the crop package because it
was more convenient for us to add the simple crop
marks with a Perl script to the PostScript output of
pdftops. The script also took care of enlarging the
paper size. This way we could use our DVI and PDF
previewers without having to see the enlarged page
with the crop marks, and marks were added only to
the PostScript file sent to the printshop.

3.6 Publishing on the web

We didn’t want to have an HTML version of the
articles, because converting LATEX markup to high
quality HTML is a difficult and time-consuming task
which is hard to automate unless HTML export was
in mind from the very beginning. We provided a
HTML page with all the articles (with author, ti-
tle, abstract and citations as BibTEX source) and a
PDF file for each article. We also provided a big,
concatenated PDF.

PDF for the web differs from the printed docu-
ment in:

• PDF for the web has outlines (structured table
of contents) and in-document hyperlinks. All of
these can be generated with the hyperref LATEX
package.

• PDF for the web has different margins, usually
equal inner and outer side margins.

• PDF for the web doesn’t contain crop marks.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 131

Péter Szabó

• PDF for the web should contain scalable Type 1
fonts, because Acrobat Reader renders these
fonts faster and nicer than bitmap fonts. Scal-
able fonts also reduce the file size.

• The size of PDF files for the web does matter.
Raster images should be small. Fonts should be
subsetted. Concatenated PDFs shouldn’t con-
tain the same font twice.

• PDF for the web can contain more pages with
colour.

The first thing we did was add a “compilation mode”
parameter to the compilation scripts. The document
class also received this parameter, so it could gener-
ate slightly different output based on the mode (e.g.
it could decide whether to load the hyperref pack-
age or not). With compilation modes we could also
control if we need the overfull box indicator.

Ghostscript was smart enough to create a con-
catenated PDF with all fonts subsetted, except that
pdfLATEX had already subsetted fonts in the indi-
vidual articles. So we turned font subsetting off in
pdfLATEX (changing all < signs to << in the font map
file). This increased the size of intermediate PDFs
substantially, but the final PDF became small.

We also wanted to have all fonts, including the
base 14 fonts (like /Times-Roman) embedded, since
we otherwise experienced accent positioning prob-
lems (e.g. with letter “ő”), since PDF viewers use
different glyphs in standard fonts. To achieve this,
we had to call Ghostscript with these parameters:
-dCompatibilityLevel=1.3
-dPDFSETTINGS=/prepress
-dEmbedAllFonts=true.

The sizes of raster images emitted by sam2p
were small enough, but unfortunately Ghostscript
insisted on recompressing the images (usually with
suboptimal parameters). We solved this by writing
the Perl script pdfdelimg.pl which extracted images
from a PDF, and replaced them with dummy images.
We run Ghostscript on these replaced PDFs, and we
used pdfdelimg.pl again to replace images back in
Ghostscript’s PDF output. Our script distinguished
dummy images by their dimensions.

In all other respects, Ghostscript produced small
PDF output.

4 Conclusion

High quality text and math output is the most com-
mon reason why people like TEX. Editors also ap-
preciate the freedom they have when they design
their workflow. They have several tools to choose
from (many version control systems, many TEX en-
gines, many printer drivers, many converters), and
they can customize the tools. Having the source

of the document in text files makes it possible to
use a version control system for parallel file edit-
ing. Since there are multiple stages of compilation,
there are multiple ways to hook in changes. Scripts
can be written to automate compilation and gen-
erate both the printable and the web version from
the same sources, with a single command. As far as
we know, this set of features is unique to the TEX
editing workflow.

It is up to the chief editor precisely how to
design the workflow and to what extent document
compilation is automated. We tend to use a lot of
custom scripts in our workflow, because we found
that using scripts pays off in speed, quality of out-
put and reliability, even when the script is run only
once or twice; and we can also reuse our scripts in fu-
ture projects. We admit that designing and setting
up a good workflow needs quite a lot of software ex-
perience: the chief editor has to understand not only
TEX-, font- and PDF-related file formats and tools,
but also version control systems (on both client and
server side), web application installation, web page
editing, mailing list management, and script pro-
gramming. We believe that it is worth learning these
and to improve the workflow gradually.

Communication between the editors is also im-
portant. The version control system ensures that
editors have the relevant versions of all files they
need, and also that they can make corrections to
any file they want to. The mailing list and other
communication channels can be used to distribute
and synchronise work.

This article has presented some tools and tech-
niques which can make collection preparation more
productive and less painful. Since TEX and its re-
lated tools are free software, there is a good chance
that editors can find even better tools for their needs
on the net. As tools and techniques continue to im-
prove, working with TEX becomes even more fun.

References

[1] Ben Collins-Sussman, Brian W. Fitzpatrick,
and Michael C. Pilato. Version Control
with Subversion. O’Reilly, June 22 2004.
http://svnbook.red-bean.com/nightly/en/.

[2] T. Graham Freeman. Aurora: Colour
separation with PostScript devices.
Technical report, Australian Defence Force
Academy, July 1994. http://www.ctan.org/
tex-archive/support/aurora/aurora.pdf.

[3] Siep Kroonenberg. TEX and prepress.
TUGboat, 25(2), 2004. http://www.
tug.org/TUGboat/Articles/tb25-2/
tb81kroonenberg.pdf.

132 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

