
TUGBOAT

Volume 35, Number 3 / 2014

General Delivery 230 Ab epistulis / Steve Peter

231 Editorial comments / Barbara Beeton

TEX entomology; An alternative to tangle and weave;

More Lucida fonts; More from Chuck Bigelow about Lucida;

Erratum: “Online Publishing via pdf2htmlEX”, TUGboat 34:3;

Peter Flynn’s Formatting Information updated; Klaus Peters, 1937–2014;

Other items worth a look—bibliographies; Geographical trivia: Kolophon

232 A footnote about ‘Oh, oh, zero’ / Donald Knuth

235 Twenty Questions for Donald Knuth (on the occasion of the ePublication of TAOCP)

Letters 244 A letter on the persistence of (e)books / Charles Bigelow

LATEX 245 LATEX document class options / Thomas Thurnherr

248 How to influence the position of float environments like figure and table in LATEX? /

Frank Mittelbach

255 Placing a full-width insert at the bottom of two columns / Barbara Beeton

256 biblatex variations / Ulrike Fischer

261 Every LATEX document brings new programming issues / David Walden

269 Glisterings: Lining up / Peter Wilson

Resources 274 CTAN goes multi-lingual: Additional language support for the Web portal /

Gerd Neugebauer

Fonts 276 Obyknovennaya Novaya (Ordinary New Face) in METAFONT / Basil Solomykov

Multilingual

Document Processing

277 A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād /

Yannis Haralambous

Software & Tools 284 Visual editing (in a specialized case): prerex / Bob Tennent

287 l3build—A modern Lua test suite for TEX programming /

Frank Mittelbach, Will Robertson, LATEX3 team

294 MetaPost path resolution isolated / Taco Hoekwater

Macros 297 Typeset MMIX programs with TEX / Udo Wermuth

Bibliographies 309 A Citation Style Language (CSL) workshop / Daniel Stender

Hints & Tricks 315 The treasure chest / Karl Berry

Book Reviews 317 Book review: Practical LATEX, by George Grätzer / William Adams

318 Book review: Apprendre à programmer en TEX, by Christian Tellechea /

Jacques André

319 Book review: The Imitation Game, by Jim Ottaviani and Leland Purvis /

Michael Berry

320 Book review: Let’s Learn LATEX, by S. Parthasarathy / Nicola Talbot

Abstracts 322 Die TEXnische Komödie: Contents of issues 2–3/2014

323 Les Cahiers GUTenberg : Contents of issue 57 (2012)

TUG Business 230 TUGboat editorial information

323 TEX Development Fund 2013 report

324 TUG 2013 election

325 TUG membership form

326 TUG institutional members

Advertisements 326 TEX consulting and production services

News 327 TUG 2015 announcement

328 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2015 dues for individual members will be as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership is open only to named indi-
viduals, and carries with it such rights and responsi-
bilities as voting in TUG elections. For membership
information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to re-
ceive TUGboat in a name other than that of an
individual. The subscription rate is $110 per year,
including air mail delivery.

Institutional Membership

Institutional membership is primarily a means of
showing continuing interest in and support for both
TEX and the TEX Users Group. It also provides
a discounted membership rate, site-wide electronic
access, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following list
of trademarks which commonly appear in TUGboat

should not be considered complete.

TEX is a trademark of American Mathematical Society.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.

[printing date: October 2014]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Steve Peter, President∗

Jim Hefferon∗, Vice President

Karl Berry∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Kaja Christiansen
Michael Doob
Steve Grathwohl
Taco Hoekwater
Klaus Höppner
Ross Moore
Cheryl Ponchin
Arthur Reutenauer
Philip Taylor
Boris Veytsman
David Walden
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past
and present board members, and other official positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2014 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

The first book ever printed in Europe – heavy,

luxurious, pungent and creaky – does not read

particularly well on an iPhone.

Simon Garfield

Just My Type: A book about fonts

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 35, NUMBER 3 • 2014

PORTLAND • OREGON • U.S.A.

TUGboat editorial information

This regular issue (Vol. 35, No. 3) is the third and last
issue of the 2014 volume year.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(http://tug.org/store), and online at the TUGboat

web site, http://tug.org/TUGboat. Online publication
to non-members is delayed up to one year after print
publication, to give members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are still assumed to be the experts.
Questions regarding content or accuracy should there-
fore be directed to the authors, with an information copy
to the Editor.

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully accepted. Please submit contributions by electronic
mail to TUGboat@tug.org.

The first issue for 2015 will be a regular issue, with
a deadline of March 6. The second 2015 issue will be the
proceedings of TUG’15 (http://tug.org/tug2015); the
deadline for receipt of final papers is July 31. The third
issue deadline is September 25.

The TUGboat style files, for use with plain TEX

230 TUGboat, Volume 35 (2014), No. 3

and LATEX, are available from CTAN and the TUGboat

web site. We also accept submissions using ConTEXt.
Deadlines, tips for authors, and other information:
http://tug.org/TUGboat/location.html

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make special arrangements.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
http://tug.org/TUGboat/advertising.html

Ab Epistulis

Steve Peter

As summer fades to fall here in the northern hemi-
sphere, contemplation strikes. It seems to be a time
of looking forward as we prepare for the long winter
ahead, and as it is once again election season in the
US. 2015 is an election year for TUG. Several direc-
tor seats will be up for election, as well as the office
of president. Jim Hefferon, long-time TUG board
member and current vice-president, has expressed
his intent to run for president, which I am happy to
support. Of course, anyone interested in serving is
welcome to run for a board position or president.

The previous issue of TUGboat contained the
proceedings of the Portland conference of 2014. The
innovations coming from TUG members continues
to amaze me. TUG 2015 will be held in Darmstadt,
Germany, July 20–22, 2015. Keep tuned to this space
and the upcoming electronic newsletters as we begin
planning for this exciting meeting.

TUGboat 34:2, which includes two notable ar-
ticles by Chuck Bigelow, is now publicly available
on the TUG website (at http://tug.org/TUGboat/
Contents/contents34-2.html). Early online ac-
cess to TUGboat issues is one of the benefits of being
a TUG member. Printed copies are available in the
TUG store at http://tug.org/store/#tugboat.

Board member Boris Veytsman continues to
write prolifically. Now online at the TUG website
are two new book reviews, covering Design Museum

Fifty Typefaces That Changed The World, by John
Walters, and The Imitation Game, by Jim Ottaviani
& Leland Purvis. For these and many more reviews,
see http://tug.org/books/#reviews.

Until next time. Happy TEXing!

⋄ Steve Peter

Princeton University Press

president (at) tug dot org

http://tug.org/TUGboat/Pres

TUGboat, Volume 35 (2014), No. 3 231

Editorial comments

Barbara Beeton

TEX entomology

For the past many years, I have been listed on Don
Knuth’s TEX web page as his official collector of
bugs (see the “Errata” section of http://www-cs-

faculty.stanford.edu/~uno/abcde.html). This
is about to change.

The next review is scheduled for 2020, and it’s
prudent for someone younger to be the bearer of this
responsibility. By unanimous consent, my successor
will be Karl Berry (already the bearer of many TEX-
related responsibilities), karl@freefriends.org; he
will officially take up the butterfly net on 1 January
2015. Although in practice we will continue to share
information and consult on matters involving the
history of this function, as of January 1, Karl will
be the person responding to inquiries and rendering
decisions on whether a report is or is not a bug.
As in the past, this decision will not be reached by
just one person; a few “trusted experts” (trusted and
approved by Don, that is) will continue to provide
advice backing up responses to reports.

Bonne chance, Karl! May you find this exercise
as interesting as I have.

An alternative to tangle and weave

In addition to his presentation at TUG 2014 on
a new, fully functional, TEX-language interpreter,
Doug McKenna unveiled a command-line program,
literac, that converts source code written in lan-
guages that use C-style commenting syntax into a
LATEX document. The result, if the author has been
diligent, is a literate exposition of the program under
consideration. Only one file and one step is involved,
unlike the dual-process tangle and weave.

The slides from the talk are posted at http://
tug.org/tug2014/slides/mckenna-literac.pdf,
though sadly without the (blindingly fast) demon-
stration that accompanied the presentation. We look
forward to articles from Doug on this and other topics
in a future TUGboat issue.

More Lucida fonts

The complete (albeit growing) selection of Lucida
fonts has a new venue at the Lucida fonts store,
http://lucidafonts.com. As announced on the
Bigelow & Holmes site:

We have opened a store to sell downloadable
Lucida Fonts. We offer 310 fonts, most of
them never before released and available only
from The Lucida Fonts Store.

The letter “a” is shown in all its variety at http:

//bigelowandholmes.typepad.com/. (This page,
the B&H blog, also contains a remembrance of Hans
Eduard Meier, Swiss lettering artist and creator of
the font Syntax, who died on 15 July 2014, age 91.
Other interesting items appear in the blog as well;
by the time you read this, there should be an item
“How and Why We Designed Lucida”.)

A “Math” page at http://lucidafonts.com/

pages/lucida-math points to the Lucida fonts page
at the TUG store (http://tug.org/store).

More from Chuck Bigelow about Lucida

Lucida fonts spotted “in the wild”: http://www.

pinterest.com/lucidaf/lucida-on-location/

Chuck asks, “If you run across uses of Lucida
elsewhere that are photogenic enough to be legible,
let me know.”

He also notes that the Louvre example is out of
date; the photo was taken in 1997, but by 2012, the
interior signage had been switched to use other fonts
(unspecified).

Erratum: “Online Publishing via

pdf2htmlEX”, TUGboat 34:3

In their Acknowledgement on page 323, the authors,
Lu Wang and Wanmin Liu, misspelled the name of
Professor Masakata Kaneko.

Peter Flynn’s Formatting Information

updated

An early version of this manual was published in
TUGboat 23:2. It has undergone some revisions since
its original appearance in 1999. The latest (HTML)
version has undergone several major changes: it is
now mobile-friendly, it has a new search engine, a
new index. and the chapter pages (previously quite
large) have been cut into files per section so that
they load faster on marginal connections.

Peter says, regarding the new release,

Some things like lines of code examples
won’t fit happily on very small screens. I don’t
think anyone has a real solution to this yet.

The examples have all been reworked, and
all the package links updated (and several
obsolescent packages replaced by newer ones).

The PDF and eBook will follow in due
course. Please email me with all corrections,
suggestions, gripes, flames, etc.

Peter’s contact information is available on the
web site for the manual: http://latex.silmaril.

ie/formattinginformation/. The manual is also
posted on CTAN.

232 TUGboat, Volume 35 (2014), No. 3

Klaus Peters, 1937–2014

Klaus Peters was a mathematician who, instead of
“practicing” mathematics, preferred to use his knowl-
edge to ensure that mathematics and other scientific
literature was presented in its best, most readable
form for a wide audience. His publishing ventures be-
gan with the founding of Birkhäuser, Boston, in 1979,
with his wife, Alice, and continued through several
other publishing houses, some of which he founded
(including A K Peters Ltd.), others where he worked
as an editor or consultant. His expertise and friend-
ship were greatly valued by scores of mathematicians.

His philosophy was laid out in an article in the
AMS Notices, “Why publish mathematics?” (http:
//www.ams.org/notices/200907/rtx090700819p.

pdf). It is well worth reading, as is a shorter opinion
piece on the obligations of a responsible publishing
house: “PV : The value of publishing” (http://www.
ams.org/notices/201206/rtx120600741p.pdf).

The high standards he professed are a worthy
goal for any author or publisher.

Other items worth a look— bibliographies

The web-based service http://www.doi2bib.org/

will accept a DOI (digital object identifier) and re-
turn a BibTEX entry for use in your bibliography. A
similar facility, based on author names and titles, is
offered by http://www.ams.org/mathscinet/, but
is available only to subscribers (including many aca-
demic libraries). This by way of a reminder that
Nelson Beebe has amassed an amazing collection of
scientific bibliographies and tools for handling them,
at http://ftp.math.utah.edu/pub/bibnet/.

Geographical trivia: Kolophon

Not long ago, I attended a presentation entitled
“Field Dirt”, in which were reported the projects
undertaken during the summer vacation by the ar-
chaeological faculty of Brown University. One of the
projects covered several sites in Turkey, which were
duly displayed on a map. But wait—what’s that
name “Kolophon” doing there?

This city was founded by the Greeks around the
turn of the first millennium b.c. as “Κολοφών”. (One
of the most renowned Ionian cities until its conquest
and decline in the 7th century b.c., it has been cited
as a possible home or birthplace for Homer.) The
origin of the name is the word κολοφών, meaning
“summit”, on account of its location, built on three
hills. The bibliographic “colophon” is from the same
source, with the metaphorical sense of “crowning
touch”, a feature nowadays too often missed.

⋄ Barbara Beeton

http://tug.org/TUGboat

A footnote about ‘Oh, oh, zero’

Don Knuth

I can’t resist adding a few comments to Chuck Bige-
low’s wonderful essay about the history of zero-
versus-oh in TUGboat 34:2 (2013), 168–181.

As an associate editor of ACM’s Journal and
Communications during the 1960s, and as a prospec-
tive author, I’d been giving some thought to the
fact that new concepts arising in computer science
were calling for new typographic conventions. In
particular, I corresponded with Myrtle Kellington,
who was responsible for typography in all of ACM’s
publications. (Computer scientists have Myrtle to
thank for the now-universal style in which computer
programs have long been typeset with a pleasant
mixture of roman, bold, and italic. She introduced
this style when she masterminded the publication
of the Algol 60 Report, first with roman and bold
only [1] and later with italic too [2].)

I applauded her work on formatted algorithms,
but I wasn’t happy with the appearance of various
papers about machine input and output, in cases
where a monospaced font would have improved the
exposition. When she learned of my concerns she
wrote to me on 10 February 1966:

Whenever the vertical alignment is a require-
ment the printer uses the only typeface he has
where this applies. It is called “Typewriter,”
is machine-set, is available in four sizes, and
looks like the old-fashioned typewriter style.
A sample is enclosed.

Actually the sample she sent had three different
fonts, and it didn’t exhibit the full character sets.
Those fonts (all to be used on Monotype machines)
were: Typewriter No. 74 (eight point size); Reming-
ton No. 70 (ten point and twelve point sizes); and
Remington No. 17 (eleven point size), which was
somewhat darker. Only No. 17 was available for ma-
chine setting; the other styles needed to be inserted
by hand.

I replied on 14 February 1966—evidently the
U.S. Postal service was quite efficient in those days!—
as follows:

Regarding my request for a special type-font,
I believe the 8 point “Typewriter No. 74” will
do very nicely (assuming there are commas,
parentheses, and the usual other special char-
acters found on a typewriter). The other
styles are also adequate but not as good. If
possible it would be preferable to have a more
squarish capital letter O so it can’t be mis-
taken for zero. I don’t know how expensive it

TUGboat, Volume 35 (2014), No. 3 233

is to make up new characters one at a time;
I realize a whole new font can be very costly.
The special characters will no doubt be the
major problem.

As examples of printed material using this
style, I can only say unfortunately I don’t
know of any, except Addison-Wesley is doing
it for me in the forthcoming set of books I’m
writing. I think ACM should “pioneer” in this.
The best example I can give you is point out
sections of the last Communications of the

ACM issue (January ’66) which would have
been much improved if set in a “typewriter”
style:

Page 5, right column, the “all caps”
words.

Page 6, “all caps” words and dis-
played programs.

Page 9, Appendix C. Possibly ap-
pendix B also.

Page 30, the tables, if type set,
would be candidates for fixed width,
although in this case the line engrav-
ings were quite adequate as a substi-
tute.

Page 31, the words in all caps.

Page 32 ff. The FORTRAN and
COBOL program example.

Pages 36–37, the capitalized “ma-
chine response” sentences.

Page 41 ff. All-caps words except
perhaps ELIZA.

In general, FORTRAN and COBOL and
assembly language programs and references
to symbols within such programs would look
much better in a fixed-width style. Even an
8 point type would be satisfactory here for
appearance sake in the midst of the normal 12
point type (it would look like “small caps”),
although perhaps there would be some trouble
from the monotype side in such mixing of
sizes, I don’t know. You already have good
formats for printing ALGOL programs, and
that needs no change; but these others look
quite unreadable by comparison, particularly
things like Appendix C on page 9.

The distinction between “oh” and “zero”
is reasonably important. On page 6 I see
the word “TO” which should have really been
tee-zero.

I would like to continue discussing this
with you by letter. Can you tell me what
special characters are available, how difficult

it is to mix 8 point in with 12 point text,
etc.? I will be very glad to mark up all papers
that go through my desk in a special way to
indicate what parts should be in this fixed-
width style.

Unfortunately, Myrtle’s reply (dated 17 February)
shot all these ideas down:

Dear Don: I am grateful for your interest in
the printing aspects . . . However, I had not re-
alized from your earlier letter that this new or
special typeface with fixed-width characters
would have to be used for words run in the
text—not displayed, that is. What I am try-
ing to say is that I had assumed that use of the
Typewriter typeface would be only for certain
special displayed sequences or programs.

Incorporating the Typewriter, or any other
typeface, for isolated words or groups of words
into the customary text would lead to pro-
hibitive costs.

Let me tell you what can be done staying
within machine-set composition, which is the
most economical form of typesetting in letter
press composition, and perhaps we can evolve
a plan that would achieve what you are after,
or at least partially.

The typeface used for the text in CACM

is Modern No. 8, referred to as #8. This is
available in all sizes both in roman and italics.
. . . Along with #8 we can have, for machine
setting that is, one other typeface. The one we
use is Bodoni boldface, called #275. . . . To
summarize, we can intermix in one keyboard
operation for machine setting the following
typefaces and sizes:

In size 10 on 12,

#8, in roman: all caps; csc
(caps and small caps); sc (all
small caps); and clc (caps and
lowercase).

#8, in italics: all caps, and
clc.

#275, in roman: all caps,
and clc.

#275, in ital: all caps, and
clc.

In 8 on 10, the same range.

But the two sizes, 8 pt and 10 pt, cannot
be intermixed on the same line, I am sure
you know—unless of course hand work is
involved.

A footnote about ‘Oh, oh, zero’

234 TUGboat, Volume 35 (2014), No. 3

Thus for all the examples you mentioned
in your letter, one could not have the Type-
writer typeface without an entire special hand
operation to drop all those words in after the
regular text had been set by machine in #8
and #275.

. . . Actually we are giving considerable
attention to changing printers, originally mo-
tivated by saving money, but now by many
other considerations such as automated type-
setting or being prepared for a fully auto-
mated operation all the way along the line, as
well as quality of the printing. With certain
of these new cold type and automated compo-
sition processes, one can intersperse several
typefaces and adjust the spacings almost at
whim. And your request would be no prob-
lem.

I will bear all this in mind as we carry on
our interviews and observe demonstrations.

(Indeed, ACM did eventually change to “cold
type” printing, and it turned out to be a mistake—
although I’m sure they tried valiantly to work with
the available vendors during those years. Decent
mathematical typesetting was becoming a lost art;
and that, of course, is why I was motivated to de-
velop TEX some years later. A downward spiral of
decreasing typographic quality in Communications

of the ACM began with their issue of March 1971;
various examples of fixed-width type can incidentally
be found in that issue, all of which were poorly repro-
duced from line-printer output. The Journal of the

ACM began to suffer the same fate in October 1976.)
Meanwhile, as indicated in my letter to Myr-

tle, I had been having much better responses from
Addison-Wesley, as they were preparing to publish
The Art of Computer Programming. Addison-Wesley
had been founded by two printers who were inter-
ested in producing good textbooks; and they became
the only scientific publisher with their own in-house
composition facility, at least in America. All of
their typesetting was done under the direction of an
old-timer named Hans Wolf. At my request, Hans
had figured out a clever way to adapt his Monotype
keyboards and casters so that machine setting with
Remington #17 could actually be mixed together
with the normal roman, italic, bold, bold italic, and
math symbols. (Indeed, I’m pretty sure that this had
never been done before, because Hans had originally
told me—as Myrtle was to do later—that such a
thing would be impossible.) This mixing could be
done either in 10-point type on a 12-point base, or
9-point type on an 11-point base.

Furthermore, Hans and Addison-Wesley agreed
to have a special glyph cut for me, a “squarish” ver-
sion of the uppercase O, compatible with the existing
Remington font. The font also included a new special
character like ‘ ’ to indicate a blank space.

Therefore the publication of Volume 1 of TAOCP

in January 1968 was actually the debut of a brand-
new typographic style for computer science, featuring
typewriter style blended freely with ordinary text in
appropriate places. The new ‘O’ didn’t quite align
properly with the other letters at the baseline; but I
didn’t actually notice that glitch at the time, because
I was so happy to have ‘O’ instead of ‘0’.

Why did I ask Addison-Wesley for a squarish
Oh? I was almost surely influenced primarily by
the dot-matrix font used by keypunch machines in
those days. Look, for example, at the illustration
of a punched card on page 148 of the original 1968
edition of my book, or on page 152 of the current
edition. Bob Bemer’s article [3, page 516] also shows
it as IBM’s recommended corporate practice for dis-
tinguishing Oh from zero on keypunches, as of 1964.
On typewriters, IBM recommended a wide Oh and a
narrow zero, “except for the stylized fonts for OCR

and MICR.”
When Volume 2 of The Art of Computer Pro-

gramming came out in 1981, with glyphs now drawn
by METAFONT, of course I retained my beloved ‘O’.
And the ‘Q’ became squarish too at this time (al-
though with a loop at the bottom instead of a cross-
bar).

Alas, however, Chuck’s essay demonstrates that
I’m still standing alone in this respect: None of the
nine monospaced typefaces in his Fig. 9 have any-
thing like an Oh that I would want to use. (Nowhere
did I see a really satisfactory Oh in Chuck’s discus-
sion—until I came to Karl Berry’s production notes
at the end, and Karl’s reference to ZeroFontOT.otf.)
I herewith submit a humble request to have squarish
O and Q available as alternates in the next edition of
Lucida Console.

References

[1] Peter Naur et al., “Report on the Algorithmic Lan-
guage ALGOL 60,” Communications of the ACM 3

(1960), 299–314.

[2] Peter Naur et al., “Revised report on the Algorithmic
Language ALGOL 60,” Communications of the ACM 6

(1963), 1–17.

[3] R. W. Bemer, “Toward standards for handwritten
zero and oh,” Communications of the ACM 10 (1967),
513–518.

⋄ Don Knuth
http://www-cs-staff.stanford.edu/~uno

Don Knuth

TUGboat, Volume 35 (2014), No. 3 235

Twenty Questions for Donald Knuth,
to celebrate the ePublication of TAOCP

To celebrate the publication of the eBooks of The
Art of Computer Programming (TAOCP), Pearson
asked several computer scientists, contemporaries,
colleagues, and well-wishers to pose one question
each to author Donald E. Knuth. Here are his an-
swers. (Reprinted in TUGboat by kind permission
of Pearson, from www.informit.com/promotions/

impact-of-the-art-of-computer-programming

-139881.)

1. Jon Bentley, researcher: What a treat! The
last time I had an opportunity like this was at the
end of your data structures class at Stanford in June,
1974. On the final day, you opened the floor so that
we could ask any question on any topic, barring only
politics and religion. I still vividly remember one
question that was asked on that day: “Among all
the programs you’ve written, of which one are you
most proud?”

Your answer (as I approximately recall it, four
decades later) described a compiler that you wrote
for a minicomputer with 1024 available bytes of mem-
ory. Your first draft was 1029 bytes long, but you
eventually had it up and running and debugged at
1023 bytes. You said that you were particularly
proud of cramming so much functionality into so
little memory.

My query today is a slight variant on that ven-
erable question. Of all the programs that you’ve
written, what are some of which you are most proud,
and why?

Don Knuth: I’d like to ask you the same! But
that’s something like asking parents to name their
favorite children.

Of course I’m proud of TEX and METAFONT, be-
cause they seem to have helped to change the world,
and because they led to many friendships. Further-
more they’ve made these eBooks possible: I’m enor-
mously happy that the work I did more than 30 years
ago has miraculously survived many changes of tech-
nology, and that the 3,000 pages of TAOCP now look
so great on a little tablet—even after zooming.

While I was preparing for Volume 4 of TAOCP

in the 90s, I wrote several dozen short routines us-
ing what you and I know as “literate programming.”
Those little essays have been packaged into The Stan-

ford GraphBase (1994), and I still enjoy using and
modifying them. My favorite is the implementation
of Tarjan’s beautiful algorithm for strong compo-
nents, which appears on pages 512–519 of that book.

I have to admit some pride also in the implemen-
tation of IEEE floating-point arithmetic that appears

in my book MMIXware (1999), as well as that book’s
metasimulator for MMIX, in which I explain many
principles of advanced pipelined computers from the
ground up.

Literate programming continues to be one of the
greatest joys of my life. In fact, I find myself writing
roughly two programs per week, on average, both
large and small, as I draft new material for the next
volumes of TAOCP.

2. Dave Walden, TEX Users Group: Might you
publish the original 3,000-page version of TAOCP

(before the decision to change it into seven volumes),
as a historical artifact of your view of the state of
the art of algorithms and their analysis circa 1965? I
think lots of people would like to see this.

Don Knuth: Scholars can look at the handwrit-
ten pages that led to Volumes 1–3 by going to the
Stanford Archives, and all of the remaining pages
will be deposited there eventually. I see little value
in making those drafts more generally available—
although some of the material about baseball that I
decided not to use is pretty cool. Archives from the
real pioneers of computer science, who wrote in the
40s and 50s, should be published first.

I do try to retain the youthful style of the origi-
nal, in the pages that I write today, except where my
first draft was embarrassingly naive or corny. I’ve
also learned when to say “that” instead of “which,”
thanks in part to Guy Steele’s tutelage.

3. Charles Leiserson, MIT: TAOCP shows a great
love for computer science, and in particular, for al-
gorithms and discrete mathematics. But love is not
always easy. When writing this series, when did
you find yourself reaching deepest into your emo-
tional reservoir to overcome a difficult challenge to
your vision?

Don Knuth: Again, Charles, I’d like to ask you
exactly the same question!

For me, I guess, the hardest thing has always
been to figure out what to cut. And I obviously
haven’t been very successful at that, in spite of much
rewriting.

The most difficult technical challenge was to
write the metasimulator for MMIX. I needed to
do that behind the scenes, in order to shape what
actually appears in the books, and it was surely
the toughest programming task that I’ve ever faced.
Without the methodology of literate programming, I
don’t think I could have finished that job successfully.

Many of the “starred” mathematical sections
also stretched me pretty far. Overall, however, after
working on TAOCP for more than fifty years, I can’t
think of any aspect of the activity where the effort

Twenty Questions for Donald Knuth

236 TUGboat, Volume 35 (2014), No. 3

of writing wasn’t amply repaid by what I learned
while doing it.

4. Dennis Shasha, NYU: How does a beauti-
ful algorithm compare to a beautiful theorem? In
other words, what would be your criteria of beauty
for each?

Don Knuth: Beauty has many aspects, of course,
and is in the eye of the beholder. Some theorems and
algorithms are beautiful to me because they have
many different applications; some because they do
powerful things with severely limited resources; some
because they involve aesthetically pleasing patterns;
some because they have a poetic purity of concept.

For example, I mentioned Tarjan’s algorithm
for strong components. The data structures that he
devised for this problem fit together in an amazingly
beautiful way, so that the quantities you need to
look at while exploring a directed graph are always
magically at your fingertips. And his algorithm also
does topological sorting as a byproduct.

It’s even possible sometimes to prove a beau-
tiful theorem by exhibiting a beautiful algorithm.
Look, for instance, at Theorem 5.1.4D and/or Corol-
lary 7H in TAOCP.

5. Mark Taub, Pearson: Does the emergence
of “apps” (small, single-function, networked pro-
grams) as the dominant programming paradigm to-
day impact your plans in any way for future material
in TAOCP?

Don Knuth: People who write apps use the ideas
and paradigms that are already present in the first
volumes. And apps make use of ever-growing pro-
gram libraries, which are intimately related to TAOCP.
Users of those libraries ought to know something
about what goes on inside.

Future volumes will probably be even more
“app-likable,” because I’ve been collecting tons of
fascinating games and puzzles that illustrate pro-
gramming techniques in especially instructive and
appealing ways.

6. Radia Perlman, Intel: (1) What is not in the
books that you wish you’d included? (2) If you’d
been born 200 years ago, what kind of career might
you imagine you’d have had?

Don Knuth: (1) Essentially everything that I want
to include is either already in the existing volumes
or planned for the future ones. Volume 4B will be-
gin with a few dozen pages that introduce certain
newfangled mathematical techniques, which I didn’t
know about when I wrote the corresponding parts of
Volume 1. (Those pages are now viewable from my
website in beta-test form, under the name “mathe-
matical preliminaries redux.”) I plan to issue similar

gap-filling “fascicles” when future volumes need to
refer to recently invented material that ultimately
belongs in Volume 3, say.

(2) Hey, what a fascinating question—I don’t
think anybody else has ever asked me that before!

If I’d been born in 1814, the truth is that I would
almost certainly have had a very limited education,
coupled with hardly any access to knowledge. My
own male ancestors from that era were all employed
as laborers, on farms that they didn’t own, in what
is now called northern Germany.

But I suppose you have a different question in
mind. What if I had been one of the few people with
a chance to get an advanced education, and who also
had some flexibility to choose a career?

All my life I’ve wanted to be a teacher. In fact,
when I was in first grade, I wanted to teach first
grade; in second grade, I wanted to teach second;
and so on. I ended up as a college teacher. Thus I
suppose that I’d have been a teacher, if possible.

To continue this speculation, I have to explain
about being a geek. Fred Gruenberger told me long
ago that about 2% of all college students, in his ex-
perience, really resonated with computers in the way
that he and I did. That number stuck in my mind,
and over the years I was repeatedly able to confirm
his empirical observations. For instance, I learned in
1977 that the University of Illinois had 11,000 grad
students, of whom 220 were CS majors!

Thus I came to believe that a small percentage
of the world’s population has somehow acquired a pe-
culiar way of thinking, which I happen to share, and
that such people happened to discover each other’s ex-
istence after computer science had acquired its name.

For simplicity, let me say that people like me
are “geeks,” and that geeks comprise about 2% of
the world’s population. I know of no explanation for
the rapid rise of academic computer science depart-
ments—which went from zero to one at virtually
every college and university between 1965 and 1975—
except that they provided a long-needed home where
geeks could work together. Similarly, I know of no
good explanation for the failure of many unsuccess-
ful software projects that I’ve witnessed over the
years, except for the hypothesis that they were not
entrusted to geeks.

So who were the geeks of the early 19th cen-
tury? Beginning a little earlier than 1814, I’d maybe
like to start with Abel (1802); but he’s been pretty
much claimed by the mathematicians. Jacobi (1804),
Hamilton (1805), Kirkman (1806), De Morgan (1806),
Liouville (1809), Kummer (1810), and China’s Li
Shanlan (1811) are next; I’m listing “mathemati-
cians” whose writings speak rather directly to the

Twenty Questions for Donald Knuth

TUGboat, Volume 35 (2014), No. 3 237

geek in me. Then we get precisely to your time pe-
riod, with Catalan (1814) and Sylvester (1814), Boole
(1815), Weierstrass (1815), and Borchardt (1817). I
would have enjoyed the company of all these people,
and with luck I might have done similar things.

By the way, the first person in history whom I’d
classify as “100% geek” was Alan Turing. Many of
his predecessors had strong symptoms of our disease,
but he was totally infected.

7. Tony Gaddis, author: Do you remember a
specific moment when you discovered the joy of pro-
gramming, and decided to make it your life’s work?

Don Knuth: During the summer of 1957, between
my freshman and sophomore years at Case Tech in
Cleveland, I was allowed to spend all night with an
IBM 650, and I was totally hooked.

But there was no question of viewing that as a
“life’s work,” because I knew of nobody with such a ca-
reer. Indeed, as mentioned above, my life’s work was
to be a teacher. I did write a compiler manual in 1958,
which by chance was actually used as the textbook
for one of my classes in 1959(!). Still, programming
was for me primarily a hobby at first, after which it
became a way to support myself while in grad school.

I saw no connection between computer program-
ming and my intended career as a math professor
until I met Bob Floyd late in 1962. I didn’t foresee
that computer science would ever be an academic
discipline until I met George Forsythe in 1964.

8. Robert Sedgewick, Princeton: Don, I re-
member some years ago that you took the position
that you weren’t trying to reach everyone with your
books—knowing that they would be particularly
beneficial to people with a certain interest and ap-
titude who enjoy programming and exploring its
relationship to mathematics. But lately I’ve been
wondering about your current thoughts on this issue.
It took a long time for society to realize the benefits
of teaching everyone to read; now the question be-
fore us is whether everyone should learn to program.
What do you think?

Don Knuth: I suppose all college professors think
that their subject ought to be taught to everybody
in the world. In this regard I can’t help quoting
from a wonderful paper that John Hammersley wrote
in 1968:
Just for the fun of getting his reactions, I asked an em-
inent scholar of English Literature what educational
benefits might lie in the study of goliardic verse, Erse
curses, and runic erotica. ‘A working background of
goliardic verse would be more than helpful to anyone
hoping to have some modest facility in his own mother
tongue’, he declared; and with that he warmed to his
subject and to the poverties of unlettered science, so

that it was some minutes before I could steer him
back to the Erse curses, about which he seemed a
good deal less enthusiastic. ‘Really’, he said, ‘that
sort of thing isn’t my subject at all. Of course, I
applaud breadth of vocabulary; and you never know
when some seemingly useless piece of knowledge may
not turn out to be of cardinal practical importance.
I could certainly envisage a situation in which they
might come in very handy indeed’. ‘And runic erot-
ica?’ ‘Not extant’. (Was it only my fancy that heard a
note of faint regret in his reply?) Certainly the higher
flights of scholarship can add savour; but does the
man-in-the-street have the time and the pertinacity
and the intellectual digestion for them?

Programming, of course, is not just an ordinary
subject. It is intrinsically empowering, and applica-
ble to many different kinds of knowledge. And I also
know that you’ve been having enormous successes, at
Princeton and online, teaching advanced concepts of
programming to students from every discipline.

But your question asks about everybody. I still
think many years will have to go by before I would
recommend that my own highly intelligent wife, son,
and daughter should learn to program, much less that
everybody else I know should do so.

Nick Trefethen told me a few years back that
he had just visited his son’s high school in Oxford,
which is one of the best anywhere, and learned that
not a single student knew how to program! Britain is
now beginning to change that, indeed at a more rapid
pace than in America. Yet such a revolution almost
surely needs to take place over a generation or more.
Where are the teachers going to come from?

My own experience is with the subset of college
students who are sufficiently interested in program-
ming that they expect it to become an integral part
of their life. TAOCP is essentially for specialists. I’ve
primarily been writing it for geeks, not for a general
audience, because somebody has to write books that
aren’t for dummies. (By a “dummy” I mean a smart
non-geek. That’s a much larger market, and very im-
portant; but it’s not my target audience, and general
education is not my forte.)

On the other hand, believe it or not, I try
to explain everything in my books by imagining a
non-specialist reader. My goal is to be jargon-free
whenever possible; I especially try to avoid terms
from higher mathematics that tend to frighten the
programmer-on-the-street. Whenever possible I try
to translate results from the theoretical literature
into a language that high-school students could un-
derstand.

I know that my books still aren’t terribly easy
to fathom, even for geeks. But I could have made
them much, much harder.

Twenty Questions for Donald Knuth

238 TUGboat, Volume 35 (2014), No. 3

9. Barbara Steele: What was the conversion pro-
cess, and what tools did you use, to convert your
print books to eBooks?

Don Knuth: I knew that these volumes would not
work especially well as eBooks unless they were con-
verted by experts. Fortunately I received some prize
money in 2011, which could be used to pay for pro-
fessional help. Therefore I was able to achieve the
kind of quality that I envisioned, without delaying
my work on future volumes, by letting the staff at
Mathematical Sciences Publishers in Berkeley (MSP)
handle all of the difficult stuff.

My principal goal was to make the books eas-
ily searchable—and that’s a much more challenging
problem than it seems, if you want to do it right.
Secondarily, I wanted to let readers easily click on
the number of any exercise or equation or illustra-
tion or table or algorithm, etc., and to jump to that
exercise; also to jump readily between an exercise
and its answer.

The people at MSP wrote special software that
converts my source text into suitable input to other
software that creates PDF files. I don’t know the
details, except that they use “change files” analo-
gous to those used in WEB and CWEB. I’ve checked
the results pretty carefully, and I couldn’t be more
pleased. Moreover, they’ve designed things so that it
won’t be hard for me to make changes next year, as
readers discover bugs in the present editions.

(My style of writing tends to maximize the num-
ber of opportunities to make mistakes, hence I would
be fooling myself if I thought that the books were
now perfect. Therefore it has always been important
to keep future errata in mind. The production staff
at Addison-Wesley has been consistently wonderful
in the way they allow me to correct about fifty pages
every year in each volume.)

10. Silvio Levy, MSP: Could you comment on
the differences between the print, PDF, EPUB, etc.,
editions of TAOCP? What would you say is gained
or lost with each?

Don Knuth: The printed versions weigh a lot more,
but they don’t need battery power or a tether to elec-
tricity. They are always there; I don’t have to turn
them on, and I can have them all open at once.

I can scribble in the margins (and elsewhere) of
the print versions, and I can highlight text in differ-
ent colors. Ten years from now I expect analogous
features will be commonly available for eBooks.

I’m used to flipping pages and finding my way
around a regular book, much more so than in an
eBook; but my grandchildren might have the oppo-
site reaction.

The great advantage of an eBook is the reader’s
ability to search exhaustively. What fun it is to look
for all occurrences of a random word like ‘game’, or
for a random word fragment like ‘gam’ or ‘ame’, and
find lots of cool material that I don’t recall having
written. The search feature on these books works
even better than I had a right to hope for.

The index in a printed book has the advantage
of being more focused. But that index also appears
in the eBook, and in the eBook you can even click in
the index to get to the cited pages.

Today’s eBook readers are often inconvenient
for setting bookmarks and going back to where you
were a couple of minutes ago, especially after you
click on an Internet link and then want to go back to
reading. But that software will surely improve, and
so will today’s electronic devices.

In the future I look forward to curated eBooks
that have additional notes by experts—and possi-
bly even graffiti in the style of Concrete Mathemat-

ics—somewhat analogous to the “director’s com-
ments” and other extras found on the DVDs for films.
One could select different subsets of these comments
when reading.

11. Peter Gordon, Addison-Wesley (retired):
If the full range of today’s eBook features and func-
tionalities had been available when TAOCP was first
published, would you have written those volumes
very differently?

Don Knuth: Well, I don’t think I would have got-
ten very far at all. I would have had to think about
doing everything in color, and with interactive fig-
ures, tables, equations, and exercises. A single person
cannot use the “full range” of features that eBooks
potentially have.

But by limiting myself to what can be presented
well in black-and-white type, on printed pages of a
fixed size, I was fortunately able to complete 3,000
pages over a period of 50 years.

12. Udi Manber, Google: The early volumes of
TAOCP established computer programming as com-
puter science. They introduced the necessary rigor.
This was at the time when computers were used
mostly for numerical applications. Today, most ap-
plications are related to people— social interaction,
search, entertainment, and so on. Rigor is rarely used
in the development of these applications. Speed is
not always the most important factor, and “correct-
ness” is rarely even defined. Do you have any advice
on how to develop a new computer science that can
introduce rigor to these new applications?

Don Knuth: The numerical computations that
were somewhat central when computer science was

Twenty Questions for Donald Knuth

TUGboat, Volume 35 (2014), No. 3 239

born are by no means gone; they continue to grow,
year by year. Of course, they now represent a much
smaller piece of the pie, but I don’t believe in concen-
trating too much on the big pieces.

My work on METAFONT introduced me to ap-
plications where “correctness” cannot be defined.
How do I know, for example, that my program for
the letter A produces a correct image? I never will;
and I’ve learned to live with that uncertainty. On
the other hand, when I implemented the routines
that interpret specifications and draw the associated
bitmaps, there was plenty of room for rigor. The
algorithms that go into font rendering are among the
most interesting I’ve ever seen.

As a user of products from Google and Adobe
and other corporations, I know that a tremendous
amount of rigor goes into the manipulation of map
data, transportation data, pixel data, linguistic data,
metadata, and so on. Furthermore, much of that
processing is done with distributed and decentralized
algorithms that require more rigor than anybody
ever thought of in the 60s.

So I can’t say that rigor has disappeared from
the computer science scene. I do wish, however,
that Google’s and Adobe’s and Apple’s program-
mers would learn rigorously how to keep their sys-
tems from crashing my home computers, when I’m
not using Linux.

In general I agree with you that there’s no de-
crease in the need for rigor, rather an increase in the
number of kinds of rigor that are important. The fact
that correctness can’t be defined on the “bottom line”
should not lull people into thinking that there aren’t
intermediate levels within every nontrivial system
where correctness is crucial. Robustness and quality
are compromised by every weak link.

On the other hand, I certainly don’t think that
everything should be mathematized, nor that every-
thing that involves computers is properly a subdisci-
pline of computer science. Many parts of important
software systems do not require the special talents of
geeks; quite the contrary. Ideally, many disciplines
collaborate, because a wide variety of orthogonal
skill sets is a principal reason why life is such a joy.
Vive la difference.

Indeed, I myself follow the path of rigor only
partway: Rarely do I ever give a formal proof that
any of my programs are correct, once I’ve constructed
an informal proof that convinces me. I have no real
interest, for example, in defining exactly what it
would mean for TEX to be correct, or for verifying
formally that my implementation of that 550-page
program is free of bugs. I know that anomalous
results are possible when users try to specify pages

that are a mile wide, or constants that involve a tril-
lion zeros, etc. I’ve taken care to avoid catastrophic
crashes, but I don’t check every addition operation
for possible overflow.

There’s even a fundamental gap in the founda-
tions of my main mathematical specialty, the analysis
of algorithms. Consider, for example, a computer pro-
gram that sorts a list of numbers into order. Thanks
to the work of Floyd, Hoare, and others, we have
formal definitions of semantics, and tools by which
we can verify that sorting is indeed always achieved.
My job is to go beyond correctness, to an analysis of
such things as the program’s running time: I write
down a recurrence, say, which is supposed to rep-
resent the average number of comparisons made by
that program on random input data. I’m 100% sure
that my recurrence correctly describes the program’s
performance, and all of my colleagues agree with me
that the recurrence is “obviously” valid. Yet I have
no formal tools by which I can prove that my recur-

rence is right. I don’t really understand my reasoning
processes at all! My student Lyle Ramshaw began to
create suitable foundations in his thesis (1979), but
the problem seems inherently difficult. Nevertheless,
I don’t lose any sleep over this situation.

13. Al Aho, Columbia: We all know that the
Turing Machine is a universal model for sequential
computation.

But let’s consider reactive distributed systems
that maintain an ongoing interaction with their envi-
ronment—systems like the Internet, cloud comput-
ing, or even the human brain. Is there a universal
model of computation for these kinds of systems?

Don Knuth: I’m not strong on logic, so TAOCP

treads lightly on this sort of thing. The TAOCP

model of computation, discussed on pages 4–8 of Vol-
ume 1, considers “reactive processes,” a.k.a. “compu-
tational methods,” which correspond to single proces-
sors. I’ve long planned to discuss recursive coroutines
and other cooperative processes in Chapter 8, after I
finish Chapter 7. The beautiful model of context-free
parsing via semiautonomous agents, in Floyd’s great
survey paper of 1964, has strongly influenced my
thinking in this regard.

I’d like to see extensions of the set-theoretic
model of computation at the beginning of Volume 1
to the things you mention. They might well shed
light on the subject.

But fully distributed processes are well beyond
the scope of my books and my own ability to com-
prehend them. For a long time I’ve thought that an
understanding of the way ant colonies are able to
perform incredibly organized tasks might well be the

Twenty Questions for Donald Knuth

240 TUGboat, Volume 35 (2014), No. 3

key to an understanding of human cognition. Yet the
ants that invade my house continually baffle me.

14. Guy Steele, Oracle Labs: Don, you and I are
both interested in program analysis: What can one
know about an algorithm without actually executing
it? Type theory and Hoare logic are two formalisms
for that sort of reasoning, and you have made great
contributions to using mathematical tools to ana-
lyze the execution time of algorithms. What do
you think are interesting currently open problems in
program analysis?

Don Knuth: Guy, I’m sure you aren’t really against

the idea of program execution. You and I both
like to know things about programs and to execute
them. Often the execution contradicts our supposed
knowledge.

The quest for better ways to verify programs is
one of the famous grand challenges of computer sci-
ence. And as I said to Udi, I’m particularly rooting
for better techniques that will avoid crashes.

Just now I’m writing the part of Volume 4B
that discusses algorithms for satisfiability, a problem
of great industrial importance. Almost nothing is
known about why the heuristics in modern solvers
work as well as they do, or why they fail when they
do. Most of the techniques that have turned out
to be important were originally introduced for the
wrong reasons!

If I had my druthers, I wish people like you
would put a lot of effort into a problem of which
I’ve only recently become aware: The programmers
of today’s multithreaded machines need new kinds
of tools that will make linked data structures much
more cache-friendly. One can in many cases start
up auxiliary parallel threads whose sole purpose is
to anticipate the memory accesses that the main
computational threads will soon be needing, and to
preload such data into the cache. However, the task
of setting this up is much too daunting, at present,
for an ordinary programmer like me.

15. Robert Tarjan, Princeton: What do you see
as the most promising directions for future work in
algorithm design and analysis? What interesting and
important open problems do you see?

Don Knuth: My current draft about satisfiabil-
ity already mentions 25 research problems, most of
which are not yet well known to the theory commu-
nity. Hence many of them might well be answered
before Volume 4B is ready. Open problems pop up
everywhere and often. But your question is, of course,
really intended to be much more general.

In general I’m looking for more focus on algo-
rithms that work fast with respect to problems whose

size, n, is feasible. Most of today’s literature is de-
voted to algorithms that are asymptotically great,
but they are helpful only when n exceeds the size of
the universe.

In one sense such literature makes my life easier,
because I don’t have to discuss those methods in
TAOCP. I’m emphatically not against pure research,
which significantly sharpens our abilities to deal with
practical problems and which is interesting in its own
right. So I sometimes play asymptotic games. But
I sure wouldn’t mind seeing a lot more algorithms
that I could also use.

For instance, I’ve been reading about algorithms
that decide whether or not a given graph G belongs
to a certain class. Is G, say, chordal? You and others
discovered some great algorithms for the chordal-
ity and minimum fillin problems, early on, and an
enormous number of extremely ingenious procedures
have subsequently been developed for characterizing
the graphs of other classes. But I’ve been surprised
to discover that very few of these newer algorithms
have actually been implemented. They exist only on
paper, and often with details only sketched.

Two years ago I needed an algorithm to decide
whether G is a so-called comparability graph, and
was disappointed by what had been published. I
believe that all of the supposedly “most efficient”
algorithms for that problem are too complicated to
be trustworthy, even if I had a year to implement
one of them.

Thus I think the present state of research in al-
gorithm design misunderstands the true nature of ef-
ficiency. The literature exhibits a dangerous trend in
contemporary views of what deserves to be published.

Another issue, when we come down to earth,
is the efficiency of algorithms on real computers.
As part of the Stanford GraphBase project I imple-
mented four algorithms to compute minimum span-
ning trees of graphs, one of which was the very pretty
method that you developed with Cheriton and Karp.
Although I was expecting your method to be the win-
ner, because it examines much of the data only half
as often as the others, it actually came out two to
three times worse than Kruskal’s venerable method.
Part of the reason was poor cache interaction, but
the main cause was a large constant factor hidden
by O notation.

16. Frank Ruskey, University of Victoria:
Could you comment on the importance of working
on unimportant problems? My sense is that com-
puter science research, funding, and academic hiring
is becoming more and more focused on short-term
problems that have at their heart an economic moti-
vation. Do you agree with this assessment, is it a bad

Twenty Questions for Donald Knuth

TUGboat, Volume 35 (2014), No. 3 241

trend, and do you see a way to mitigate it?
Similarly, could you comment on the demise of

the individual researcher? So many papers that I see
published these days have multiple authors. Five-
author papers are routine. But when I dig into the
details it seems that often only one or two have con-
tributed the fresh ideas; the others are there because
they are supervisors, or financial contributors, or
whatever. I’m pretty sure that Euler didn’t publish
any papers with five co-authors. What is the reason
for this trend, how does it interfere with trying to
establish a history of ideas, and what can be done
to reverse it?

Don Knuth: I was afraid somebody was going to
ask a question related to economics. I’ve never un-
derstood anything about that subject. I don’t know
why people spend money to buy things. I’m willing
to believe that some economists have enough wisdom
to keep the world running some of the time, but their
reasons are beyond me.

I just write books. I try to tell stories that seem
to be important, at least for geeks. I’ve never both-
ered to think about marketing, or about what might
sell, except when my publishers ask me to answer
questions as I’m doing now!

Three years ago I published Selected Papers on

Fun and Games, a 750-page book that is entirely
devoted to unimportant problems. In many ways the
fact that I was able to live during a time in the his-
tory of the world when such a book could be written
has given me even more satisfaction than I get when
seeing the currently healthy state of TAOCP.

I’ve reached an age where I can fairly be de-
scribed as a “grumpy old man,” and perhaps that is
why I strongly share your concern for the alarming
trends that you bring up. I’m profoundly upset when
people rate the quality of my work by measuring the
extent to which it affects Wall Street.

Everybody seems to understand that astrono-
mers do astronomy because astronomy is interesting.
Why don’t they understand that I do computer sci-
ence because computer science is interesting? And
that I’d do it regardless of whether or not it made
money for anybody? The reason is probably that
not everybody is a geek.

Regarding joint authorship, you are surely right
about Euler in the 18th century. In fact I can’t
think of any two-author papers in mathematics, un-
til Hardy and Littlewood began working together at
the beginning of the 20th century.

In my own case, two of my earliest papers were
joint because the other authors did the theory and I
wrote computer programs to validate it. Two other
papers were related to the ALGOL language, and

done together with ACM committees. In a number
of others, written while I was at Caltech, I did the
theory and my student co-authors wrote computer
programs to validate it. There was one paper with
Mike Garey, Ron Graham, and David Johnson, in
which they did the theory and my role was to ex-
plain what they did. You and I wrote a joint paper
in 2004, related to recursive coroutines, in which we
shared equally.

The phenomenon of hyperauthorship still hasn’t
infected computer science as much as it has hit
physics and biology, where I’ve read that Thomson-
Reuters indexed more than 200 papers having 1,000
authors or more, in a single recent year! When I
cite a paper in TAOCP, I like to mention all of the
authors, and to give their full names in the index.
That policy will become impossible if CS publication
practices follow in the footsteps of those fields.

Collaborative work is exhilarating, and it’s won-
derful when new results are obtained that wouldn’t
have been discovered by individuals working alone.
But as you say, authors should be authors, not
hangers-on.

You mention the history of ideas. To me the
method of discovery tends to be more important
than the identification of the discoverers. Still, credit
should be given where credit is due; conversely, credit
shouldn’t be given where credit isn’t due.

I suppose the multiple-author anomalies are
largely due to poor policies related to financial re-
wards. Unenlightened administrators seem to base
salaries and promotions on publication counts.

What can we do? As I say, I’m incompetent to
deal with economics. I’ve gone through life refusing
to go along with a crowd, and bucking trends with
which I disagree. I’ve often declined to have my
name added to a paper. But I suppose I’ve had a
sheltered existence; young people may be forced to
bow to peer pressure.

17. Andrew Binstock, Dr. Dobb’s: At the ACM

Turing Centennial in 2012, you stated that you were
becoming convinced that P = NP . Would you be
kind enough to explain your current thinking on
this question, how you came to it, and whether this
growing conviction came as a surprise to you?

Don Knuth: As you say, I’ve come to believe that
P = NP , namely that there does exist an integer M
and an algorithm that will solve every n-bit problem
belonging to the classNP in nM elementary steps.

Some of my reasoning is admittedly naive: It’s
hard to believe that P 6= NP and that so many
brilliant people have failed to discover why. On the
other hand if you imagine a number M that’s finite

Twenty Questions for Donald Knuth

242 TUGboat, Volume 35 (2014), No. 3

but incredibly large— like say the number 10 ↑↑↑↑ 3
discussed in my paper on “coping with finiteness”—
then there’s a humongous number of possible al-
gorithms that do nM bitwise or addition or shift
operations on n given bits, and it’s really hard to
believe that all of those algorithms fail.

My main point, however, is that I don’t believe
that the equality P = NP will turn out to be help-
ful even if it is proved, because such a proof will
almost surely be nonconstructive. Although I think
M probably exists, I also think human beings will
never know such a value. I even suspect that nobody
will even know an upper bound on M .

Mathematics is full of examples where something
is proved to exist, yet the proof tells us nothing about
how to find it. Knowledge of the mere existence of an
algorithm is completely different from the knowledge
of an actual algorithm.

For example, RSA cryptography relies on the
fact that one party knows the factors of a number,
but the other party knows only that factors exist.
Another example is that the game of N×N Hex has
a winning strategy for the first player, for all N .
John Nash found a beautiful and extremely simple
proof of this theorem in 1952. But Wikipedia tells
me that such a strategy is still unknown when N = 9,
despite many attempts. I can’t believe anyone will
ever know it when N is 100.

More to the point, Robertson and Seymour have
proved a famous theorem in graph theory: Any class
c of graphs that is closed under taking minors has
a finite number of minor-minimal graphs. (A minor
of a graph is any graph obtainable by deleting ver-
tices, deleting edges, or shrinking edges to a point. A
minor-minimal graphH for c is a graph whose smaller
minors all belong to c although H itself doesn’t.)
Therefore there exists a polynomial-time algorithm
to decide whether or not a given graph belongs to c:
The algorithm checks that G doesn’t contain any of
c’s minor-minimal graphs as a minor.

But we don’t know what that algorithm is, ex-
cept for a few special classes c, because the set of
minor-minimal graphs is often unknown. The algo-
rithm exists, but it’s not known to be discoverable
in finite time.

This consequence of Robertson and Seymour’s
theorem definitely surprised me, when I learned
about it while reading a paper by Lovasz. And
it tipped the balance, in my mind, toward the hy-
pothesis that P = NP .

The moral is that people should distinguish be-
tween known (or knowable) polynomial-time algo-
rithms and arbitrary polynomial-time algorithms.
People might never be able to implement a poly-

nomial-time-worst-case algorithm for satisfiability,
even though P happens to equal NP .

18. Jeffrey O. Shallit, University of Waterloo:
Decision methods, automated theorem-proving, and
proof assistants have been successful in a number
of different areas: the Wilf-Zeilberger method for
combinatorial identities and the Robbins conjecture,
to name two. What do you think theorem discovery
and proof will look like in 100 years? Rather like
today, or much more automated?

Don Knuth: Besides economics, I was also afraid
that somebody would ask me about the future, be-
cause I’m a notoriously bad prophet. I’ll take a shot
at your question anyway.

Assuming 100 years of sustainable civilization,
I’m fairly sure that a large percentage of theorems
(maybe even 38.1966%) will be discovered with com-
puter aid, and that a nontrivial percentage (maybe
0.7297%) will have computer-verified proofs that can-
not be understood by mortals.

In my Ph.D. thesis (1963), I looked at computer-
generated examples of small finite projective planes,
and used that data to construct infinitely many
planes of a kind never before known. Ten years
later, I discovered the so-called Knuth-Morris-Pratt
algorithm by studying the way one of Steve Cook’s
automata was able to recognize concatenated palin-
dromes in linear time. Such investigations are fun.

A few months ago, however, I tried unsuccess-
fully to do a similar thing. I had a 5,000-step mechan-
ically discovered proof that the edges of a smallish
flower snark graph cannot be 3-colored, and I wanted
to psych out how the machine had come up with
it. Although I gave up after a couple of days, I do
think it would be possible to devise new tools for
the study of computer proofs in order to identify the
“aha moments” therein.

In February of this year I noticed that the cal-
culation of an Erdős-discrepancy constant—made
famous by Tim Gowers’ Polymath project, in which
many mathematicians collaborated via the Internet—
makes an instructive benchmark for satisfiability-
testing algorithms. My first attempt to compute it
needed 49 hours of computer time. Two weeks later
I’d cut that down to less than 2 hours, but there still
were 20 million steps in the proof. I see no way at
present for human beings to understand more than
the first few thousand of those steps.

19. Scott Aaronson, MIT: Would you recommend
to other scientists to abandon the use of email, as
you have done?

Don Knuth: My own situation is unusual, because
I do my best work when I’m not interrupted. I eat,

Twenty Questions for Donald Knuth

TUGboat, Volume 35 (2014), No. 3 243

sleep, and write content, more-or-less as a recluse who
spends considerable time reading archives and other
people’s code. As I say on my home page (http://
www-cs-faculty.stanford.edu/~uno), most peo-
ple need to keep on top of things, but my role is
to get to the bottom of things.

So I don’t recommend a no-email policy to peo-
ple who thrive on communication. And I actually
take advantage of others in this respect (either shame-
lessly or shamefully, I’m not sure which), by pestering
them with random questions, even though I don’t
want anybody to pester me—except about the one
topic that I happen to be zooming in on at any
particular time.

I do welcome email that reports bugs in TAOCP,
because I always try to correct them as soon as
possible.

Other unsolicited messages go to the bit bucket
in the sky, otherwise known as /dev/null.

20. J. H. Quick, blogger: Why is this multi-
interview called “twenty questions,” when only 19
questions were asked?

Don Knuth: I’m stumped. No, wait—Radia
asked two.

Incidentally, the eVolumes of TAOCP contain
some 4,500 questions, and almost as many answers.

−− ∗ − −

The panel

1. Jon Bentley, author of “Programming Pearls” in
Communications of the ACM.

2. Dave Walden, TUG board member and coordina-
tor of the TUG Interview Corner.

3. Charles Leiserson, MIT; theory of parallel com-
puting and distributed computing, and the prac-
tical applications thereof.

4. Dennis Shasha, NYU; biological computing, pat-
tern recognition, and machine learning.

5. Mark Taub, Pearson.

6. Radia Perlman, Intel; software designer and
network engineer.

7. Tony Gaddis, author of computer science books.

8. Robert Sedgwick, Princeton; analysis of algo-
rithms; one of Don Knuth’s Ph.D. students.

9. Barbara Steele, contributor to Common Lisp:

The Language.

10. Silvio Levy, co-author with Don Knuth of The
CWEB System of Literate Programming, and
with Raymond Seroul of A Beginner’s Book of

TEX ; professional goal: to further the communi-
cation of mathematics.

11. Peter Gordon, Don Knuth’s editor at Addison-
Wesley from the early 1980s until his retirement
in 2014; see his TUG interview at http://tug.
org/interviews/gordon.html.

12. Udi Manber, a vice president of engineering at
Google, responsible for search products.

13. Al Aho, Columbia University; programming lan-
guages, compilers and related algorithms, and
prolific author of textbooks on the art and science
of computer programming; co-author of the AWK

programming language.

14. Guy Steele, designer and writer of numerous
programming language specifications, including
the original command set of Emacs; the first
person to port TEX (from WAITS to ITS).

15. Robert Tarjan, Princeton; known for his pioneer-
ing work on graph theory algorithms and data
structures; his dissertation was supervised by
Don Knuth.

16. Frank Ruskey, University of Victoria; research in-
cludes algorithms for exhaustively listing discrete
structures, and various combinatorial topics.

17. Andrew Binstock, Editor-in-Chief, Dr. Dobb’s

Journal.

18. Jeffrey Outlaw Shallit, University of Waterloo;
combinatorics on words, formal languages, au-
tomata theory, and algorithmic number theory;
also Vice President of Electronic Frontier Canada.

19. Scott Aaronson, MIT; theory of computational
complexity and quantum computing.

20. J. H. Quick, blogger.

−− ∗ − −

We conclude with another quote from
Radia Perlman, regarding how TAOCP affected
her, which also nicely expresses how many of us TEX
users feel about Computers & Typesetting :

Having the books on my bookshelf gave me a sense
of security . . . that pretty much anything I’d wonder
about would be explained there. Today Wikipedia
serves some of that purpose. It would have been
nice 20 years ago to have had a (more) portable
version of Knuth so that I could know, wherever I
was, that I could quickly look something up. But
20 years ago there was nothing else, so I’d have to
wait until I was back at home to consult the copy
in my bedroom bookshelves, or wander the halls at
work to find someone who had a copy in their office.
I did actually have a 2nd copy that was supposed
to be at work, but it was always being “borrowed,”
so I could never find my own copy at work when I
needed it.

Twenty Questions for Donald Knuth

244 TUGboat, Volume 35 (2014), No. 3

A letter on the persistence of (e)books

Charles Bigelow

[Originally sent fall 2011;
slightly edited for TUGboat, summer 2014.]

Dear Colleagues,
I have an original Amazon Kindle, bought around

2008. I also have a Barnes & Noble Nook, from around
2010, and an early Sony Reader a bit older than the
Kindle.

My graduate student was using them for his research.
He gave them back to me this past summer after he
finished his thesis (Congeniality of Reading on Digital

Devices, RIT 2011).
I set them on a shelf and didn’t think about them

until last week, when I got them out to show to my book
design class in the fall (2011).

The Kindle was totally dead. Wouldn’t light up,
wouldn’t charge, wouldn’t run even when plugged in.
The Nook wouldn’t charge but would work when plugged
in, until yesterday, when it wouldn’t work at all. I took
it to Barnes & Noble, where a staff person changed the
battery, to no avail, and then called B&N tech support,
who advised removing the battery, letting the thing sit
for half an hour, and then recharging for four hours, to
see if that would reboot the battery.

I took it home and plugged it in, with the power
cord I almost left in the store, forgetting that an e-book
has to have cords and connectors. The Nook connector
doesn’t fit my Kindle, so I have to keep track of which
e-reader has which connector. But, that’s not a problem
now, because the Kindle is beyond recharge anyway, and
so is the Nook, which never did revive.

The Sony Reader was hopeless whether or not it took
a charge, because it required hooking up to a Windows
PC to download books, but I use a Macintosh. And
anyway, I’d misplaced the cables and connectors. Hard
to keep track of those things.

At home, I went over to my bookshelf and took down
a beautiful little book printed in Paris in 1764–1766 by
Pierre-Simon Fournier.

It was still in excellent working condition, even
though it hadn’t been charged in 247 years. I opened it,
and immediately it started up! I could read everything,
without connectors or cables.

It still works today. The print on the pages is
a rich, dark black with good contrast against a pale
creamy background. The type is elegant, cut by P.-S.
Fournier himself, the greatest type designer of his era.
The pages have a slight texture with a good feel, making
them easy to turn with a simple swipe of the fingers. It
has generous margins so you can hold the book open
without covering the text with your thumbs—a brilliant
feature of the user interface. It has many illustrations
in vivid black and white, including fold-out pages with

Fournier’s Manuel Typographique, hand-held. Built-in
bookmark tape visible along gutter. St. Augustin size
(14 point modern measure, about the size of menus on
Macs). Page L (50) uses St. Augustin in the Dutch
style (big x-height, narrow letters, light weight);
page LI (51) also St. Augustin.

landscape format images, and other fold-outs with music.
Its casing is a rich, dark red leather with gold tooling
and ornamentation and colorful marbling, also on the
inside covers. The page edges are gilded, so the whole
book glows with a faint aura even before it is opened.
It is small enough to be held with one hand, but works
with two hands just as well.

I won’t strain credulity by pretending the book is
perfect. There are two volumes, so you have to keep
track of both. The search function is primitive: you
must browse or skim; and if you want to capture text
for later reference, you have to remember it or copy it
by hand, and if you want to link to a page, you have to
use a bookmark (this book comes with its own bound-in,
bookmark tape movable to the page of your choice).

These reading exertions put a severe strain on my
brain, to be sure. Sometimes I have to eat some chocolate
to re-charge, but I have to be careful not to get chocolate
on the pages, because it won’t wash off. Some of the pages
are slightly spotted by mold or foxing (not from chocolate
but from centuries of humidity and slow chemical changes
in the paper), yet the text is still readable. The type
can’t be resized, a problem for many of us over the age of
40, so to read the smallest size specimen, which Fournier
called “Parisienne”, a gem-like cutting at about 5 point
body size in modern type measure, I have to use bifocals
or a reading glass.

Oh, and this particular book is in French, which
slows down my reading, but well, when I’m reading this
book, I’m not in much of a hurry anyway.

⋄ Charles Bigelow
http://www.lucidafonts.com

TUGboat, Volume 35 (2014), No. 3 245

LATEX document class options

Thomas Thurnherr

Abstract

The standard document classes article, report,
book, and letter accept a number of class options
which allow high-level customization of a document.
In this article, available options are introduced, the
default for each document class is highlighted, and
alternative, more flexible customizations are given.

1 Setting document class options

Options that differ from the default are passed to
the document class through its optional argument
field. Multiple options have to be separated by a
comma. If contradictory options are set, the last
option always overrides the previous ones. Moreover,
if a non-existent option is set, LATEX ignores it and
generates a warning in the log.

\documentclass[〈option1 〉,〈option2 〉,...]{article}

2 Default options

Most default options are the same between different
document classes, with a few exceptions. An over-
view of all the defaults is given in table 1 (below).
As the letter class is fairly specific, several options
don’t apply and are therefore not implemented.

3 Paper size

LATEX provides several predefined paper (page) sizes.
The supported options: a4paper, a5paper, b5paper,
letterpaper, legalpaper, and executivepaper.

The width and height for each of these page
sizes is listed in table 2. The default depends on the
TEX distribution and/or system used. It is either
a4paper or letterpaper.

The geometry package [3] implements additional
page sizes. For example, with this package, all ISO
standard formats are available, including ISO A0–A6,
B0–B6, and C0–C6, specified as a0paper–a6paper,

Table 1: Default document class option for standard document classes.

Option article report book letter

Paper size (system specific) a4paper/letterpaper a4paper/letterpaper a4paper/letterpaper a4paper/letterpaper

Font size 10pt 10pt 10pt 10pt

Number of columns onecolumn onecolumn onecolumn onecolumn

Margins oneside oneside twoside oneside

Title page notitlepage titlepage titlepage -

Chapter start page - openany openright -

Orientation portrait portrait portrait portrait

Formula options (center; right label) - - -

Draft or final final final final final

Table 2: Measures of predefined page formats.

Option width height

a4paper 210 mm 297 mm

a5paper 148 mm 210 mm

b5paper 176 mm 250 mm

letterpaper 8.5 in 11 in

legalpaper 8.5 in 14 in

executivepaper 7.25 in 10.5 in

and so on. To use a geometry page format, the op-
tion is passed to the package directly, rather than
to the document class. Any page format set in the
document class is ignored. Besides these additional
predefined formats, the package allows the user to
define an arbitrary page size. Here is an example:

% A0 size:

\usepackage[a0paper]{geometry}

% Arbitrary page size:

\usepackage[paperwidth=5cm,paperheight=5cm]

{geometry}

4 Font size

Throughout the entire document, LATEX uses the
same font size, except for headings or if the font is
changed locally through a macro, such as \small or
\large. 10pt is the default for all classes. Three
options are available: 10pt, 11pt, and 12pt. If the
default font size is changed, headings and macros
change accordingly. Margins are also changed ac-
cording to the font size.

For a larger range, the extsizes package [2]
provides additional classes that support font sizes
between 8pt–20pt.

5 One or two columns

All document classes use a single column layout by
default (onecolumn). With the twocolumn option,

LATEX document class options

246 TUGboat, Volume 35 (2014), No. 3

the page is horizontally divided, a layout frequently
used by scientific journals. The \linewidth macro
flexibly adapts to the new layout and is automati-
cally set to the width of a single column. Therefore,
\linewidth is convenient to make optimal use of
the available space, for example when adding figures.
\textwidth, on the other hand, remains unchanged
and is equal to the total width of the text area.

In two-column mode, the figure* environment
inserts a figure that spans both columns, and sim-
ilarly table* for a full-width table. Consequently,
\linewidth and \textwidth are identical within
these starred environments. An example:

\documentclass[twocolumn]{article}

\usepackage{graphicx}

\begin{document}

\begin{figure*}[ht]

\includegraphics[width=\linewidth]{myFigure}

\caption{Figure spanning two columns.}

\end{figure*}

... text of document ...

\end{document}

The multicol package [9] provides support for
two or more columns. With this package, it is also
possible to mix different layouts within the same
document.

6 Margins

The options oneside and twoside affect the width of
the side margins. With oneside, which is the default
for article, report, and letter, the margins on
both sides of every page are equally wide. With
twoside, LATEX distinguishes between an inner and
outer margin. The outer margin is substantially
wider and switches between left and right. Even
pages have their outer margin on the left, odd pages
on the right. Most books follow this structure and so
it should not come as a surprise that the book class
default is twoside.

7 Title page

The titlepage option prints the title on a separate
page. This is the default for report and book. On
the other hand, article has notitlepage as its
default, with the main text starting directly after the
title. The letter class doesn’t implement title page
commands and therefore these options are altogether
unavailable.

8 Page orientation

All of the standard document classes produce docu-
ments in portrait orientation, by default. The option

portrait doesn’t explicitly exist. However, there is
a landscape option, which rotates the page by 90◦,
but keeps the dimensions of the text area and the
margins, which is often undesired. The geometry

package [3] provides a more convenient landscape
option, where text area and margins are adapted
accordingly.

\usepackage[landscape]{geometry}

The lscape [7] and pdflscape [10] packages im-
plement the landscape environment, which changes
the orientation locally, for one or several pages in
an otherwise portrait document. In contrast to the
geometry package, with these packages only the ori-
entation of the text area is changed, while the mar-
gins and with them the header and footer remain
in portrait mode. This environment is particularly
useful for adding extra-wide figures or tables to a doc-
ument. If pdfTEX is used for processing, pdflscape
physically rotates any landscape oriented page, which
makes it easier to read on screen. For example:

\documentclass{article}

\usepackage{pdflscape}

\begin{document}

\begin{landscape}

% landscape oriented content

\end{landscape}

\end{document}

9 Chapter starting page

Chapters and other chapter-level headings are only
available in the report and book classes. By de-
fault, a new chapter starts on the next page in
report (openany), but always on an odd page in
book (openright). As a consequence, in a book

there might be a blank page between two consecu-
tive chapters (if the previous chapter ended with an
odd page number). openany and openright do not
apply to article or letter.

10 Formula options fleqn and leqno

The fleqn and leqno options define how formulas
are displayed. They are independent and so can
be used together. The names are not especially
self-explanatory— fleqn aligns formulas on the left,
instead of the default centering; leqno prints the
equation number on the left side instead of the (de-
fault) right.

For instance, consider the Cauchy-Schwartz in-
equality printed with the defaults: the formula is
centered, with the equation number on the right.

|x, y|2 ≤ 〈x, x〉 · 〈y, y〉 (1)

Thomas Thurnherr

TUGboat, Volume 35 (2014), No. 3 247

With fleqn, the equation is left-aligned:

|x, y|2 ≤ 〈x, x〉 · 〈y, y〉 (2)

And with leqno, the equation number is placed left
of the equation instead of right:

(3) |x, y|2 ≤ 〈x, x〉 · 〈y, y〉

The amsmath package [1] provides more flexi-
bility for equations. For example, it implements
the flalign environment which was used here to
illustrate left-alignment (equation 2).

11 Draft or final

All document classes have the final option preset.
With draft, text or environments that reach into
the margins are highlighted with a black square or
bar. With that, it becomes easy to spot Overfull
\hbox warnings in the document output.

Other packages also make use of these options
and implement macros that behave differently in
draft mode. For example, the graphicx bundle [4]
replaces figures with a box that shows the file name
instead of the figure. Document processing time can
be drastically reduced when figures are not loaded.
Two other examples: the hyperref [5] package re-
moves all linking features from a document in draft
mode, and microtype [8] disables its features alto-
gether.

When draft is used for the overall document,
specific packages can be still set to final mode by
loading the package with the final option. This
might sometimes be helpful to examine the package’s
“final” behavior. An example:

\documentclass[draft]{article}

\usepackage[final]{graphicx}

The ifdraft package [6] implements commands
to flexibly customize the behavior of draft and/or
final. For example, in a thesis the author might
like to omit the title page and content lists while he’s
still working on the document. This is straightfor-
ward, using either the \ifdraft or \iffinal macro
provided by the package:

\documentclass[draft]{report}

\usepackage{ifdraft}

\title{...}

\author{...}

\begin{document}

\ifdraft{% Draft: omit title/toc/lof/lot

}{%

\maketitle

\tableofcontents\clearpage

\listoffigures\clearpage

\listoftables\clearpage

}

\end{document}

References

[1] amsmath—AMS mathematical facilities for
LATEX. http://www.ctan.org/pkg/amsmath.
Accessed: 2014-09-22.

[2] extsizes—extend the standard classes’
size options. http://www.ctan.org/pkg/

extsizes. Accessed: 2014-09-30.

[3] geometry—flexible and complete interface to
document dimensions. http://www.ctan.org/
pkg/geometry. Accessed: 2014-09-22.

[4] graphicx—enhanced support for graphics.
http://www.ctan.org/pkg/graphicx.
Accessed: 2014-09-28.

[5] hyperref—extensive support for hypertext in
LATEX. http://www.ctan.org/pkg/hyperref.
Accessed: 2014-09-28.

[6] ifdraft—detect “draft” and “final” class
options. http://www.ctan.org/pkg/ifdraft.
Accessed: 2014-09-28.

[7] lscape—place selected parts of a document
in landscape. http://www.ctan.org/pkg/

lscape. Accessed: 2014-09-30.

[8] microtype—subliminal refinements towards
typographical perfection.
http://www.ctan.org/pkg/microtype.
Accessed: 2014-09-28.

[9] multicol— intermix single and multiple
columns. http://www.ctan.org/pkg/

multicol. Accessed: 2014-09-28.

[10] pdflscape—make landscape pages display
as landscape. http://www.ctan.org/pkg/

pdflscape. Accessed: 2014-09-30.

⋄ Thomas Thurnherr

texblog (at) gmail dot com

http://texblog.org

LATEX document class options

248 TUGboat, Volume 35 (2014), No. 3

How to influence the position of float
environments like figure and table in LATEX?

Frank Mittelbach

Abstract

In 2012, a question “How to influence the float place-
ment in LATEX” was asked on TeX.stackexchange [3]
and as there had been many earlier questions around
this topic I decided to treat the topic in some depth
and explain most of the mysteries that the under-
lying mechanism poses to people trying to use it
successfully.

Once my answer appeared on the web, people
asked to see this converted into an article and I fool-
ishly replied “only if this answer ends up becoming
a ‘great’ answer” (gets 100 votes). At the time of
writing this article, the answer stands at 222 votes,
so I had better make good on that promise.

Contents

1 Introduction 248

2 LATEX floats terminology 248
2.1 Float classes 248
2.2 Float areas 248
2.3 Float placement specifiers 248
2.4 Float algorithm parameters 249
2.5 Float reference point 249

3 Basic behavioral rules of LATEX’s
float mechanism 249
3.1 The basic sequence 249
3.2 Detailed placement rules 250
3.3 Emptying the holding queue at the

column or page boundary 250
3.4 Parameters influencing the placement 250

4 Consequences of the algorithm 251
4.1 A float may appear in the document

earlier than its location in the source 251
4.2 Double-column floats are always

deferred first 251
4.3 There is no bottom float area

for double-column floats 252
4.4 All float parameters (normally) restrict

the placement possibilities 252
4.5 “Here” just means “here if it fits” . . 252
4.6 Float specifiers do not define an order

of preference 252
4.7 Relation of floats and footnotes . . . 252

5 Documentation of the algorithm 253

6 How to address specific issues 253

6.1 Ensure that floats appear “here” . . 253
6.2 Provide a bottom float area for

two-column floats 253
6.3 Ensure that floats are always placed

after their call-out 253
6.4 Prevent floats on certain pages . . . 254
6.5 Implement float barriers 254
6.6 Overwrite placement restrictions . . 254
6.7 Final tuning advice 254

1 Introduction

To answer this question one first has to understand
the basic rules that govern LATEX’s standard place-
ment of floats. Once these are understood, adjust-
ments can be made, for example, by modifying float
parameters, or by adding certain packages that mod-
ify or extend the basic functionality.

2 LATEX floats terminology

2.1 Float classes

Each float in LATEX belongs to a class. By default,
LATEX knows about two classes, viz., figure and table.
Further classes can be added by a document class or
by packages. The class a float belongs to influences
certain aspects of the float positioning, such as its
default placement specification (if not overridden on
the float itself).

One important property of the float placement
algorithm is that LATEX never violates the order of
placement within a class of floats. E.g., if you have
figure 1, table 1, figure 2 in a document, then figure 1
will always be placed before figure 2. However, table 1
(belonging to a different float class) will be placed
independently and hence can appear before, after, or
between the figures.

2.2 Float areas

LATEX knows about two float areas within a column
where it can place floats: the top area and the bottom
area of the column. In two-column layout, it also
knows about a top area spanning the two columns.
There is no bottom area for page-wide floats in two-
column mode.

In addition, LATEX can make float columns and
float pages, i.e., columns or pages which contain only
floats. Finally, LATEX can place floats in-line into the
text (but only if so directed on the individual float).

2.3 Float placement specifiers

To direct a float to be placed into one of these areas,
a float placement specifier can be provided as an
optional argument to the float. If no such optional
argument is given then a default placement specifier
is used (which depends on the float class as mentioned

Frank Mittelbach

TUGboat, Volume 35 (2014), No. 3 249

above but usually allows the float to be placed in all
areas if not subject to other restrictions).

A float placement specifier can consist of the
following characters in any order:

! indicates that some of the restrictions that nor-
mally apply should be ignored (discussed later)

h indicates that the float is allowed to be placed
in-line (“here”)

t indicates that the float is allowed to go into a
top area

b indicates that the float is allowed to go into a
bottom area

p indicates that the float is allowed to go on a
float page or column area

The order in which these characters are put in
the optional argument does not influence how the
algorithm tries to place the float! The precise order
is discussed in section 3.2. This is one of the common
misunderstandings, for instance when people think
that bt means that the bottom area should be tried
first.

However, if a letter is not present then the cor-
responding area will not be tried at all.

2.4 Float algorithm parameters

There are about 20 parameters that influence the
placement. Basically they define

• how many floats can go into a certain area,

• how big a float area can become,

• how much text there has to be on a page (in
other words, how much the top and bottom float
areas can occupy), and

• how much space will be inserted

– between consecutive floats in an area and

– between the float area and the text above
or below it.

2.5 Float reference point

A point in the document that references the float
(e.g., “see figure X”) is called a “call-out” and the
float body should be placed close to the (main) call-
out, as its placement in the document affects the
placement of the float in the output, because it de-
termines when LATEX sees the float for the first time.
It’s important to understand that if a float is placed
in the middle of a paragraph, the reference point for
the algorithm is the next line break, or page break,
in the paragraph that follows the actual placement
in the source.

For technical and practical reasons it is usually
best to place all floats between paragraphs (i.e., after
the paragraph with the call-out), even if that makes
the call-out and reference point slightly disagree.

3 Basic behavioral rules of LATEX’s
float mechanism

With this knowledge, we are now ready to delve into
the algorithm’s behavior.

First we have to understand that all of LATEX’s
typesetting algorithms are designed to avoid any
sort of backtracking. This means that LATEX reads
through the document source, formats what it finds
and (more or less) immediately typesets it. The rea-
sons for this design choice were to limit complexity
(which is still quite high) and also to maintain rea-
sonable speed (remember that this is from the early
eighties).

For floats, this means that the algorithm is
greedy, i.e., the moment it encounters a float it will
immediately try to place it and, if it succeeds, it will
never change its decision. This means that it may
choose a solution that could be deemed inferior in
light of data received later on.

For example, if a figure is allowed to go to the
top or bottom area, LATEX may decide to place this
figure in the top area. If this figure is followed by two
tables which are only allowed to go to the top, these
tables may not fit anymore. A solution that could
have worked in this case (but wasn’t tried) would
have been to place the figure in the bottom area and
the two tables in the top area.

3.1 The basic sequence

So here is the basic sequence the algorithm runs
through:

• If a float is encountered, LATEX attempts to place
it immediately according to its rules (detailed
later);

• if this succeeds, the float is placed and that
decision is never changed;

• if this does not succeed, then LATEX places the
float into a holding queue to be reconsidered
when the next page is started (but not earlier).

• Once a page has finished, LATEX examines this
holding queue and tries to empty it as best as
possible. For this it will first try to generate
as many float pages as possible (in the hope
of getting floats off the queue). Once this pos-
sibility is exhausted, it will next try to place
the remaining floats into top and bottom areas.
It looks at all the remaining floats and either
places them or defers them to a later page (i.e.,
adding them once more to the holding queue).

• After that, it starts processing document ma-
terial for this page. In the process, it may en-
counter further floats.

• If the end of the document has been reached or
if a \clearpage is encountered, LATEX starts a

How to influence the position of float environments like figure and table in LATEX?

250 TUGboat, Volume 35 (2014), No. 3

new page, relaxes all restrictive float conditions,
and outputs all floats in the holding queue by
placing them on float page(s).

In two-column mode the same algorithm is used,
except that it works on the level of columns, e.g.,
when a column has finished LATEX will look at the
holding queue and generate float columns, etc.

3.2 Detailed placement rules

Whenever LATEX encounters a float environment in
the source, it will first look at the holding queue to
check if there is already a float of the same class
in the queue. If that happens to be the case, no
placement is allowed and the float immediately goes
into the holding queue.

If not, LATEX looks at the float placement spec-
ifier for this float, either the explicit one in the op-
tional argument or the default one from the float
class. The default per float class is set in the doc-
ument class file (e.g., article.cls) and very often
resolves to tbp, but this is not guaranteed.

• If the specifier contains a !, the algorithm will
ignore any restrictions related either to the num-
ber of floats that can be put into an area or the
maximum size an area can occupy. Otherwise
the restrictions defined by the parameters apply.

• As a next step it will check if h has been speci-
fied.

• If so, it will try to place the float right where
it was encountered. If this works, i.e., if there
is enough space, then it will be placed and pro-
cessing of that float ends.

• If not, it will look next for t and if that has
been specified the algorithm will try to place
the float in the top area. If there is no other
restriction that prevents this, then the float is
placed there and float processing stops.

• If not it will finally check if b is present and, if
so, it will try to place the float into the bottom
area (again obeying any restrictions that apply
if ! wasn’t given).

• If that doesn’t work either or is not permitted
because the specifier wasn’t given, the float is
added to the holding queue.

• A p specifier (if present) is not used during the
above process. It will only be looked at when
the holding queue is being emptied at the next
page or column boundary.

This ends the processing when encountering a float
in the document.

3.3 Emptying the holding queue at the
column or page boundary

After a column or page has been finished, LATEX
looks at the holding queue and attempts to empty

it out as best as possible. For this it will first try to
build float pages.1

Any floats participating in a float page (or col-
umn) must have a p as a float specifier in its float
placement specification. If not, the float cannot go
on a float page and, in addition, will also prevent any
further deferred float of the same class from being
placed onto the float page!

If the float can go there, it will be marked for
inclusion on the float page, but the processor may
still abort the attempt if the float page will not
get filled “enough” (depending on the parameter
settings for float pages). Only at the very end of the
document, or when a \clearpage has been issued,
are these restrictions lifted, and a float will then be
placed on a float page even if it has no p and would
be the only float on that page.

Creation of float pages continues until the algo-
rithm has no further floats to place or when it fails
to produce a float page due to parameter settings. In
the latter case, all floats that have not been placed
so far, are then considered for inclusion in the top
and bottom areas of the next page (or column).

The process there is the same as the one de-
scribed above, except that

• the h specifier no longer has any meaning (as we
are, by now, far away from the original “here”)
and is therefore ignored,

• and the floats at this time are not coming from
the source document but are taken one after the
other from the holding queue.

Any float that couldn’t be placed is then put back
into the holding queue, so that when LATEX is ready
to look at further textual input from the document
the holding queue may already contain floats. A
consequence of this is that a float encountered in the
document may immediately get deferred just because
an earlier float of the same float class is already on
hold.

3.4 Parameters influencing the placement

There are four counters that control how many floats
can go into areas:

totalnumber (default 3) is the maximum number of
floats on a text column; it is not used for float
pages;

topnumber (default 2) is the maximum number of
floats in the top area;

bottomnumber (default 1) is the maximum number
of floats in the bottom area;

1 In two-column mode LATEX will build float columns
(when finishing a column) and also attempt to generate float
pages when finishing a page. In the remainder of the article
“float page” will denote either depending on the context.

Frank Mittelbach

TUGboat, Volume 35 (2014), No. 3 251

dbltopnumber (default 2) is the maximum number
of full-width floats in two-column mode going
above the text columns.

The size of the areas are controlled through pa-
rameters (to be changed with \renewcommand) that
define the maximum (or minimum) size of the area,
expressed as a fraction of the page height:

\topfraction (default 0.7) maximum size of the
top area

\bottomfraction (default 0.3) maximum size of the
bottom area

\dbltopfraction (default 0.7) maximum size of the
top area for double-column floats

\textfraction (default 0.2) minimum size of the
text area, i.e., the area that must not be occu-
pied by floats

The space that separates floats within an area, as
well as between float areas and text areas, is defined
through the following parameters (all of which are
rubber lengths, i.e., can contain some stretch or
shrink components). Their defaults depend on the
document font size and change when class options
like 11pt or 12pt are used. We show only the 10pt
defaults:

\floatsep (default 12pt plus 2pt minus 2pt) the
separation between floats in top or bottom areas

\dblfloatsep (default 12pt plus 2pt minus 2pt) the
separation between double-column floats on two-
column pages

\textfloatsep (default 20pt plus 2pt minus 4pt)
the separation between top or bottom float area
and the text area

\dbltextfloatsep (default 20pt plus 2pt minus
4pt) the analog of \textfloatsep for two-
column floats

For in-line floats (that have been placed “here”) the
separation to the surrounding text is controlled by

\intextsep (default 12pt plus 2pt minus 2pt)

In the case of float pages or float columns (i.e.,
a page or a column of a page containing only floats)
parameters like \topfraction etc. do not apply. In-
stead the creation of them is controlled through

\floatpagefraction (default 0.5) minimum part of
the page (or column) that needs to be occupied
by floats to be allowed to form a float page (or
column).

4 Consequences of the algorithm

4.1 A float may appear in the document
earlier than its location in the source

The placement of the float environment in the source
determines the earliest point where it can appear in

the final document. It may move visually backward
to some degree as it may be placed in the top area
on the current page; see section 6.3 on how to change
this. It can, however, not end up on an earlier page
than the surrounding text due to the fact that LATEX
does no backtracking and the earlier pages have
already been typeset.

Thus normally a float is placed in the source
near its first call-out (i.e., text like “see figure 5”)
because this will ensure that the float appears either
on the same page as this text or on a later page.
However, in some situations you may want to place
a float on the preceding page (if that page is still
visible from the call-out). This is possible only by
moving the float to an earlier position in the source.

4.2 Double-column floats are always
deferred first

When LATEX encounters a page-wide float environ-
ment (indicated by a * at the end of the environment
name, e.g., figure*) in two-column mode, it imme-
diately moves that float to the deferred queue. The
reason for this behavior again lies in the “greedy”
behavior of its algorithm: if LATEX is currently as-
sembling the second column of that page, the first
column has already been assembled and stored away;
recall that because LATEX does not backtrack there
is no way to fit the float on the current page. To
keep the algorithm simple, it does the same even if
working on the first column (where it could in theory
do better even without backtracking).

Thus, in order to place such a float onto the
current page, one has to manually move it to an
earlier place in the source—before the start of the
current page. If this is done, obviously any further
change in the document could make this adjustment
obsolete; hence, such adjustments are best done (if
at all) only at the very last stage of document pro-
duction—when all material has been written and
the focus is on fine-tuning the visual appearance.

Also note that the base algorithm has a bug2

in this area: it maintains two independent holding
queues: one for single-column and one for double-
column floats. As a result the float order is not
necessarily preserved and floats may get typeset out
of sequence. If this happens one either has to man-
ually move the double-column float to an earlier
(or later) place in the document or load the fixltx2e

package that implements a correction for this issue.

2 As this is the documented behavior in the LATEX man-
ual [1] it is perhaps more correctly called an undesired feature
than a bug.

How to influence the position of float environments like figure and table in LATEX?

252 TUGboat, Volume 35 (2014), No. 3

4.3 There is no bottom float area for
double-column floats

This isn’t so much a consequence of the algorithm
but rather a fact about its implementation. For
double-column floats the only possible placements
offered are the top area or a float page. Thus if
somebody adds an h or a b float placement specifier
to such a float it simply gets ignored. As a special
important case {figure*}[b] implies that this float
will not get typeset at all until either a \clearpage

is encountered or the end of the document is reached.

4.4 All float parameters (normally) restrict
the placement possibilities

This may be obvious but it is worth repeating: any
float parameter defines a restriction on LATEX’s abil-
ity to place the floats. How much of a restriction
depends on the setting: there is always a way to set
a parameter in such a way that it does not affect
the placement at all. Unfortunately, in doing so one
invites rather poor-looking placements.

By default LATEX has settings that are fairly
liberal. For example, for a float page to be accepted
the float(s) must occupy at least half of the available
page. Expressed differently, this means that such a
page is allowed to be half empty (which is certainly
not the best possible placement in most cases).

What often happens is that users try to improve
such settings and then get surprised when suddenly
all floats pile up at the end of the document. To
stay with this example: if one changes the parameter
\floatpagefraction to require, say, 0.8 of the float
page, a float that occupies about 0.75 of the page
will not be allowed to form a float page on its own.
Thus, if there isn’t another float that could be added
and actually fits in the remaining space, the float
will get deferred and with it all other floats of the
same class. But, even worse, this specific float is
too big to go into the next top area as well because
there the default maximum permissible area is 0.7
(from \topfraction). As a result all your floats stay
deferred until the next \clearpage.

For this reason it is best not to meddle with the
parameters while writing a document or at least not
to do so in a way that makes it more difficult for
the algorithm to place a float close to its call-out.
For proof-reading it is far more important to have
a figure next to the place it is referenced then to
avoid half-empty pages. Possibilities for fine-tuning
an otherwise finished document are discussed below.

Another conclusion to draw here is that there are
dependencies between some of the float parameters; it
is important to take these dependencies into account
when changing their values.

4.5 “Here” just means “here if it fits”

. . . and often it doesn’t fit. This is somewhat surpris-
ing for many people, but the way the algorithm has
been designed the h specifier is not an unconditional
command. If an unconditional command is needed,
extension packages such as the float package offer H
as an alternative specifier that really means “here”
(and starts a new page first if necessary).

4.6 Float specifiers do not define an order
of preference

As mentioned above, the algorithm tries to place
floats into available float areas in a well-defined order
that is hard-wired into the algorithm: “here”, “top”,
“bottom” and—on page boundaries—first “page”
and only if that is no longer possible, “top” followed
by “bottom” for the next page.

Thus specifying [bt] does not mean try bottom
first and only then top. It simply means allow this
float to go into top or bottom area (but not onto a
float page) just like [tb] would.

4.7 Relation of floats and footnotes

This is not exactly a consequence of the algorithm but
one of its implementation: Whenever LATEX tries to
decide on a placement for a float (or a \marginpar !)
it has to trigger the output routine to do this. And
as part of this process all footnotes on the page are
removed from their current place in the galley and
are collected together in the \footins box as part
of TEX’s preparation for page production.

But after placing the float (or deferring it) LATEX
then returns the page material to the galley, and
because of TEX’s output routine behavior the galley
has now changed: all the footnotes have been taken
out from their original places. So LATEX has to put
the footnotes back, but it can only place them in a
single place (not knowing the origin anymore). What
it does is reinsert the footnotes (the footnote text
to be precise) at the end of the galley. There are
some good reasons for doing this, one of which is
that LATEX expects that all of the returned material
still fits on the current page.

However, if for some reason a page break is fi-
nally taken at an earlier point then the footnotes will
show up on the wrong page or column. This is a fairly
unlikely scenario and LATEX works hard at making it
a near-impossibility, but if it happens check if there
is a float near the chosen page break and either move
the float or guide the algorithm by using explicit
page breaks. An example of this behavior can be
found in another question on TeX.stackexchange [4].
In fact the particular case discussed in the question
is worth highlighting: Do not place a float directly

Frank Mittelbach

TUGboat, Volume 35 (2014), No. 3 253

after a heading, unless it is a heading that always
starts a page. The reason is that headings normally
form very large objects (as a heading prevents a
page break directly after it). However placing a float
in the middle of this means that the output rou-
tine gets triggered before LATEX makes its decision
where to break and any footnotes get moved into the
wrong place.

5 Documentation of the algorithm

As requested, here is some information on existing
documentation. The algorithm and its implemen-
tation are documented in the file ltoutput.dtx as
part of the LATEX kernel source. This can be type-
set standalone or as part of the whole kernel (i.e.,
by typesetting source2e.tex—ignore the checksum
error if it is still there,3 sorry).

This documentation is an interesting historical
artifact. Parts of it show semi-formatted pseudo-code
which dates back to LATEX2.09; in other words it is
from the original documentation by Leslie Lamport.
The actual code is documented using doc style and
in parts is more or less properly documented (from
scratch) and dates back to 1994 or thereabouts when
Chris Rowley and myself adjusted and extended the
original algorithm for LATEX2ε (the current version).
It also fairly openly documents the various issues
with the algorithm and/or its implementation— in
many cases we didn’t dare to alter it because of the
many dependencies and, of course, because of the
danger to screw up too many existing documents
that implicitly rely on the current behavior for good
or ill.4 Near the end you’ll find a list of comments
compiled on the algorithm back then, but there are
also comments, questions, and tasks (?:-) sprinkled
throughout the documentation of the code.

One interesting aspect of this file (that I forgot
all about) is that it contains all the code necessary
to trace the behavior of the algorithm in real life. It
is fairly raw and detailed output and probably for
that reason I didn’t make this publicly available back
then. But even in its current form it does give some
interesting insight into the behavior of the algorithm
and how certain decisions come about.

Thus while writing this article I had second
thoughts and now the most recent distribution of
LATEX (May 2014)5 offers the package fltrace that you

3 But this also means you are running an older release of
LATEX.

4 This is, for example, the reason that the correction of
the issue discussed in section 4.2 was placed into the fixltx2e

package and not made part of the kernel algorithm.
5 If you have an earlier version of LATEX installed, you can

still extract this code yourself, by writing a short installation
file fltrace.ins with the following content:

can load to trace some strange float placement deci-
sions, or simply to understand the algorithm a bit
better. It offers the commands \tracefloats and
\tracefloatsoff to start or stop tracing the algo-
rithm and \tracefloatvals to display the current
values of various float parameters that are discussed
in this article.

As the package is identical to the kernel code
with tracing added, it may or may not work if you
load any other package that manipulates that part
of the kernel code. In such a case your best bet is to
load fltrace first.

6 How to address specific issues

In the final section we discuss a few strategies to cir-
cumvent or resolve common issues. It is by no means
comprehensive and you may find further information
in other publications, e.g., The LATEX Companion [2]
that devotes a whole chapter to the topic of floats.

6.1 Ensure that floats appear “here”

Sometimes it is necessary to ensure that floats appear
in-line at certain points in the document text even
if that results in some partially empty pages. As
discussed above the h specifier doesn’t provide this
functionality but there are extensions that do, such
as the float package which offers an H specifier for
this purpose.

An alternative is the \captionof command
from the caption package that generates a normal
float caption (including its entry in the list of fig-
ures or tables, etc.) but without the need for a
surrounding float environment.

6.2 Provide a bottom float area for
two-column floats

As discussed above, the standard algorithm doesn’t
support double-column floats at the bottom of pages.
This missing functionality is added, except for the
first page6, if you load the stfloats package.

6.3 Ensure that floats are always placed
after their call-out

By default the LATEX float algorithm allows for floats
to move before their call-out as long as float and call-
out are on the same page; more precisely, it allows
floats to appear in the top area of the column in
which the float has been encountered.

\input docstrip

\generateFile{fltrace.sty}{t}{%

\from{ltoutput.dtx}{fltrace,trace}}

\endbatchfile

and run this through LATEX.
6 See [5] in this issue to manually lift even this restriction.

How to influence the position of float environments like figure and table in LATEX?

254 TUGboat, Volume 35 (2014), No. 3

This practice offers a better chance that the
float is visible from the call-out position and doesn’t
end up on a later page. For some journals, however,
this is too liberal and they require that floats are
strictly placed after their call-out, i.e., that in the
call-out column only the bottom area forms a valid
placement option. To accommodate this requirement,
this strategy is implemented by the flafter package.

This may work well if your document has only
a few floats. For documents with lots of floats, place-
ment obviously becomes much more difficult, and
you may find that all your floats appear together
at the end of the document or chapter, or you may
receive a “Too many unprocessed floats” error.

6.4 Prevent floats on certain pages

Sometimes it is helpful to prevent floats from ap-
pearing on a certain page, for example, to prevent
a float in a new section from moving into the top
area on the current page without disallowing a
placement in the top area of a later page. For
this type of fine-tuning LATEX offers the command
\suppressfloats[placement]. The optional argu-
ment can be either t or b and prevents any further
placement into the respective area(s) on the current
page. Without an argument, all remaining floats on
the current page are deferred.

6.5 Implement float barriers

Standard LATEX already implements a float barrier
called \clearpage. Floats on either side will never
appear on the other. It works by outputting all de-
ferred floats, if necessary by generating float pages,
and then starting a new page. While this is suit-
able to keep floats within one chapter (as chapters
typically start on a new page) there are cases where
one would wish for a less intrusive barrier, i.e., one
that works without forcing a new page or is partially
porous.

This functionality is offered by the placeins pack-
age, which implements a \FloatBarrier command
that doesn’t introduce a page break. Through pack-
age options you can alter the behavior to allow for
floats to migrate from one side to the other as long
as they still appear on the same page.

6.6 Overwrite placement restrictions

If a given float is (slightly) too large to fit into a cer-
tain area or if an area already contains the maximum
number of floats but you nevertheless want to force
the current float into this place then adding ! to the
optional argument of the float is a good choice. It re-
sults in ignoring all restrictions implemented through
parameters for this particular float, so that it will

always be placed unless there are already deferred
floats with the same float class or the allowed ar-
eas get bigger than the available space when adding
the float.

As the order of attempts is still the same (first
top then bottom), you may have to use [!b] to force
a float into the bottom area as [!tb] would normally
already succeed in placing it into the top area. The
downside is of course that if the float doesn’t fit, it
will only appear in the bottom area of a following
page. Thus any later text change may create havoc
on your placement decisions.

6.7 Final tuning advice

There are many ways to fine-tune the behavior of
the float placement algorithm; most of them have
been discussed in this article. However, there is one
more “tuning” possibility and in fact the biggest of
all: changes in your document text.

Therefore, as final advice: do not start manip-
ulating parameters or change placement specifiers
or move floats within your document until after you
have fully written your text and your document is
close to completion. It is a waste of effort and it may
even result in inferior placements as your initially
provided restrictions may no longer be adequate after
a text change.

References

[1] Leslie Lamport. LATEX: A Document Preparation

System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, second
edition, 1994. Reprinted with corrections in 1996.

[2] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley. The

LATEX Companion. Tools and Techniques for
Computer Typesetting. Addison-Wesley, Reading,
MA, USA, second edition, 2004. Also available as
an eBook, see http://www.latex-project.org/

site-news.html#2013-11-02.

[3] Marco Daniel. How to influence the position of
float environments like figure or table in LATEX?,
2012. http://tex.stackexchange.com/q/39020.

[4] Martin Hermann. “thanks” note (footnote)
placed below right column even though
there is enough space on the left, 2012.
http://tex.stackexchange.com/q/43294.

[5] Barbara Beeton. Placing a full-width insert
at the bottom of two columns. TUGboat,
35(3):255–255, 2014. http://tug.org/TUGboat/

35-3/tb111beet-banner.pdf.

⋄ Frank Mittelbach
LATEX3 Project
http://www.latex-project.org

Frank Mittelbach

TUGboat, Volume 35 (2014), No. 3 255

Placing a full-width insert at the bottom

of two columns

Barbara Beeton

There’s one location on a two-column page where a
full-width \begin{figure*} can’t be placed under
ordinary circumstances— the bottom. The package
stfloats lifts that restriction—except for the first
page. The purpose of the present exercise is to
demonstrate that this can in fact be done, using
only basic LATEX tools.

Why might one want (or need) to do this? Con-
sider a project for which an interim report is best
expressed as a table or diagram, with very little prose,
but the required report format specifies two columns.
The impact of the data is lost if the illustration must
be deferred to another page, while the first page is
nearly empty. In fact, the meat of the report could
even be lost, when the impatient recipient fails to
turn the page over.

At the 2010 TUG annual meeting, Frank Mit-
telbach presented a talk entitled “Exhuming coffins
from the last century” that dealt with the problems
of positioning boxes on a page. The talk didn’t make
it into print in TUGboat, but Kaveh Bazargan was
there with his recording equipment, and produced a
video that can be viewed at river-valley.zeeba.
tv/exhuming-coffins-from-the-last-century/.
The techniques proposed there won’t solve this prob-
lem any time soon, but they show promise for the
future.

At TUG 2014 in Portland, Boris Veytsman gave
a talk1 on composing a book in which the illustrations
were more important—and occupied more space—
than the text, and indeed, there were pages with

1 “An output routine for an illustrated book: Making the

FAO Statistical Yearbook”, TUGboat 35:2, pages 202–204.

\documentclass{ltugboat}

\title{Placing a full-width insert at the bottom of two columns} \author{Barbara Beeton}

\begin{document}

\maketitle

There’s one location on a two-column page where a full-width ...

\begin{figure}[b]\setlength{\hfuzz}{1.1\columnwidth}

\begin{minipage}{\textwidth}

\ttfamily ... code for the insertion ...

\end{minipage}

\end{figure}

At the 2010 \tug\ annual meeting, Frank Mittelbach presented ...

\enlargethispage{-16.5\baselineskip}

Of course, this is entirely manual, and requires intervention ...

\end{document}
Figure 1: A full-width figure at the bottom of the first page!

two columns of text at the top and a single wide
illustration at the bottom. However, the nature of
the material allowed all pages to be divided into four
quadrants which could be managed individually or
as horizontal or vertical pairs. That doesn’t help in
solving the more general problem.

So what can be done today? A LATEX-flavored
kludge that will produce a one-page document with
two columns at the top and a full-width insertion at
the bottom is shown in fig. 1.2 Of course, this also
works for a longer document, but for this demon-
stration, one TUGboat page is sufficient. It is also
evident that the method works with footnotes (and
other such insertions), and that cross-references work
normally.

The figure is given as an overwide single-column
[b] figure, in the first column. The page must con-
tain enough text to continue into the second column.
Once there is enough text, the trick is to issue a nega-

tive \enlargethispage command that will leave the
bottom part of the second column blank, allowing the
full-width figure to overflow into the empty area. (On
a two-column page, \enlargethispage is equivalent
to the (nonexistent) \enlargethiscolumn.)

Of course, this is entirely manual, and requires
intervention and iteration, preferably after the text
is final. Tweaking of LATEX’s float parameters, such
as \bottomfraction, is likely. Captions may require
still more effort. Nevertheless, there are situations in
which it makes possible a desirable effect that cannot
otherwise be accomplished. Enjoy!

⋄ Barbara Beeton

http://tug.org/TUGboat

tugboat (at) tug dot org

2 This technique was presented in TeX.stackexchange.

com/q/107270.

256 TUGboat, Volume 35 (2014), No. 3

biblatex variations

Ulrike Fischer

Abstract

I show three small examples of using the biblatex

package for more than printing bibliographies: we
will redefine bibliography drivers, define new cite
commands and declare new entry types to create
qrcodes, insert PDF files and manage addresses.

Remark

In April I gave a talk at the DANTE e.V. meeting
about biblatex variations and later wrote an article
for the proceedings in Die TEXnische Komödie. This
is more or less a translation of that article. I didn’t
adapt the examples, so they are still in German.

ad hoc small-scale databases

I have always been interested in the handling of small
databases. I wrote my first articles in DTK ([1, 2])
about a mail merging system that I developed to
handle around 50 addresses. And later on I regu-
larly had to find ways to automatically process small
numbers of data records without too much fuss.

For such small scale databases, the bib is an
interesting option—at least on the input side. Look-
ing at it without the prejudice “that is something for
bibliographies only”—Listing 1 shows such a typical
bib file, that I will use in this article—one can see
that it has several features making it suitable for ad
hoc small scale databases:

• One can mix different datatypes in one file.

• One can easily create new datatypes.

• One can easily add new fields.

• Fields without values can be (should be) omitted.
This saves space.

• The records can be created, changed and read
with any editor, but there are also good GUIs
(e.g. JabRef), so the database can be edited by
people who don’t know LATEX.

• With @string one can define variables.

• It is possible to define relations between records,
e.g. with crossref.

So, it is easy to create a small database but . . .
how should one process and output the records?
Before biblatex this was not usually feasible. Cre-
ating a suitable bst file was a difficult and time-
consuming task. But with biblatex this has com-
pletely changed. Now it is possible, with very little
effort, to output the records in various ways. The
following examples are meant to demonstrate this.
They will show various methods one can use. The

Listing 1: The example bib file vortrag.bib

1 @termin{dante2014,

2 title={Biblatex-Variationen},

3 date ={2014-04-11},

4 time ={15.15},

5 location={Heidelberg}}

6

7 @online{dante,

8 title={Internetseite dante e.V.},

9 url ={http://www.dante.de}}

10

11 @online{heidelberg,

12 title={Stadt Heidelberg},

13 url ={http://www.heidelberg.de}}

14

15 @adresse{max,

16 name ={Muster, Max},

17 strasse ={Im Versuchsweg 10},

18 ort ={Testgelände},

19 plz ={X01234},

20 gender ={sm}}

21

22 @adresse{eva,

23 name ={Muster, Eva},

24 strasse ={Im Versuchsweg 10},

25 ort ={Testgelände},

26 plz ={X01234},

27 gender ={sf}}

28

29 @article{input1,

30 author={Fischer, Ulrike},

31 title ={Erster Text},

32 journal={Beispiele},

33 date ={2012-04-08},

34 url ={inputtext1.pdf}}

35

36 @article{input2,

37 author={Fischer, Ulrike},

38 title ={Zweiter Text},

39 journal={Beispiele},

40 date ={2013-02-07},

41 url ={inputtext2.pdf}}

42

43 @book{gambol,

44 author={Gambolputty de von Ausfern-

→֒schplenden-schlitter-crasscrenbon,

→֒Johann},

45 title={Titel},

46 year={1970}}

47

48 @book{dante2007,

49 author = {Dante Alighieri},

50 title = {Die Göttliche Kommödie},

51 gender = {sm},

52 location = {Stuttgart},

53 year = {2007},

54 translator = {Hermann Gmelin}}

Ulrike Fischer

TUGboat, Volume 35 (2014), No. 3 257

Listing 2: The creation of QR-codes

1 % Compile with XeLaTeX

2 \documentclass{article}

3 \usepackage[margin=0.05in,textwidth=1.9in,

→֒textheight=1.9in,paperwidth=2in,

→֒paperheight=2in]{geometry}

4 \usepackage{xcolor}

5 \usepackage{pst-barcode}

6 \usepackage{fontspec}

7 \usepackage{biblatex}

8 \addbibresource{vortrag.bib}

9

10 \defbibenvironment{qrcode}{\centering}{}{}

11

12 \DeclareBibliographyDriver{online}{%

13 \begin{minipage}[c][1.9in]{1.9in}

14 \centering

15 \printtext{\thefield{entrykey}}\\[2ex]

16 \printfield{title}\\[2ex]

17 \printfield{url}

18 \end{minipage}

19 \newpage

20 \begin{pspicture}(1.9in,1.9in)

21 \label{\thefield{entrykey}}%

22 \psbarcode[linecolor=red]{\thefield{url

→֒}}{width=1.9 height=1.9}{qrcode}%

23 \end{pspicture}%

24 \newpage}

25

26 \begin{document}

27 \nocite{*}

28 \printbibliography[env=qrcode,type=online,

→֒heading=none]

29 \end{document}

examples are kept as simple as possible. In larger
databases one would likely need to add some security
precautions, such as tests for empty fields.

1 Example 1: QR-codes

In this example, we first create a PDF file which con-
tains the QR-code of the url field of every @online

entry in a bib file. The QR-codes can then be in-
serted with \includegraphics in another document.
As methodology, the redefinition of a bibliography

driver is shown.

1.1 The creation of the QR-codes

Herbert Voß has shown how QR-codes can be created
generally in a DTK article [3]. That method uses
the package pst-barcode, meaning that one needs a
TEX compiler which can handle PostScript; I usually
use xelatex.

dante

Internetseite dante e.V.

url: http://www.dante.de

1 2

heidelberg

Stadt Heidelberg

url:

http://www.heidelberg.de

3 4

Figure 1: The PDF output pages with QR-codes

Listing 2 shows how one can create QR-codes
from the url field of a bib file. The actual docu-
ment body is very short (lines 26–29): all entries are
cited with \nocite{*} and then the bibliography is
printed with \printbibliography, which is given
three options: heading=none suppresses the heading
of the bibliography; type=online only outputs en-
tries of type @online; and env=qrcode ensures that
the bibliography is not a rather complicated list but
the simple environment defined in line 10.

The start of the listing (lines 3–8) is basic: the
page size is set to 1.9 in× 1.9 in, needed packages are
loaded and the name of the bib file is declared.

Line 10 defines a simple qrcode environment,
as the standard list environment would only insert
unwanted spaces.

The core of the approach is in lines 12–24. They
define how a @online entry is formatted in the bibli-
ography. The code creates two pages for each entry.

The first page shows some information about
the following QR-codes. This page is not required; I
produce it only because it looks nice. The code use
the biblatex commands \printtext, \printfield
and \thefield to output fields from the bib record.

Lines 20–24 create the second page with the
QR-code. A useful addition is the label, specified in
line 21: an external document is then able to find
the page with the QR-code of a specific bib key (the
“entrykey”). In line 22 the QR-code is created. The
url is inserted with \thefield{url}.

Compiling with xelatex–biber–xelatex results
in a PDF file with four pages, shown in figure 1.

1.2 Using the QR-codes

Listing 3 shows how one can insert the QR-codes
in other documents. The code uses the package
refcount to convert a label to a number which can
be used with the option page of \includegraphics.

biblatex variations

258 TUGboat, Volume 35 (2014), No. 3

Listing 3: Inserting the QR-codes

1 \documentclass[parskip=half-]{scrartcl}

2 \usepackage{graphicx,refcount,xr}

3 \externaldocument[qrcode-]

4 {qrcodes-bib-erzeugen}

5 \begin{document}

6 \section*{QR-Codes laden}

7 \includegraphics[page=

8 \getpagerefnumber{qrcode-dante}]

9 {qrcodes-bib-erzeugen-dtk}

10 \quad

11 \includegraphics[page=

12 \getpagerefnumber{qrcode-heidelberg}]

13 {qrcodes-bib-erzeugen-dtk}

14 \end{document}

It also uses the package xr to access the labels of
the document with the QR-codes. The code must
be able to find the PDF and aux files of the external
document with the QR-codes.

2 Example 2: Inserting PDF attachments

The second example inserts a PDF file in a document
and writes information about this file to the table of
contents. The method used is the definition of a new
cite command. The example also shows that things
do not always work as smoothly as one would wish.

Listing 4 shows the core idea: In lines 12–27
a new cite command with the name \citeanlageX

is defined. Defining a cite command is a bit more
complicated then defining a driver, as a cite command
can have lists of entries as an argument.

In the so-called loopcode argument (lines 14–
26) a new page is started and the counter for the
attachment is advanced (line 14). Then in lines 15–
22 an entry for the toc file is written. The content
of this entry is the word “Anlage” followed by the
number and a \fullcite.

In lines 23–26 the file from the url field is in-
cluded with \includepdf. The existence of the file
is checked first with \IfFileExists.

\citeanlageX does everything that is needed,
but it has a flaw: it can lead to unwanted empty
pages. The problem is that every biblatex cite
command internally executes \leavevmode, and so
can start a page. Together with the \clearpage

there is then a page too many.
So I had to dig around a bit in the code to find

the source of the \leavevmode. Happily it is easy to
deactivate it locally. This is done in lines 29–36.

Listing 4: Inserting PDF attachments

1 \documentclass[parskip=half-,toc=flat]{

→֒scrartcl}

2 \usepackage[utf8]{inputenc}

3 \usepackage[T1]{fontenc}

4 \usepackage[ngerman]{babel}

5 \usepackage[autostyle]{csquotes}

6 \usepackage{pdfpages}

7 \usepackage[style=authoryear]{biblatex}

8 \addbibresource{vortrag.bib}

9

10 \newcounter{anlage}

11

12 \DeclareCiteCommand{\citeanlageX}

13 {}

14 {\clearpage\refstepcounter{anlage}%

15 \addtocontents{toc}

16 {\protect\contentsline

17 {section}

18 {\protect\numberline{Anlage~\

→֒theanlage}%

19 \protect\fullcite{\thefield{

→֒entrykey}}%

20 }%

21 {\thepage}

22 {}}%

23 \IfFileExists{\thefield{url}}

24 {\includepdf[pages=-,fitpaper]{\thefield{

→֒url}}}

25 {\par\textbf{Datei zu \thefield{entrykey

→֒} wurde nicht gefunden!}%

26 \clearpage}}

27 {}{}

28

29 \makeatletter

30 \newcommand\citeanlage[1]{%

31 \begingroup

32 \let\blx@leavevmode\relax

33 \let\blx@leavevmode@cite\relax

34 \citeanlageX{#1}%

35 \endgroup}

36 \makeatother

37

38 \begin{document}

39 \tableofcontents

40

41 \citeanlage{input1} \citeanlage{input2}

42 \end{document}

Inhaltsverzeichnis

Anlage 1 Ulrike Fischer (2012). „Erster Text“. In: Beispiele. URL: inputtext1.
pdf 2

Anlage 2 Ulrike Fischer (2013). „Zweiter Text“. In: Beispiele. URL: inputtext2.
pdf 4

Figure 2: The table of contents created by Listing 4

Ulrike Fischer

TUGboat, Volume 35 (2014), No. 3 259

Listing 5: The datamodel file ufischer.dbx

1 \DeclareDatamodelEntrytypes{adresse}

2

3 \DeclareDatamodelFields[type=list,

→֒datatype=name]

4 {name}

5

6 \DeclareDatamodelFields[type=field,

→֒datatype=literal]

7 {strasse,ort,plz}

8

9 \DeclareDatamodelEntryfields[adresse]{%

10 name,strasse,ort,plz,gender}

3 Example 3: Managing addresses

The third example is a bit more complicated. It
shows how to manage addresses in a bib file. The
new method shown this time is how the datamodel

can be extended.
New entrytypes and fields should be declared

in a dbx file, as shown in Listing 5. In line 1 a new
entry type adresse is added and in lines 3–7 new
fields for this type. One should also declare which
fields can be used by an entry type. A new entry
type can use known fields, such as the field gender

on the last line.
Listing 6 shows how to use the new entry type.

First, the new datamodel is loaded in line 7 with
datamodel=ufischer.

Lines 10–14 declare a new bibliography driver
adresse for the distribution list; it creates a simple,
comma-separated list of the data.

Line 16 declares a name format for the greeting
in the letter. It prints only the last name from a
name.

In lines 18–22 a cite command for the greeting
is defined: \citeanrede. It uses the gender field to
decide if “Frau” or “Herr” should be printed before
the name.

In lines 24–30 another cite command is defined:
\citeadresse. This command is meant for the ad-
dress window and prints the data line-by-line.1

Lines 32–43 show how the various commands
can be used. The output can be seen in figure 3.

4 Finally: How to control the content of

the bibliography?

When one starts to “misuse” bib entries for things
other than standard citations, one quickly finds the
need to prevent such entries from finding their way

1 Many of the comment signs in the code are not needed

but they do no harm, either.

Listing 6: How to use the type @adresse

1 \documentclass[parskip=half-,toc=flat,

→֒fontsize=9pt,DIV = 9,

2 paper=a5,pagesize,headings=

→֒normal]{scrartcl}

3 \usepackage[utf8]{inputenc}

4 \usepackage[T1]{fontenc}

5 \usepackage[ngerman]{babel}

6 \usepackage[autostyle]{csquotes}

7 \usepackage[datamodel=ufischer,defernumbers

→֒]{biblatex}

8 \addbibresource{vortrag.bib}

9

10 \DeclareBibliographyDriver{adresse}{%

11 \printnames{name}\setunit{\addcomma\

→֒addspace}%

12 \printfield{strasse}\setunit{\addcomma\

→֒addspace}%

13 \printfield{plz}\setunit{\addspace}\

→֒printfield{ort}%

14 \usebibmacro{finentry}}

15

16 \DeclareNameFormat[adresse]{anrede}{#1}

17

18 \DeclareCiteCommand{\citeanrede}{}{%

19 \iffieldequalstr{gender}{sm}

20 {\printtext{Herr}}{\printtext{Frau}}%

21 \setunit{\addspace}\printnames[anrede]{

→֒name}}

22 {}{}

23

24 \DeclareCiteCommand{\citeadresse}{}{%

25 \printtext{\par\noindent}%

26 \iffieldequalstr{gender}{sm}{\printtext{

→֒Herrn}}{\printtext{Frau}}%

27 \setunit{\\}\printnames{name}%

28 \setunit{\\}\printfield{strasse}%

29 \setunit{\\}\printfield{plz}\setunit{\

→֒addspace}\printfield{ort}}

30 {}{}

31

32 \begin{document}

33 \citeadresse{max}

34 \citeadresse{eva}

35

36 \bigskip

37 Lieber \citeanrede{max}, liebe \citeanrede{

→֒eva},

38

39 schaut euch doch mal \cite{dante} an und

→֒lest \cite{input1}

40

41 \printbibliography[type=adresse,title=

→֒Verteilerliste]

42 \printbibliography[nottype=adresse,

→֒resetnumbers]

43 \end{document}

biblatex variations

260 TUGboat, Volume 35 (2014), No. 3

Herrn
Max Muster
Im Versuchsweg 10
X01234 Testgelände

Frau
Eva Muster
Im Versuchsweg 10
X01234 Testgelände

Lieber Herr Muster, liebe Frau Muster,

schaut euch doch mal [2] an und lest [1]

Verteilerliste

[1] Max Muster, Im Versuchsweg 10, X01234 Testgelände.

[2] Eva Muster, Im Versuchsweg 10, X01234 Testgelände.

Literatur

[1] Ulrike Fischer. „Erster Text“. In: Beispiele (8. Apr. 2012). url:
inputtext1.pdf.

[2] Internetseite dante e.V. url: http://www.dante.de.

Figure 3: The output of Listing 6

Listing 7: Unwanted cite commands

1 ... Namen \citeauthor{gambol} und

2 \citeauthor{dante2007} ist nicht leicht ...

3 Die göttliche Komödie ... \cite{dante2007}

into the “normal” bibliography. The previous exam-
ples have already shown some possibilities: biblatex
has excellent filter features. E.g., with nottype one
can exclude a given type from a bibliography.

But this doesn’t help when we need to avoid
specific cite commands leading to an entry in the
bibliography. Listing 7 demonstrates the problem.
It “mis-”uses the standard \citeauthor to facilitate
the writing of a complicated name (here, from a
Monty Python sketch). Neither \citeauthor com-
mand should trigger entries in the bibliography. But
dante2007 is cited normally later on. So it is not
possible to exclude (e.g., with the keyword skipbib)
both entries completely from the bibliography.

Listing 8 gives one possible solution to this di-
lemma: we introduce a new category inbib (line 1)
and a new boolean variable citeinbib (lines 2–3).
Using \AtEveryCitekey, a cited entry is added to
the category if the variable is true (lines 4–6). If a
cite command should not create an entry in the bibli-
ography, citeinbib is set locally to false (lines 9–10),
so the entry is not added to the category. Finally,
\printbibliography can then filter using the cate-
gory (line 13).

Listing 8: One solution for cite commands which

should not lead to bibliography entries

1 \DeclareBibliographyCategory{inbib}

2 \newboolean{citeinbib}

3 \booltrue{citeinbib}

4 \AtEveryCitekey{%

5 \ifbool{citeinbib}{%

6 \addtocategory{inbib}{\thefield{

→֒entrykey}}}{}}

7

8 \begin{document}

9 Die Schreibweise der Namen {\boolfalse{

→֒citeinbib}\citeauthor{gambol} und

10 \citeauthor{dante2007}} ist nicht leicht zu

→֒ merken.

11 Die göttliche Komödie ... \cite{dante2007}

12

13 \printbibliography[category=inbib]

14 \end{document}

Die Schreibweise der Namen Gambolputty de von Ausfern
-schplenden -schlitter -crasscrenbon und Alighieri ist nicht
leicht zu merken.

Die göttliche Komödie ... [1]

Literatur

[1] Dante Alighieri. Die Göttliche Kommödie. Übers. von
Hermann Gmelin. Stuttgart, 2007.

Figure 4: The output of Listing 8

5 Summary

I hope the three examples have shown that biblatex
offers much more than a way to print bibliographies.

References

[1] Ulrike Fischer. Eine Schnittstelle zwischen
Datenbanken und LATEX. Die TEXnische

Komödie, 4/98:28–33, Dec. 1998.

[2] Ulrike Fischer. Serienbriefe. Die TEXnische

Komödie, 2/99:38–44, May 1999.

[3] Herbert Voß. QR-Codes im Rand ausgeben.
Die TEXnische Komödie, 4/13:34–37, Nov.
2013.

⋄ Ulrike Fischer

Bismarckstr. 91

41061 Mönchengladbach

fischer (at) troubleshooting-tex dot de

Ulrike Fischer

TUGboat, Volume 35 (2014), No. 3 261

Every LATEX document brings new

programming issues

David Walden

Background: For several years I wrote a column,
called Travels in TEXland, for The PracTEX Journal
about the way I used LATEX. Although I am not a
LATEX expert, I was once a full-tine computer pro-
grammer and am not afraid to bash around trying to
find some (perhaps ad hoc) way to accomplish some
typesetting goal. After I stopped writing the column,
I still sometimes wrote up something I had figured out
for the purpose of reflecting on what was done. The
present article pulls together three such reflections.

1 Introduction

There is seldom a time I am not composing a doc-
ument drafted in LATEX. Each document brings its
own style and efficiency issues and, thus, each time
I seem to have to solve some new little LATEX pro-
gramming problem.

A natural question might be, “Why not find an
existing package that does what you need rather than
coding your own thing?” Of course, sometimes what
I need may well be provided by an existing package.
However, mostly I am too lazy to search out an
existing package if I can’t immediately find one that
meets my needs; or I find one but it doesn’t install
and work without difficulty and without much study.
I’d rather code my own little thing than struggle with
package installation issues or inter-package interface
issues. I’d rather do my own little thing (even if it
is less efficient than what exists) to avoid having to
understand complex documentation.1

LATEX is swell because it is programmable, such
that I can create little “tools” that help me do what I
want to do. Also, like any experienced programmer,
I collect these little solutions for reuse in future
documents by copying rather than new thinking.

In this note I give three examples of such little
programming problems and the (perhaps quick-and-
dirty) solutions at which I arrived:

• Issues and ways for typesetting ellipses
• Blank verso sides without using the book class’s
twoside option

• Flexible layout of a photo album

All three examples here derive from my work
on which I have written before—self- or private
publishing.2

2 Typesetting ellipses with LATEX

There are many situations and approaches for using
ellipses in LATEX. After sketching some of the myriad

situations and a few of the approaches, I describe
what I do.

2.1 Diversity of situations

I am mainly concerned with the use of ellipses in
American English, non-mathematical writing. In
this context, ellipses seem to have two purposes:
(1) indicating where something has been left out of
quoted text; (2) to indicate a pause or something
never stated—an unfinished thought or an implicit
thought (“and so on”).

Here are three examples (in which I have not
tried to perfect the typesetting of the ellipses):

1. “Four score and seven years ago our fathers
brought forth . . . a new nation, conceived in
Liberty, and dedicated to the proposition that
all men are created equal.”
The words “on this continent” have been left out.

2. My wife may think that I am fussy about little
things . . .
The ellipsis here might indicate that I have a
lot more to say about this subject that will go
unspoken.

3. “Leave me alone . . . I’m too tired to talk about
it,” he said.
If the quoted words are in dialog, the ellipsis
might indicate a pause in the speech.

Ellipses are complicated for at least three rea-
sons:3 (1) they can have many different uses; (2) there
are different sets of conventions for how to indicate
the elision, for example, always using three dots or
sometimes using three and sometimes using four dots
depending on context within sentences; (3) there are
different approaches for typesetting ellipses.

Here are some of the possible contexts for use
of ellipses:

• at the end of a sentence
• within a sentence
• at the beginning of a line
• at the end of a line
• within a line
• with, or without, other punctuation before, or
after, the ellipsis

Lots of combinations of these and other situations
also can happen.

2.2 Different conventions

On pages 82–83 of his The Elements of Typographic
Style,4 Robert Bringhurst gives a sketch covering
some of the conventions for using ellipses. In the
following quotation, the instances of ellipses in the
first paragraph and the very last instance are part of
Bringhurst’s text (and are typeset as specified). The

Every LATEX document brings new programming issues

262 TUGboat, Volume 35 (2014), No. 3

rest of the ellipses are by me to indicate my elisions
from the Bringhurst quote.

Most digital fonts now include, among other
things, a prefabricated ellipsis (row of three
baseline dots). Many typographers neverthe-
less prefer to make their own. Some prefer
to see the three dots flush ... with a nor-
mal word space before and after. Others
prefer . . . to add thin spaces between the
dots. Thick spaces (M/3) are prescribed by
the Chicago Manual of Style, . . . In most
cases the Chicago ellipsis is much too wide.

Flush set ellipses work well with some fonts
and faces but not with all. . . . At small text
sizes . . . it is generally best to add space . . .
between the dots. Extra space may also look
best in the midst of light, open letterforms,
. . . , and less space in the company of a dark
font, . . . , or when setting in bold face. . . .

In English . . . , when the ellipsis occurs at
the end of a sentence, a fourth dot, the period,
is added and the space beginning the ellipsis
disappears. . . . When the ellipsis combines
with a comma, exclamation mark or ques-
tion mark, the same typographic principle
applies. Otherwise a word space is required
fore and aft.

However, the Bringhurst summary leaves out other
common conventions. For instance, pages 292–296
of my copy of Chicago Manual of Style5 starts by
giving two main conventions for the form of ellipses:
(1) always only three dots, or (2) four dots at the
end of sentences (or three dots and another punctu-
ation mark, as described by Bringhurst) and three
dots elsewhere. The latter is the manual’s preferred
convention. Ellipses in block quotes also provide
additional circumstances beyond those mentioned in
Bringhurst’s sketch.

The are a number of useful on-line discussions
of the use of ellipses, for example, in the Wikipedia6

and in Doc Scribe’s Guide to research styles, where
you can look up the approaches recommended in five
well-known style guides (AMA, APA, ASA, Chicago,
and MLA).7

2.3 Standard tools versus hand crafting

It seems to me that merely using \dots or \ldots
in LATEX is often not enough to address some of the
potential needs mentioned in the previous sections.
(See also section 2.5.)

Also, naive use of \dots apparently has a prob-
lem that Peter Heslin’s ellipsis style8 works on fixing.
As Heslin says,

There is a problem in the way LATEX handles
ellipses: it always puts a tiny bit more space
after \dots in text mode than before it, which
often results in the ellipsis being off-center
when set between two other things.

It is worth reading the documentation of Heslin’s
package, which also describes some of the issues
relating to using ellipses. The package also allows
one to specify the Chicago or MLA style and to
specify the spacing between dots (e.g., in terms of
an em) in an ellipsis.

Another package is lips.sty,9 which Heslin
suggests using if one wants the full Chicago style.

With so many possibilities and needs, it is not
surprising that, as Bringhurst says, “Many typog-
raphers nevertheless prefer to make their own.” It
is hard for me to imagine a package with sufficient
capabilities and options for everyone. (But maybe
I’m wrong.)

2.4 My approach

My approach has been to define a few macros to
handle common situations for using ellipses in the
writing I do. These also implement my own pref-
erences, such as for inter-dot spacing and spacing
before and after an ellipsis. I have used a couple of
versions of these macros.

Version 1 of ellipses

The following definitions were sufficient for the Break-
through Management book (walden-family.com/
breakthrough) which I co-authored and typeset. I
used the Minion typeface for this book. The com-
ments in the following code provide the relevant
explanations.

% dots for main text

\def\bigdotsspace{3pt}

% three dots

% I like the same size space on each side

% of the ellipsis as between its dots.

\def\mydots{\hbox{\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}}}

% period and three dots = four altogether

% and the same size space after a period

% and before 3 dots

\def\fmydots{\hskip0pt{}%

\hbox{.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}}}

David Walden

TUGboat, Volume 35 (2014), No. 3 263

% dots with only beginning space,

% no following space.

% I use this with an ellipsis and

% following comma, etc.

\def\mydotsnfs{\hbox{\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.}}

% dots for block quote text,

% which is smaller than main text

\def\smalldotsspace{2pt}

% small dots without end spaces

\def\minsmalldots{\hbox{%

.\hspace{\smalldotsspace}%

.\hspace{\smalldotsspace}%

.}}

% small dots with end spaces

\def\smydots{\hbox{\hspace{\smalldotsspace}%

\minsmalldots\hspace{\smalldotsspace}}}

% period + three small dots = four altogether

\def\fsmydots{\hskip0pt{}%

\hbox{\hspace{.3pt}.\hspace{\smalldotsspace}%

\minsmalldots\hspace{\smalldotsspace}}}

Version 2 of ellipses

I used the following set of definitions with the book
I compiled and typeset about the technology his-
tory of the company Bolt Beranek and Newman.10

This book uses the Lucida Bright typeface. For this
second book, I had learned about doing things in
terms which varied with font size, e.g., among main,
footnote, and block quote text. My decisions in the
following definitions are only about what looks good
to me, not about the conventions of a particular
style manual. (The comments in the following code
provide the relevant explanations.)

% with an end-of-sentence ellipsis I use

% a following thin, not word, space

\def\fourdots{\hbox{.\hspace{.33em}%

.\hspace{.33em}.\hspace{.33em}.\,}}

% sometimes I don’t even want the

% trailing thin space, e.g., at end of line

\def\fourdotstightright{\hbox{.\hspace{.33em}%

.\hspace{.33em}.\hspace{.33em}.}}

% for a non-end-of-sentence ellipsis

\def\threedots{\hbox{\,.\hspace{.33em}%

.\hspace{.33em}.\,}}

% for beginning of line, e.g., block quote

\def\threedotstightleft{\hbox{.\hspace{.33em}%

.\hspace{.33em}.\,}}

% for end of line, e.g., in a block quote

\def\threedotstightright{\hbox{\,.\hspace{.33em}%

.\hspace{.33em}.}}

% tried this but didn’t use it

%\def\sentencespace{\unkern\spacefactor=3000

% \space\ignorespaces}

% also tried this but didn’t use it

%\def\fourdots{\unskip\kern\fontdimen3\font

% .\kern.1667em\ldots\sentencespace{}}

% also tried this but didn’t use it

%\def\threedots{\unskip\ \ldots\unkern{}}

% for use in a footnote; I originally thought

% I might need a different definition, but

% then I was happy with the main text ratios

\def\fnfourdots{\fourdots{}}

% ditto

\def\fnthreedots{\threedots{}}

Ellipses summary

It is easy to see how my set of definitions could be
adapted to using word or sentence spaces before and
after an ellipsis while using some other appropriate
inter-dot spacing, or to adapt the definitions to other
traditional or personal conventions. For instance,

% sentence space after four dots:

\def\fourdots{\hbox{.\hspace{.33em}%

.\hspace{.33em}.\hspace{.33em}}. }

I am also sure that there are better approaches
than mine for handling a variety of ellipsis situations
in LATEX, or at least better ways to do what I am
doing (perhaps automatically detecting whether an
ellipsis is at the beginning or end of a line and thus
eliminating the need for those definitions).

2.5 Ellipses: appendix

By the way, in the file latex.ltx, I found the fol-
lowing definitions, presented without comment.

\DeclareTextCommandDefault{\textellipsis}{%

.\kern\fontdimen3\font

.\kern\fontdimen3\font

.\kern\fontdimen3\font}

\DeclareRobustCommand{\dots}{%

\ifmmode\mathellipsis\else\textellipsis\fi}

\let\ldots\dots

Every LATEX document brings new programming issues

264 TUGboat, Volume 35 (2014), No. 3

3 Blank verso sides without using the book

class twoside option

Several years ago I was involved in creating a small
book (approximately 100 pages11), and a year later I
did the LATEXing of a small pamphlet (approximately
60 pages12). In both cases, the document needed to
look like a book, but using all the built-in capabilities
of the book class wasn’t necessary. Therefore, I
drafted my own class file (which, in the first case,
Karl Berry significantly improved) and loaded that
on top of the standard book class, e.g.,

\documentclass{book}

\usepackage{ctssbook}

Naturally, the added style file included a macro,
\beginnewchapter, which reset the various counters
(such as footnote and figure numbers), formatted the
chapter title, changed the running headings, and put
the chapter title in the table of contents using the
command

\addcontentsline{toc}{chapter}

{\protect\fmttocnumber{\thechapter}#1}

where #1 is the chapter title passed to the macro
via the macro call (and \fmttocnumber is a macro
that formats a right-justified chapter number in a
properly sized field).

Because the command \chapter is never given
in the LATEX for these two books, the two-side and
one-side capabilities of the book style aren’t available.
This is not a problem. For a document that will
be printed and needs to start a new chapter on a
recto side, it is easy enough (in the last stages of
typesetting) to, first, perfect the page breaks: for
this I typically use calls to macros such as

\newcommand{\Lpushlines}[1]

{\enlargethispage{-#1\baselineskip}}

\newcommand{\Lpulllines}[1]

{\enlargethispage{#1\baselineskip}}

And then, second, to go through the root file of
the document and add a macro call (after the com-
mands to input the content of chapter, frontmatter
and backmatter files) to create the necessary blank
verso sides where needed. This end-of-chapter macro
definition is something like

\def\EOC{%

\newpage\null\thispagestyle{empty}\newpage

}

and the resulting root file looked like this:

\documentclass{book}

\usepackage{ctssbook}

\begin{document}

\frontmatter

\include{title-pages}

\include{preface}

\mainmatter

\include{history}

\EOC

\include{toms-webpage-r1}

\EOC

\include{uses-r}

\include{views}

\EOC

\include{other}

\backmatter

\include{biblio}

\EOC

\input{colophon}

\EOC

\end{document}

In the pamphlet shown in this example, some chap-
ters already end on verso sides and calls to \EOC are
not needed. Also, the command \tableofcontents

is included in the title-pages.tex file; and, since
the table of contents in this case is only one page
long, it also includes a call of \EOC.

As I was finishing this pamphlet, I needed PDFs
both for sending to the printer and for posting on
the web. For the printer, there needed to be two
PDFs: one for the color cover (i.e., a single file of
the back cover, spine, and front cover), and one
for the grayscale interior of the pamphlet including
blank pages at the end of chapters as needed to
start chapters on recto sides. For the web, I needed
a single PDF with the front and back covers at the
beginning and end of the interior pages, and I decided
I wanted to leave out the blank verso sides from the
interior, but keep the same page numbers as in the
print version.

Thus, I created a macro to conditionally add
the covers to the interior and augmented the \EOC

macro to add blank verso sides only when needed for
the print version.

\def\Forweb{0} %0 = print

%\def\Forweb{1} %1 = web

\RequirePackage[final]{pdfpages}

\def\Covers#1{%

\ifodd\Forweb

% #1 is cover filenames

\includepdf[pages=1-1]{#1.pdf}%

\fi}

\RequirePackage{ifthen,changepage}

% if for web, increment page counter

% if for print, output blank page

\def\EOC{\newpage\checkoddpage

\ifthenelse{\boolean{oddpage}}%

{} {\ifodd\Forweb\stepcounter{page}%

David Walden

TUGboat, Volume 35 (2014), No. 3 265

\else\null\thispagestyle{empty}%

\newpage\fi}}

Thus, I added \Covers macro calls bracketing the
rest of the document as follows:

\begin{document}

\Covers{front-cover}

...

\Covers{back-cover}

\end{document}

I also then include a call to the revised \EOC macro
after including each chapter, frontmatter, and back-
matter file (title-pages.tex already contained a
call to \EOC).

4 Flexible layout of a photo album

This past year I decided to print a dozen or so copies
of an album of old photos to distribute to family
members. The photos had been pulled from sev-
eral photo albums of a deceased parent that were
broken up and various photos of individuals sent to
the individual or a family member of the individual.
However, some photos needed to go to more than
one person; hence, I wanted to create an album of
these remaining photos which could be distributed
to multiple family members.

The photos came in a variety of sizes ranging
from 8×10 inches to smaller than 3.5×5 inches, many
of the sizes being non-standard for today’s typical
digital printing businesses that serve amateur pho-
tographers (these businesses tend to assume 8×10,
5×7, 4×6, and 3.5×5). The photos also came in a
variety of conditions from quite good to quite bad
(faded or otherwise discolored, or never high quality
in the first place). I scanned all of these photos at
either 600 pixels per inch or 300 ppi, cropped off
the borders on the digital version, and then did lots
of Photoshopping to bring as much quality back to
the images as I could manage. Because I thought it
might be useful, I put the images into six separate
directories for 8×10 (the few instances of this only
had a vertical orientation), 5×7 (the instances were
also all vertically oriented), 4×6 tall orientation, 4×6
wide orientation, 3.5×5 tall orientation, and 3.5×5
wide orientation.

I decided that I wanted the photos in the album
I was creating to be the exact size of the originals in
inches on the printed page. Consequently, I decided
the album’s trim size when perfect bound would be
10×11.5 inches. The next step was to figure out how
to lay out the photos on printed pages.13

4.1 Photo album: First effort

The first macro I wrote, \image, took two arguments:
an image directory/filename and a draft caption

(the file name without its directory), and displayed
the image with the caption beneath it at the current
location. Then I wrote three other macros:

1. \oneperpage, which called \image once and
centered the specified image and its caption on
a page;

2. \sidebyside, which called \image twice and
placed the two images side by side, centered on
a page;

3. \overunder, which called \image twice and
placed the two images (and their captions) on
the page centered horizontally and spaced out
equally in the vertical direction.

I wrote a Perl program to generate calls (in alpha-
betical order by file name) to the three page-layout
macros for all the image files in each of the six direc-
tories, with the 8×10 and 5×7 images being placed
alone on pages, the 4×6 and 3.5×5 tall images placed
side by side on a page, and the 4×6 and 3.5×5 wide
images placed in an over-under position on the page.
With a little manual text editing, the macro defini-
tions and the Perl-generated calls to the page-layout
macros became the LATEX program to generate a first
draft album of all of the images.

However, there was a problem. My intention was
to print the images at the actual size of the scanned
photographs, counting on \includegraphics to read
the metadata in the image file to specify the print
size. This worked well for most of the images. But
for some of images in the 3.5×5 (tall) directory, the
images printed at much too big a size. Rather than
sort out the reason, I chose the brute force course
of temporarily changing the definition of \image so
\includegraphics used a width of 3.5 inches in calls
by the \sidebyside macro.

With the printout of this first draft in hand,
I could begin to improve the captions and think
seriously about layout issues. With actual captions
written, many were wider than their image which
didn’t look good on horizontal images and which
were completely broken on side-by-side images. So I
redefined \image, as follows, to measure the width
of the image and make the caption be that width:

\def\image#1#2{

\centerline{\includegraphics{#1}}

\smallskip

\settowidth\imagewidth{\includegraphics{#1}}

\begin{minipage}[b]{\imagewidth}

\centering

\large#2

\end{minipage}

}

Every LATEX document brings new programming issues

266 TUGboat, Volume 35 (2014), No. 3

4.2 Photo album: Next approach

With the new (to me) concept of measuring the image
width and adjusting the caption width accordingly,
I redid the page layout macros.

The \overunder macro could use the new defi-
nition of \image directly as shown in the following
definition and example call:

\def\overunder#1#2{

\clearpage \vspace*{\fill}

#1\vfill

#2\vfill

\clearpage

}

called like:

\overunder

{\image{〈filename1 〉}{〈caption1 〉}}
{\image{〈filename2 〉}{〈caption2 〉}}

I redid the \oneperpage and \sidebyside macros
to use the \imagewidth approach without calling
the image macro, i.e.,

\def\oneperpage#1#2{

\clearpage \vspace*{\fill}

\centering

\includegraphics{#1}

\medskip

\settowidth\imagewidth{\includegraphics{#1}}%

\begin{minipage}[b]{\imagewidth}

\centering

\large#2

\end{minipage}

\vfill

\clearpage

}

\def\sidebyside#1#2#3#4{

\clearpage \vspace*{\fill}

\centerline{\includegraphics{#1}%

\quad\includegraphics{#3}}

\settowidth\imagewidth{\includegraphics{#1}%

\quad\includegraphics{#3}}

\smallskip

\begin{minipage}[b]{\imagewidth}

\centering

Left: #2\\Right: #4

\end{minipage}

%\centerline{Left: #2; right: #4}

\vfill

\clearpage

}

Notice that by this time I had created inconsis-
tency in how I included images: sometimes

\macrocall

{filename1}{caption1}

{filename2}{caption2}

and sometimes

\macrocall

{\macrocall{filename1}{caption1}}

{\macrocall{filename2}{caption2}}

4.3 Photo album: Final approach

At this point, I concluded I needed to do several
things differently:

1. try top justifying side-by-side images rather than
bottom justifying them, which is what happened
without doing anything special;

2. fix the page layout macros so they called images
in a consistent way;

3. make it easy to move around the calls of image-
caption pairs in the LATEX source file.

Regarding the first point above, top justifica-
tion of side-by-side images, I looked at or tried four
different methods, three from a question and answer
on tex.stackexchange.com14 and one I made up
myself. One of the tex.stackexchange.com sug-
gestions didn’t seem quite relevant and I couldn’t
manage to install and use the suggested packages in
the other two suggestions there.

The method I tried to develop myself was to
measure the height of the images, find the difference
in heights as a positive number, and insert verti-
cal space of that difference under the shorter of the
images; unfortunately, I couldn’t get the units of
the various parts of these calculations to match well
enough to make the method work. After several
hours of trying things spread over a couple of days,
the bottom-justified approach began to look better
and better, and I gave up trying for top justification.

It came to me that dealing with the third point
above (moving around image-caption pairs), would
naturally address the second point (consistent calling
sequences).

Regarding the third point above, it seemed to
me that the best approach was to separate specify-
ing images and their captions from the page layout
macros, that is, to not have the page layout macros
call the image-caption specification macros. My idea
was to allow something like the following:

\specifyimage

\specifyimage

\layoutpagewithsidebysideimages

\specifyimage

\layoutpagewithsingleimage

David Walden

TUGboat, Volume 35 (2014), No. 3 267

\specifyimage

\specifyimage

\layoutpagewithoverunderimages

Then I could simply drag the \specifyimage macro
calls around to the places I wanted them to be in my
LATEX source file for the album, although I would
still have to be aware of what size images could fit
within the bounds of a page.

For the \specifyimage macro I developed the
following macro (Karl Berry pointed out the \ifcase
TEX language construct to me):

\newcounter{savedphotocount} % define counter

\setcounter{savedphotocount}{0}% clear counter

\def\savephoto#1#2{%

\stepcounter{savedphotocount}%

\ifcase\value{savedphotocount}

\errmessage{case zero should never happen}%

\or \gdef\photoa{#1}\gdef\captiona{#2}% case 1

\or \gdef\photob{#1}\gdef\captionb{#2}% case 2

\or \gdef\photoc{#1}\gdef\captionc{#2}% case 3

\or \gdef\photod{#1}\gdef\captiond{#2}% case 4

\else \errmessage{more photos than expected!}

\fi}

This macro saves up to four images in well-known
places from which the page layout macros can use
them; obviously, this macro could have been ex-
tended to save more images between instances of
zeroing \savedphotocount, which was done at the
end of each page layout macro.

Below is an example definition of one of the page
layout macros that used \savephoto.

\def\oneperpage{

\clearpage \vspace*{\fill}

\centering

\includegraphics{\photoa}

\medskip

\settowidth\imagewidth

{\includegraphics{\photoa}}%

\begin{minipage}[b]{\imagewidth}

\centering

\large\captiona

\end{minipage}

\vfill

\clearpage

\setcounter{savedphotocount}{0}

}

Other page layout macros I needed to define for
the album were:

\overunder two images centered horizontally, with
equal top, between, and below spacing (see the
top right example in Fig. 1).

Right Caption

Left Caption

Caption

Caption

Right Caption

Left Caption

Caption

Right Caption

Left Caption

Right Caption

Left Caption

Figure 1: Some examples of page layouts; example
images from the actual album are available at
walden-family.com/texland/photo-album.pdf

\sidebyside two images side by side, with the pair
centered horizontally, bottom justified, with
equal top and bottom spacing (top left exam-
ple).

\oneovertwo three images with the top one over the
bottom pair, with equal top, between, and bot-
tom spacing among the two rows of images, and
the image and image-pair centered horizontally
(bottom left example).

\twooverone reverse of the above.

\twoovertwo a side-by-side pair over another side-
by-side pair with equal top, between, and bot-
tom spacing among the rows, and the rows cen-
tered horizontally (bottom right example).

This may have not been the optimal approach
in terms of requiring the writing a bunch of different
page layout macros, but it was very useful in terms
of flexibly moving images around within the LATEX
file and experimenting with image ordering and page
layouts until a satisfactory overall album layout was
determined. If I was going to do lots of such albums,
I might have wanted to include more calculations in
the macros and let LATEX figure out how to lay out
pages, but I didn’t need that for this one case (but I
do have a good starting point if I ever want to create
something more automatic).

Every LATEX document brings new programming issues

268 TUGboat, Volume 35 (2014), No. 3

4.4 Incorrectly sized JPGs

Through all of the above, I had to maintain some spe-
cial versions of the macro for the 3.5×5 inch images
with the tall orientation that \includegraphics was
not displaying at the correct size in the PDF. This
mostly resulting in these images being bigger than
real size and thus with less pixels per inch than the
desirable 300 pixel minimum.

Thus, I embarked on trying to figure out why
\includegraphics wasn’t correctly reading (or pro-
cessing) the image size metadata from the image
files. I could see no reason why not, and I asked
on tex.stackexchange.com15 if someone knew how
includegraphics read and processed JPG image
metadata. The list tried to help but had no defini-
tive and workable answers.

Eventually, I converted the problem JPGs to be
PNGs, and then \includegraphics correctly sized
the images. I don’t know why this worked for PNGs
and not for JPGs (the problem JPGs may have been
originally scanned at 600 pixels per inch rather than
300 pixels per inch as was done for most of the
images); however, now I have a work-around that
I will try immediately if I see this problem again
sometime.

4.5 Finishing the album

With the work-around found for the problem noted
in the prior subsection, I could now do a final com-
pilation of the PDF for delivery to the print shop.
There, although almost all the images were grayscale
originally (with only a few color images), I had the
print shop print them all in color which made the
old brownish grayscale images look better than they
would have using a black-and-white based grayscale.

I made the cover (front, spine, and back) of
the photo album with Adobe Illustrator rather than
LATEX. It might have been easier to do the whole lay-
out with a graphical-user-interface (GUI) document
layout tool. Then again it might have been more
work with a GUI to match the caption widths to the
images and to drag whole photo-caption pairs around
(rather than dragging calls to \savephoto around in
my text editor). Who knows? I have LATEX, and I
don’t have the alternative tool.

5 Reflection

In this paper I have discussed three examples of little
programming problems that I was led to by my work,
and by the fact I was using TEX and had been a
programmer by trade. TEX suits me particularly
well as I dislike learning the ins-and-outs of user
interfaces (especially user interfaces that change with
product updates); and I often want something a little

different than is built into the user interface of a less
programmable tool (or maybe what I want is built
into a part of the tool I have not bothered to learn
about). With (LA)TEX I can get a surprising amount
done with the relatively modest amount of (LA)TEX
programming I know (and packages that “just work”
without much study), and over time I have built
quite a library of ad hoc (LA)TEX tools. The library
is not very organized. I am careful to keep the
sources for all my LATEX-based documents, and when
I need a tool I try to remember for which document
I developed that tool, and then I go and copy it.

Notes
1 Perhaps I am a bad guy, but I lack motivation for
developing my little tools into packages that might
help others (although I certainly appreciate that others
develop packages that help me).
2 Self-publishing: Experiences and opinions,
tug.org/TUGboat/tb30-2/tb95walden.pdf
3 While in this note I only discuss non-math use
in American English, it provides enough variety of
situations and problems to perhaps suggest things to
think about when using and typesetting ellipses in
another language.
4 Version 3.1, Hartley & Marks, Publishers,
Vancouver, BC, 2005
5 I’m looking at the 13th edition and not a later edition.
6 en.wikipedia.org/wiki/Ellipsis
7 www.docstyles.com
8 ctan.org/pkg/ellipsis
9 ctan.org/pkg/lips

10 A Culture of Innovation: Insider Accounts of
Computing and Life at BBN, David Walden and
Raymond Nickerson, editors, Waterside Publishing, 2011,
walden-family.com/bbn/bbn-print2.pdf
11 Karl Berry and David Walden, editors, TEX’s
25 Anniversary: A Commemorative Collection,
TEX Users Group, Portland, OR, 2010, tug.org/store/
tug10
12 David Walden and Tom Van Vleck, editors,
Compatible Time-Sharing System (1961–1973):
Fiftieth Anniversary Commemorative Overview,
IEEE Computer Society, Washington, DC, 2011,
walden-family.com/ieee/ctss.pdf
13 The reader may be interested in Boris Veytsman’s
approach for a somewhat similar project: “An output
routine for an illustrated book”, TUGboat 35:2, pp. 202–
204, tug.org/TUGboat/tb35-2/tb110veytsman.pdf.
14 tex.stackexchange.com/questions/101858/

make-two-figures-aligned-at-top
15 tex.stackexchange.com/questions/171906/

how-does-includegraphics-from-the-graphicx-

get-the-size-of-a-jpg-image

⋄ David Walden
walden-family.com

David Walden

TUGboat, Volume 35 (2014), No. 3 269

Glisterings: Lining up

Peter Wilson

The lines are fallen unto me in pleasant
places; yea, I have a goodly heritage.

The Bible, Psalm 16, v. 6

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine. This installment
presents some items about lining things up.

1 Ruling off

Pujo wrote that he wanted to create a box with
a line at the top and bottom but found that the
fancybox package [10] only supplied boxes with all
four sides enclosed. Peter Flynn [5] responded with
the following, based on fancybox:

\documentclass{article}

\usepackage{fancybox,lipsum}

\newenvironment{ruledbox}{%

\begin{Sbox}

\begin{minipage}{\columnwidth}}{%

\end{minipage}\end{Sbox}%

\centering\medskip

\vbox{\hrule height1pt

\par\medskip

\TheSbox

\medskip\hrule height1pt}\par\medskip}

\begin{document}

\lipsum[1]

\begin{ruledbox}

\lipsum[2]

\end{ruledbox}

\lipsum[1]

\end{document}

Sometime later I wondered if a box was really
needed, wouldn’t just drawing a couple of rules do as
well? I came up with the ruled environment which
let you change the width of the ruled contents.

\newdimen\narrowsize

\newenvironment{ruled}[1][0pt]{%

\par

\narrowsize\hsize

\advance\leftskip#1\advance\rightskip#1

\advance\narrowsize-2\leftskip

\noindent%

\rule{\narrowsize}{3pt}\par

}{%

\par\noindent

\rule{\narrowsize}{1pt}

\par}

The optional length argument to the environment
is the distance the left and right margins should be
increased, thus temporarily reducing the apparent
width of the textblock. The next paragraph is set
within
\begin{ruled}[1pc] ... \end{ruled}

The ruled environment produces a result
that might be a little too fancy for your taste,
in which case change the thickness of the rules.

On the other hand, a box will not break across
a page boundary which may be an advantage, but
on the whole I think not.

2 Marginal rules

David Arnold posed the following problem on ctt.
I’d like to adjust my example environment in the

code below so that each example is bracketed between
two horizontal rules. The first rule should be placed
above the example, align with the inner edge of the
text and flow to the outer edge of the text, add a
couple of spaces in the outer margin, typeset ‘You
Try It!’, then continue to flow to within 1cm of the
page edge.

Similarly, for the rule at the bottom of the ex-
ample, I’d like to start it at the inner edge of the text,
flow into the outer margin, then typeset the square
that is flush right within 1cm of the paper edge.

I’m not showing David’s code here. Instead, the
below is effectively the code that I responded with [9].
Drawing the rules across the textblock is no problem.
Also typesetting in the margins can be catered for
by using the \rlap and \llap macros, thus avoiding
LATEX getting huffy about overlong lines. The only
tedious part of the code is calculating the length
of the two rules in the margin area. Hopefully the
comments in the code explain sufficiently what is
done in this regard.

\documentclass[twoside]{report}

\usepackage{lipsum}

\usepackage{amssymb}

\newcounter{example}[section]

\renewcommand{\theexample}{\arabic{example}}

%% insert lengths

\newdimen\uwidth

\newcommand*{\Utryit}{%

\space\space You Try It!\space}

\settowidth{\uwidth}{\Utryit}

\newdimen\sqwidth

\newcommand*{\Usq}{{\Large\square}}

\settowidth{\sqwidth}{\Usq}

Glisterings: Lining up

270 TUGboat, Volume 35 (2014), No. 3

%% rule length in the oddpage margins =

%% paperwidth - textwidth - 1cm - 1in

%% - oddmargin - insert

% odd page rule lengths

\newdimen\uxtra % Utryit

\newdimen\sqxtra % Square

\uxtra=\paperwidth

\advance\uxtra-\textwidth

\advance\uxtra-1cm

\advance\uxtra-1in

\advance\uxtra-\oddsidemargin

\sqxtra=\uxtra

\advance\uxtra-\uwidth

\advance\sqxtra\sqwidth

%% rule length in the evenpage margins =

%% 1in + evenmargin - 1cm - insert

\newdimen\uxtrav % Utryit

\newdimen\sqxtrav % Square

\uxtrav=\evensidemargin

\advance\uxtrav 1in

\advance\uxtrav-1cm

\sqxtrav=\uxtrav

\advance\uxtrav-\uwidth

\advance\sqxtrav-\sqwidth

\makeatletter

\newenvironment{example}{%

\medskip\refstepcounter{example}%

\ifodd\c@page% odd page

\noindent\rule{\hsize}{3pt}%

\rlap{\Utryit\rule{\uxtra}{3pt}}

\else

\noindent\llap{\rule{\uxtrav}{3pt}\Utryit}%

\rule{\hsize}{3pt}

\fi

\par\noindent\textbf{Example \theexample.}}%

{%

\ifodd\c@page

\par\noindent\rule{\hsize}{1pt}%

\rlap{\rule{\sqxtra}{1pt}

\Usq}

\else

\par\noindent\llap{\Usq\rule{\sqxtrav}{1pt}}%

\rule{\hsize}{1pt}

\fi

\par\medskip}

\makeatother

\begin{document}

\lipsum[1]

\begin{example}

\marginpar{Simplify: $33+28$}

\lipsum[2]

\end{example}

\lipsum[1]

\end{document}

The code just shown is intended for use in single
column documents, and as TUGboat uses two col-
umns it will not work here (account must be taken
of which column the example is in). Extending it to
cater for two columns is left as an exercise.

3 Preventing an awkward page break

Szabolcs Horvát requested help on ctt:
I would like to have an environment that starts and
ends with a horizontal line (\hrule), with text in
smaller type in between. The text may run several
pages long. How can it be prevented that the page be
broken right after the first \hrule or right before the
last one?

As so often happens Donald Arseneau came up
with an answer [1].

The answer to the question is easy: insert \par

and \nobreak and \@nobreaktrue.
The tricky problem is getting the spacing right!

\hrule causes normal \baselineskip to be omitted,
but \rule takes a full baseline which leaves too much
whitespace. Try this:

\makeatletter

\newenvironment{aside}{%

\list{}{\leftmargin 5ex

\rightmargin\leftmargin}

\vtop{\hrule width\columnwidth}%

\nobreak\@nobreaktrue

\vspace{0.5ex}%

\item\relax\small

}{%

\par\nobreak\@nobreaktrue

\advance\baselineskip -0.7ex

\vtop{\hrule width\columnwidth}%

\endlist}

\makeatother

I tried the aside environment and it worked
even better than requested as it kept a rule and at
least two lines of text together.

I haven’t tried to combine the aside and ruled

environments which I leave as an interesting exercise.

From a slightly different viewpoint, Nick Ur-
banik posted to ctt that he wanted to keep a list of
items always on a single page [8]. In particular, to
keep a question and its suggested answers together,
where there was a list of questions each with its list of
answers. There were some six respondents to Nick’s
request for help but the discussion for some reason
veered from the enumitem package to the titlesec

package that had no relevance to the initial posting.
Donald Arseneau again provided a simple solution to
the original problem [3], resulting in questions and
answers for a possible accountant’s interview being
coded like:

Peter Wilson

TUGboat, Volume 35 (2014), No. 3 271

\textbf{Accountancy test}

\begin{questions}

\Qitem What is $2+2$?

\begin{enumerate}

\item 3

\item 4

\item Whatever you want it to be.

\end{enumerate}

\Qitem What is the essence of double-entry

bookkeeping?

\begin{enumerate}

\item Each transaction recorded twice,

in the credit and debit ledgers.

\item Two sets of books, the real ones and

the ones for the tax inspectors.

\item Don’t know.

\end{enumerate}

\Qitem What ...

\end{questions}

When processed this will result in a question and all
its potential answers being kept together on a page
and, depending on their length, there may be several
sets of questions and answers on a page.

Accountancy test

1. What is 2 + 2?

(a) 3

(b) 4

(c) Whatever you want it to be.

2. What is the essence of double-entry bookkeep-
ing?

(a) Each transaction recorded twice, in both
the credit and debit ledgers.

(b) Two sets of books, the real ones and the
ones for the tax inspectors.

(c) Don’t know.

3. What ...

Donald’s method to make this happen is:

\newcommand*{\Qitem}{\pagebreak[0]\item}

\newenvironment{questions}%

{\enumerate\samepage}%

{\endenumerate}

which says that the questions environment should
be all on one page except that a pagebreak is allowed
just before a question’s \Qitem.

4 Not at a page break

Sometimes it may be desirable to have a divisional
marker of some kind disappear at a page break. I
have forgotten the details but someone once had a
supplement (with a title such as ‘Notes’) at the end
of each chapter in the document and wanted to have

a rule before the supplement unless the supplement
started a new page.

A TEX leader is not a permissable breakpoint
and may vanish at a page break and so provides a
potential means of meeting such a requirement. Just
before this paragraph I specified:

\newskip\rulebreakskip

\rulebreakskip=\baselineskip

\newcommand*{\filler}{\hbox to \hsize{%

\hss \rule{0.7\hsize}{1pt} \hss}\vskip 1pt}

\newcommand*{\rulebreak}{%

\vskip\rulebreakskip

\cleaders\filler

\vskip\rulebreakskip}

\rulebreak

which resulted in either a centered rule or, if at the
bottom of the column, nothing.

* * *
Just before this paragraph I specified:

\renewcommand*{\filler}{%

\hbox to \hsize{\hss * * * \hss}}

\rulebreak

which resulted in either three centered asterisks or,
if at the bottom of the column, nothing.

You can put different elements in the \filler

box, such as an \asterism or a moustachio but you
might have to adjust the value of \rulebreakskip

for the best optical effect.

5 Line backing

‘talazem’ presented ctt with a problem that has
never been completely solved in LATEX — namely
typesetting to a grid. TEX was not designed with
this in mind. Slightly edited, his presentation was:

I am typesetting a book in Memoir and want
to ensure that the lines register well to avoid shine
through. The book is mainly in English with a font
size 10/12.5. However there are some paragraphs
that are causing alignment problems.

There are some paragraphs that have to be set
to a 0.8 ratio of the primary face with a 0.5 ratio
of line spacing. There are others in a non-English
typeface where the font is about 1.4 times bigger than
the Roman font for the English text.

Paragraphs of this kind throw off the alignment
of text lines on adjacent pages, and causing shine
through on the recto and verso sides of a page.

The basic requirement here is that these irreg-
ular paragraphs should take up a space that is an
integral number of the normal \baselineskip.

Glisterings: Lining up

272 TUGboat, Volume 35 (2014), No. 3

The one potential solution provided came from
an exchange of views between Donald Arseneau and
Dan Luecking [4], as follows, where the environment
will occupy an integral number of the normal lines.

\makeatletter

\@ifundefined{@tempdimc}{\newdimen\@tempdimc}{}

\newenvironment{gridblock}{\par

\setbox\@tempboxa\vtop\bgroup

}{\par\egroup

% measurement of top

\@tempdima=\ht\@tempboxa

\@tempdimc=\dp\@tempboxa

\ifdim\@tempdima>\ht\strutbox

\advance\@tempdimc\@tempdima

\@tempdima=\ht\strutbox

% \@tempdima is the top height.

\advance\@tempdimc-\@tempdima

\fi

% measurement of bottom

\setbox\@tempboxa\vbox{\unvbox\@tempboxa}%

\ifdim\dp\@tempboxa>\dp\strutbox

\@tempdimb=\dp\strutbox

\else

\@tempdimb=\dp\@tempboxa

\fi

% \@tempdimb is the bottom depth.

\advance\@tempdimc-\@tempdimb

% \@tempdimc is distance between the top

% and bottom baselines.

% The excess, \@tempcnta, is the number

% of baselines.

\@tempcnta=\@tempdimc

\divide\@tempcnta\baselineskip

\advance\@tempdimc -\@tempcnta\baselineskip

\ifdim\@tempdimc >2\vfuzz

\advance\@tempdimc-\baselineskip \fi

\divide\@tempdimc\tw@

\vbox to\@tempdima{}%

\nobreak \nointerlineskip

\kern-\@tempdima \kern-\@tempdimc \nobreak

\box\@tempboxa

\nobreak \nointerlineskip

\kern-\@tempdimb \kern-\@tempdimc \nobreak

\hbox{\vrule

height \z@ width \z@ depth \@tempdimb}}

\makeatother

The gridblock environment doesn’t cater for
footnotes, floats, or really anything other than plain
text. It certainly does not handle page breaks.

This is \tiny text in the gridblock environment. I’m not sure how well

the effect will be demonstrated as the adjacent column may, or may not, be

evenly spaced vertically.

Did that work out? Are the lines in this para-
graph aligned with those on the adjacent columns, or
pages? If not it may be because the adjacent columns
are not set on a grid. Incidentally, the relatively re-
cent package grid may be of interest, though it is
not a complete solution either.

6 Linespacing

Pander wrote [7]:
I have some questions on line spacing (leading) that
should respect font size. It mainly concerns non-
uniform line spacing that doesn’t reserve space for
ascenders and descenders and line spacing that is too
big or too small for small and large font sizes.

Please see the following TeX [code] for the exact
questions. I know this is tricky in TeX, but have to
ask any way.

\noindent

{\tiny aeou\\aeou\\}%too much leading

{\normalsize aeou\\aeou\\}

{\Huge aeou\\aeou\\}%not enough leading

{\tiny gpqy\\gpqy\\}%too much leading

{\normalsize gpqy\\gpqy\\}

{\Huge gpqy\\gpqy\\}%no space for descenders

{\tiny bdfhkl\\bdfhkl\\}%too much leading

{\normalsize bdfhkl\\bdfhkl\\}

{\Huge bdfhkl\\bdfhkl\\}%no space for ascenders

{\tiny gpqybdfhkl\\gpqybdfhkl\\}%too much leading

{\normalsize gpqybdfhkl\\gpqybdfhkl\\}

{\Huge gpqybdfhkl\\gpqybdfhkl\\}

The result of processing this is shown in the left
side of Figure 1. Pander also noted a similar problem
when using different fonts in a tabular.

There were several respondents all of whom
noted that Pander’s example consisted of a single
paragraph within which the several font size changes
were closed within groups. Further, that TEX takes
the font size in effect at the end of a paragraph as
applying throughout the paragraph, and hence that
the leading is constant.

Donald Arseneau [2] replied with:
Set \baselineskip=0pt or some small value
Set \lineskip=\lineskiplimit= desired space

\baselineskip=8pt

\lineskip=4pt

\lineskiplimit=\lineskip

Then be aware that font-change commands re-
set \baselineskip, so that font changes that span
the end of a paragraph will go back to some larger
\baselineskip.

In tabular put \strut in with all your variant
fonts.

Roughly speaking, the normal spacing between
the baselines of text is \baselineskip but if the
‘top’ of a line is closer than \lineskiplimit to the
bottom of the previous line then the spacing will
be increased so that the top to bottom space is
\lineskip [6, Ch. 12]. The results of applying Don-
ald’s settings are shown at the right of Figure 1.

Peter Wilson

TUGboat, Volume 35 (2014), No. 3 273

aeou

aeou

aeou
aeou
aeou
aeou
gpqy

gpqy

gpqy
gpqy

gpqy
gpqy
bdfhkl

bdfhkl

bdfhkl
bdfhkl

bdfhkl
bdfhkl
gpqybdfhkl

gpqybdfhkl

gpqybdfhkl
gpqybdfhkl

gpqybdfhkl
gpqybdfhkl

aeou

aeou

aeou
aeou

aeou
aeou
gpqy

gpqy

gpqy
gpqy

gpqy
gpqy
bdfhkl

bdfhkl

bdfhkl
bdfhkl

bdfhkl
bdfhkl
gpqybdfhkl

gpqybdfhkl

gpqybdfhkl

gpqybdfhkl

gpqybdfhkl
gpqybdfhkl

Figure 1: Different font sizes in a paragraph: (left) Pander’s problem; (right) following Donald Arseneau

References

[1] Donald Arseneau. Re: Preventing page breaks
at certain positions. Post to comp.text.tex

newsgroup, 17 November 2009.

[2] Donald Arseneau. Re: Line spacing respecting
space for ascenders / descenders and fontsize.
Post to comp.text.tex newsgroup, 11 April
2011.

[3] Donald Arseneau. Re: List items always
on the same page. Post to comp.text.tex

newsgroup, 15 March 2011.

[4] Donald Arseneau and Dan Luecking. Re:
vertical height of boxes by multiple of
baselineskip. Post to comp.text.tex

newsgroup, 9–10 December 2009.

[5] Peter Flynn. Re: Fancybox alternatives.
Post to comp.text.tex newsgroup,
11 September 2009.

[6] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. ISBN 0-201-13448-9.

[7] Pander. Line spacing respecting space for
ascenders / descenders and fontsize. Post to
comp.text.tex newsgroup, 11 April 2011.

[8] Nick Urbanik. List items always on the same
page. Post to comp.text.tex newsgroup,
13 March 2011.

[9] Peter Wilson. Re: Marginpar in memoir.
Post to comp.text.tex newsgroup,
27 December 2009.

[10] Timothy Van Zandt. fancybox.sty: Box
tips and tricks for LATEX, September 2000.
http://ctan.org/pkg/fancybox.

⋄ Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ
UK
herries dot press (at)

earthlink dot net

Glisterings: Lining up

274 TUGboat, Volume 35 (2014), No. 3

CTAN goes multi-lingual: Additional

language support for the Web portal

Gerd Neugebauer

Abstract

TEX is used for many languages: support in the TEX
engines and macro packages is abundant, but the
CTAN portal has been available in English only. Now
we are conducting an experiment to provide the Web
presentation in German as well.

1 Introduction

Modern Web frameworks are equipped with means
for internationalizing the presentation. We are cur-
rently attempting to make use of these means for the
CTAN portal, https://www.ctan.org.

Figure 1: The cover page in German

Whenever you visit the portal, the language is
automatically selected for you. This magic happens
in a negotiation between the browser and the server
in the background. In the browser you can configure
your preferred languages (cf. figures 2–4).

Figure 2: Language configuration in Firefox

Figure 3: Language configuration in Chrome

Figure 4: Language configuration in IE

When you request a page, the browser passes
these language preferences to the server, where the
list is compared with the list of supported languages.
The best fit—or the default fallback— is then chosen.
Currently, the CTAN portal supports English and
German. Thus it is usually sufficient for you to
navigate to the CTAN portal to see your preferred
language from these alternatives.

You can also explicitly choose the language on
the settings page by clicking on the appropriate flag
(figure 5). This selection is valid only for the cur-
rent session. When you return later, this setting is
forgotten.

2 Features

Internationalization includes the localized presenta-
tion of several types of content:

• The page frame which includes header and footer
as well as the static parts of the dynamic pages

• The page content for the “static” pages

• The dynamic content from the TEX archive

Gerd Neugebauer

TUGboat, Volume 35 (2014), No. 3 275

Figure 5: The language selection on the settings page

• The dynamic content from the Catalogue

• The dynamic content from the search index

For the current internationalization experiment,
only the frame and some of the static pages are
offered in German, as a starting point. It should pri-
marily help to make it more comfortable for visitors
in their first steps.

Some pages have intentionally not been trans-
lated. For instance, the upload page (https://www.
ctan.org/upload) is provided in English only since
the communication language with the CTAN team
is English. Thus, an uploader should not be encour-
aged to try another language since this might not be
understood on our side.

3 Limitations

The major limitations are derived from missing data
in the back-end. The files in the TEX archive are
provided by the numerous authors. The language is
whatever the author provides— for instance in the
package documentation.

The TEX catalogue is mainly in English. It is
partially prepared to carry texts in different lan-
guages. For instance the descriptions are to a small
degree already present in languages other than En-
glish. The CTAN team is presently not able to pro-
vide translations, due to limited resources and skills.

If no appropriate localized text is available the
English version is used. This can be seen in figure 1.
Here the text for the topic teaser is in English while
the other parts of the page are in German.

Another limitation applies to the search. The
search is currently language-agnostic. It should in
the future be based on the language settings, in that
entries with the proper language should be ranked
higher than non-matching entries. Maybe entries

for languages not understood by the user should be
suppressed completely. But this already belongs into
the next section on “visions”.

4 Visions

In the future we could consider to develop the interna-
tionalization of the CTAN portal in several directions.
First, of course there are more languages to be sup-
ported. Right now the language-specific texts are
contained in 31 files. These files are either mapping
files which map keys to language-specific texts, or
complete pages which are present in separate incar-
nations.

To support a new language is initially a matter
of providing these 31 files and adding a configura-
tion option for the new language. However, this
isn’t enough. The portal is not static. The content
changes over time. Thus we would need a commit-
ment that we have volunteers for the new supported
language to guarantee continuity.

For the support of even more languages the
existing administration interface could be extended.
Then maintenance of the different languages could be
performed via a Web interface by different persons.

The other side has already been mentioned.
The TEX catalogue has to be augmented with new
language-specific texts. The same applies here. The
support has to be guaranteed for future changes.
Thus volunteers for a long-term engagement would
be required.

We must also reconsider the processes in the
CTAN team. They are currently not designed for
parallel processing of a change for a single package.
These processes work well for the small team which
is currently active. The more languages that are
supported, the more people have to work on one
change. Unfortunately this seems to be beyond the
capabilities of the CTAN team right now.

5 Epilogue

I hope that the experiment with the German lan-
guage for the CTAN portal succeeds. Feedback in any
direction is welcome. For discussions, please consider
using the mailing list ctanweb@dante.de. You can
subscribe via https://lists.dante.de/mailman/

listinfo/ctanweb.
Keep on TEXing— in many languages.

⋄ Gerd Neugebauer
Im Lerchelsböhl 5
64521 Groß-Gerau (Germany)
gene@gerd-neugebauer.de

www.gerd-neugebauer.de

CTAN goes multi-lingual: Additional language support for the Web portal

276 TUGboat, Volume 35 (2014), No. 3

Obyknovennaya Novaya
(Ordinary New Face) in METAFONT

Basil Solomykov

The Obyknovennaya Novaya (Ordinary New Face)
typeface was widely used in the USSR for scientific
and technical publications, as well as textbooks. My
“Obyknovennaya Novaya” is a revival of that typeface,
and though it is not the first one, I believe it is the
most complete. The Obyknovennaya Novaya family
currently includes regular, bold, italic, bold italic,
slanted and small capitals shapes. Obyknovennaya
Novaya is free software, available under the terms of
the LPPL. The story of the METAFONT version of
this font follows . . .

In the beginning of 2008 I was a student and
needed to choose the theme for my qualifying work.
My scientific supervisor was Vladimir Lidovski, and
he advised to learn METAFONT and make the font
Obyknovennaya Novaya in METAFONT, to expand
the variety of available Cyrillic fonts in TEX. I began
to read Donald Knuth’s The METAFONTbook and
make my first steps in drawing and font making.
After approximately a month, I made the first letter—
at that moment it was a big success to me. Over the
next month I learned about main parameters, such
as stems, curves, bars and others. The “army” of my
letters was growing, and it inspired me to continue my
work. By the time the number of letters reached 50,
I had learned about some new typographic features.

I read Knuth’s Volume E of Computers & Type-

setting, which contains precise definitions of about
500 letters, numerals, and other symbols of the Com-
puter Modern Typefaces, all described with META-
FONT. I realized that my letters had different pa-
rameters, each letter was described in its own file, for
example LetterA.mf, without any unification. So I
decided to combine them by making one file for all
letters of one size, and began a large amount of work
to restructure my font.

By the end of May 2008 I had 66 Cyrillic letters
(33 capitals and 33 small), 52 Latin letters, numer-
als and some punctuation marks, all in one shape
(regular), at several point sizes: 7, 10, 12, 17 pt. I
met with Alexander Shen, who supported me and
observed new directions to improve my typeface. I
successfully graduated from the university and then it
was time to decide what to do next with my project.
At that time the development of the Obyknoven-
naya Novaya typeface became supported by the TUG

development fund, so I began the long journey of
making a high-quality font.

There were big plans for the future to make
italic, bold, bold italic and slanted shapes, work
with rounding errors, kerning and others. In spite of
my no longer officially being his student, Vladimir
Lidovski continued testing my font, made suggestions
and gave advice. It was partly this support that kept
me from throwing everything down. During this
time I also met Alexander Tarbeev, who gave me
some valuable advice regarding the overall design
and relationship between the different parameters of
the typeface.

By the spring of 2011 I had made regular, bold,
italic, bold italic, slanted and small capital shapes.
Some work to optimize font rendering was done, and
new kerning pairs had been added.

At that point, I stopped working with the font
until 2014, and began to learn about other font for-
mats, such as TrueType, OpenType and PostScript
Type 1.

I read a lot about font smoothing and rendering
on digital devices. Beat Stamm’s site (http://www.
rastertragedy.com) was especially useful for me; it
gives a detailed description how fonts are rendered on
the screen. I am trying to understand how to apply
this method in Metafont, and hope to implement it
in the future.

In general the work on this font has been a
fruitful experience for me. It is my first contribution
to CTAN and the LATEX community. I hope the
font will be useful and I am glad to be able to help
people. I also hope that the publication of my font
will provide more feedback and suggestions from
experienced TEX users on how to improve it.

⋄ Basil Solomykov

bs44550 (at) gmail dot com

http://ctan.org/pkg/obnov

Normal shape, (10pt): АБВГД...ЭЮЯ абвгд...ыьэюя
0123456789 ABCD...WXYZ abcd...wxyz ?@&*є

Bold shape, (10pt): АБВГД...ЭЮЯ абвгд...ыьэюя
0123456789 ABCD...WXYZ abcd...wxyz ?@&*є

Italic shape, (10pt): АБВГД...ЭЮЯ абвгд...ыьэюя
0123456789 ABCD...WXYZ abcd...wxyz ?@&*є

Bold italic, (10pt): АБВГД...ЭЮЯ абвгд...ыьэюя
123456789 ABCD...XYZ abcd...wxyz ?@&*є

Slanted shape, (10pt): АБВГД...ЭЮЯ абвгд...ыьэюя

0123456789 ABCD...WXYZ abcd...wxyz ?@&*є

Small Capitals, (10pt): АБВГД...ЭЮЯ абвгд...ьэюя

0123456789 ABCD...WXYZ abcd...wxyz ?@&*є

Basil Solomykov

TUGboat, Volume 35 (2014), No. 3 277

A simple Arabic typesetting system for
mixed Latin/Arabic documents: d. ād

Yannis Haralambous

Abstract

We describeض (d. ād), a package allowing simple type-
setting in Arabic script, intended for mixed Latin-
Arabic script usage, in situations where heavy-duty
solutions are discouraged. The ض system operates
with both Unicode and transliterated input, allowing
the user to choose the most appropriate approach.

1 Introduction

As with many TEX projects, this one was started to
fulfill an immediate need: the author was writing
a paper for an Arabic language Natural Language
Processing conference [7] and hence was in need of
a straightforward way to introduce Arabic text into
his document. In this context, “straightforward” can
be subdivided into the following five requirements:

1. it should be compatible both with the IEEE

LATEX style [19] (required by the conference)
and with the WriteLATEX platform [3], of which
the author is an enthusiastic user;

2. it should allow user-friendly and robust input of
Arabic text, including when placed inside TEX
command arguments;

3. it should typeset in an optimal way all combina-
tions of letters and diacritics that may appear
in scholarly text;

4. it should provide some extra features: being
able to easily change the letter form, as well
as to colorize specific letters without breaking
contextual analysis;

5. the font should be easily readable in a context
of mixed Latin-Arabic script.

In the following discussion we will see why ex-
isting systems did not fulfill the requirements, and
how the author solved the problem.

1.1 Existing systems and their pitfalls

As we live in the 21st century, an obvious choice
for typesetting Arabic in TEX is X ETEX [12], a TEX
avatar (in)famous for typesetting in non-Latin scripts
by taking advantage of operating system resources.

Requirement 1 X ETEX indeed is provided on the
WriteLATEX platform. But the LATEX overhead for
typesetting Arabic in X ETEX is quite heavy (packages
fontspec, xunicode, arabxetex, etc.) and hence,
not surprisingly, X ETEX is incompatible with the
IEEE style.

Requirement 2 X ETEX is unable to use a transli-
teration system and hence requires the Arabic text

to be input in Arabic script and only in Arabic script.
Using a transliteration to input Arabic may seem
terribly old-fashioned to the reader, but there are
cases where it is the best solution. One of these
cases is the context of this paper: a mixture of Latin
script, Arabic script, and TEX commands.

Indeed, at the GUI level, there are—at least—
two drawbacks in combining Arabic and Latin script
in the same paragraph:

1. the use of the cursor and of left and right arrow
keys is very cumbersome: when you select a lo-
cation with the cursor you don’t know whether
you are in right-to-left or left-to-right mode and
hence you don’t know in which direction to ad-
vance, or how to select a given character string;

2. the situation is made even worse by the fact
that some punctuation marks (period, exclama-
tion mark, dashes, parentheses, braces, brackets,
etc.) are common to the two scripts and hence
the—quite sophisticated—bidirectional algo-
rithm is used to determine whether a punctua-
tion mark is to be placed on the left or on the
right of an Arabic word. The bidirectional algo-
rithm (or ‘bidi’ for the insiders) is both a bless-
ing and a curse. It is a blessing because it puts
some order in the rendering of mixed right-to-
left and left-to-right texts (cf. [6, p. 133–146])—
but this works well only if rle and lre are used
to indicate the embedding level. Otherwise, in
everyday use, bidi is a curse. Fig. 1 shows how
the TEX code for writing the word بتك with the
middle letter colorized in red is displayed by var-
ious programs under various operating systems;
not a single one of them really makes sense.

Requirement 4 Sophisticated OpenType fonts [6,
§D.9.4] handle relatively well the many letter + dia-
critic combinations, and most systems (including
X ETEX) can colorize word parts without breaking
contextual analysis through the use of the zero-width
joiner character [6, p. 104]. But not a single system
is able to colorize single letters inside ال , since this
ligature has always been considered as a single glyph
by font designers.

Requirement 5 The best way to match Latin and
Arabic script is to choose an Arabic font with rela-
tively small differences in height between letters. A
quite common choice is the font Geezah by Diwan
Software Ltd (developed for Apple WorldScript in
the early nineties, and still included in MacOSX,
through today). Geezah is a nice font but its dia-
critics are placed rather suboptimally, and modifying
their positions requires a high amount of competence
in fiddling around with OpenType features.

A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād

278 TUGboat, Volume 35 (2014), No. 3

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: To obtain ب‍ت‍ك with letter ‍ت in red, the author has typed the Unicode string
“kāf, zwj (zero-width joiner), \red{, zwj, tā❡, zwj, }, zwj, bā❡”. Here is the result, in
the following environments: (a) Chrome under MacOSX, (b) Safari under MacOSX,
(c) Firefox under MacOSX, (d) Internet Explorer under Windows 8, (e) Iceweasel
under Debian, (f) Mellel under MacOSX, (g) Nisus under MacOSX, (h) BBEdit
under MacOSX. The reader can see the variety of contextual forms displayed in these
examples. It is obviously not straightforward to understand the meaning of the code,
and using the cursor to edit it is no less than a Lovecraftian nightmare.

In transliteration this code snippet is simply written k-\textcolor{red}{-t-}-b.

1.2 The long and winding road towards
a solution

Obviously, Requirement 1 and WriteLATEX compat-
ibility ruled out Ω [8, 9, 10], despite its powerful
machinery for defining transliterations and applying
contextual analysis. X ETEX was ruled out since it
satisfies none of the requirements (1), (2), (4) or (5).
The two remaining choices are pdf(e)TEX [2] (with
bidirectional typesetting support) and LuaTEX [11].

Let us make a two-decade jump back in time.
On April 12, 1993, the author organized a work-
shop entitled “TEX and the Arabic Script”, at the
National Institute of Oriental Languages and Civi-
lizations (INALCO) in Paris. One of his contributions
to this workshop was a public domain Arabic TEX
font in Geezah design, in which the contextual analy-
sis was entirely done via TEX’s smart ligatures and
boundary characters [13]. This is indeed the simplest
approach: no extra technology was required other
than TEX–XET bidirectional typesetting and TEX3
smart ligatures. Nevertheless that font had a serious
pitfall: because the number of glyphs was limited
to 256, it was impossible to handle automatically
quadriform letters followed by a vowel. In that case,
it was necessary to introduce a vertical bar between
the letter and the vowel, so as to obtain its final
(or isolated) form (as for example, in بٌاتك = ktAbuN

which had to be written ktAb|uN). The proceedings
of this workshop were planned to be published in
the Cahiers GUTenberg, but this never happened—
which is a pity since among the speakers was also the
legendary creator of the Moroccan simplified Ara-
bic writing system [15, 17], Ahmed Lakhdar-Ghazal
(† 2008).

As building a font based entirely on smart liga-

tures was an interesting approach, the author tried
to investigate ways of succeeding now where he had
failed in 1993, by the use of modern technologies.

A first idea was to create ligatures between let-
ters and digits 0–3 to obtain contextual forms of the
letters, and to have some other mechanism insert
the digits. Indeed, LuaTEX provides callbacks for
both the token and the node list, which would be
natural choices for such a mechanism. Traversal of
the node list by LuaTEX is quite efficient, but unfor-
tunately unsuitable for this particular project since
at that stage, ligatures have already been applied, so
it is too late to insert digits among the nodes. After
some attempts, the token list callback was abandoned
since it is still in a very rudimentary state. Also,
unfortunately, LuaTEX has not yet implemented Lua
patterns, which are a kind of regular expressions, and
would make programming the contextual analysis
much easier.

A second idea was to use large virtual fonts to
encode all letter + diacritic combinations, so that
the 1993 approach would be applied not to letters
alone, but to letter + diacritic combinations. But
the attempt to generalize the 1993 approach to large
virtual fonts (OVF) has failed as well, because OVFs
do not provide support for Knuth’s boundary charac-
ter (indeed, in Ω, ΩTPs provide a much more elegant
solution to the word boundary problem, and there-
fore the boundary character was left out of the Ω
system, but again LuaTEX does not provide ΩTPs).
In this approach, the default form of a letter would
be the medial one, and boundary characters would
turn a letter into initial, final or isolated form.

The third attempt proved successful: instead of
using boundary characters, the author used smart

Yannis Haralambous

TUGboat, Volume 35 (2014), No. 3 279

ligatures between characters. In this case, the default
letter form is the isolated one. The presence of
a second letter changes the form of the first from
isolated to initial, and the one of the second from
isolated to final. A third letter will turn the second
letter into middle form and the third letter into final
(provided, of course, the second letter is quadriform),
and so on. More details are given in § 4.

2 The name

The next question was what to name the package.
Thanks to the Internet, search engines, social

media, and the like, people are becoming more and
more aware of other languages and writing systems.
Why not give this package an Arabic name, be it a
single letter?

The author has chosen the letter ,ض called d. ād,
because Arabic is traditionally called the “language
of the d. ād”, since this sound was historically consid-
ered as being unique to Arabic.

The reader is probably wondering how to pro-
nounce this letter, technically a “voiced velarized
alveolar stop” [18, p. 16]. Here is how [20, p. 10]
describes its pronunciation:

Pronounce the regular sound ‘d’ and you will
find that the tip of your tongue will touch
in the region of the upper front teeth/gum.
Now pronounce the sound again and at the
same time depress the middle of the tongue.
This has the effect of creating a larger space
between the tongue and the roof of the mouth
and gives the sound produced a distinctive
‘hollow’ characteristic, which also affects the
surrounding vowels. It is difficult to find a
parallel in English, but the difference between
‘Sam’ and ‘psalm’ (standard English pronunci-
ation) gives a clue. Tense the tongue muscles
in pronouncing ‘psalm’ and you are nearly
there. Now pronounce the a-vowel of ‘psalm’
before and after ‘d. ’, saying ‘ad. a’, keeping the
tongue tense, and that’s as near as we can get
to describing it in print.

3 How to use ض

The package provides three PostScript Type 1 fonts
(plain, bold and typewriter), “real” fonts (regular
TFM) and large virtual fonts (OVF and OFM files).
There are also rudimentary FD and STY files, a
MAP file, Perl scripts for conversion to (and from)
UTF-8, the Perl script which builds the font and
finally adjustment files, in case the user wants to
change kerning and diacritic placement.

It requires LuaTEX for change of direction and
OVF/OFM compliance.

To typeset in Arabic, one need only load the dad
package and use the macro \arab, which is a \long

macro: its argument may have multiple paragraphs.
Arabic text can be input in transliteration as

described in Table 1 or in UTF-8. To obtain, for
example, باتكِلا one would write \arab{AlkitAb} or
\arab{ باتِكلا }. By writing \arabtt{AlkitAb} one
obtains the typewriter version باتِكلا (which is less
appealing, but fits quite nicely with the Computer
Modern Typewriter font).

3.1 Rationale of the transliteration

Here are the rules of the proposed transliteration
(see Table 1):

1. pharyngeal ح = H, emphaticص = S,ض = D, ط =
T, ظ = Z and velar غ = R are uppercased —do not
confuse them with glottal ه = h, non-emphatic
س = s, د = d, ت = t, ز = z, and alveolar ر = r;

2. long vowels =ا) A, =و U, =ي Y) and ❡alif maqs.ūra

ى) = I) are also uppercased ;
3. some consonants are modified by adding a char-

acter h ذ) = dh, ث = th, ش = sh);
4. the stand-alone hamza is obtained by a vertical

bar | and letter ❢ayn by a grave accent (which,
in legacy TEX produces an inverted curly apos-
trophe, which is sometimes used to transliterate
this letter);

5. to avoid confusion between pairs of letters and
letters obtained by digraphs, one has to use a
dash to separate characters: compare هس = s-h

and ش = sh, or هت = t-h and ث = th;
6. more generally, the dash plays the rôle of zero-

width joiner :1 when writing ب = -b, the letter
bā❡ will be in final form; ‍ب = b- and ‍ب = -b- will
produce initial and middle letters, provided of
course the letter is quadriform (as is letter bā❡

in this example). This is very useful when de-
scribing grammar rules, to signify that a letter
(or letter group) is an affix;

7. the dash can also be used to reestablish con-
textual forms when combined with TEX com-
mands, for example, to colorize letters as in
Fig. 1. There is only one special case: when we
want to colorize a letter of an isolated ligature
ال , we add a digit 4 in front of the dash. For the
final ligature ال it will be a digit 5. Example: to
colorize the lāms of ا‍لا‍ل‍ت , write

\arab{t-\textcolor{red}{-l5-}-A5%

\textcolor{red}{l4-}-A4}

1 Except for the case of letter ذ = dh which is biform and
hence is not connected with the following letter. By writing
ه‍د = d-h one obtains letters dāl and hā

❡, but the hā
❡ is not in

medial form, as it would be in any other case when preceded
by a dash.

A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād

280 TUGboat, Volume 35 (2014), No. 3

Table 1: Transliteration of ض system

ء | آ ’A أ ’a ؤ ’u إ ’i ئ ’I

ا A ب b ة t* ت t ث th ج j

ح H خ x د d ذ dh ر r ز z

س s ش sh ص S ض D ط T ظ Z

ع ‘ غ R ف f ق q ك k ل l

م m ن n ه h و U ى I ي Y

ٱ A* ûْ o ûَ a ûِ i ûُ u ûً aN

ûٍ iN ûٌ uN ûّ + û� +a û� +i û� +u

û� +aN û� +iN û� +uN ûٰ a* ûê +a* ه�ل LLh

پ p گ g چ C ژ J ۀ e ڤ v

ے ’b ں ’n ڡ ’f ٯ ’q ûٓ a** û� +a**

8. finally, there is yet another use of the dash: when
doubled, it produces a kashida stroke: compare
ليل = lYl and لـيـل = l--Y--l. There is also a

\kesh command for extensible kashida (equiv-
alent to a \hrulefill using the default rule
thickness font dimension \fontdimen8):
l--\kesh--Y--\kesh--l. produces:

.لــيــل
9. some digraphs start with an apostrophe: the

hamza-carriers أ = ’a, إ = ’i, ؤ = ’u, ئ = ’I,
آ = ’A and also undotted letters bā❡ ے = ’b,
nūn ں = ’n, fā❡ ڡ = ’f and qāf ٯ = ’q;

10. other digraphs end with one or more asterisks:
the most frequent one is the tā❡ marbut.a ة =
t* (which can be used also in initial and me-
dial forms, and then becomes a regular tā❡).
The asterisk is also used for the was. la (which
is only placed on the ❡alif) ٱ = A* as well as for
the vertical fath. a (as in اذٰه = ha*dhA) and the
madda. The latter is normally used only on the
❡alif آ) = ’A) but can be found also in the notori-
ous muqat.t.a

❢āt in the Koran, as in قٓسٓعٓ (Koran

42:2) or صٓعٰٓيٰهكٓ (Koran 19:1)—sometimes it is
even combined with a šadda (as in صٓ�ملٓا , Koran

7:1 and [21, p. 111] for the šadda);
11. a special transcription is provided for the lig-

ature ه�ل = LLh used for the ةلالجلامسا “noun
of majesty”, which is the name of God ه�لا : in

this case—and in this case only—an upper-
case L is used. The reason is that we wish to
avoid ambiguity with other uses of the trigram
lām-lām-hā❡, for example ُهْللِضُْي (Koran 6:39)
where we encounter letters هلل but not with the
meaning “God”. In contrast to other systems,
the ه�ل ligature is available also in final form
(for هِ�لَِف which occurs six times in the Koran,
for example Koran 6:149), and it is possible to
add diacritics to its first glyph (as in هِ�لَِو , Koran

2:115 or هِ��ل , Koran 2:165).

3.2 Unicode input

Input can be transliterated or provided directly in
Unicode Arabic: \arab{YAnis} or \arab{ سِـناي } or
even \arab{ اي nis} or \arab{YA سِـن } will produce
the same result: سِناي .

All cells of Table 1 can be obtained by the cor-
responding Unicode characters (mostly via a single
character, except for šadda + vowel combinations
which require two characters). There is a special
case, though: the ه�ل ligature (see next section).

For the convenience of the user who wants to
write kashida (so that Arabic input is not disrupted)
we have defined a command (in Arabic characters)
طت \ (طت are the first two letters of ليوطت = tat.wyl, the

Arabic name of kashida) which is exactly equivalent
to \kesh and has to be placed between Unicode
U+0640 arabic tatweel characters.

Yannis Haralambous

TUGboat, Volume 35 (2014), No. 3 281

\documentclass{article}

\usepackage{dad}

\begin{document}

Weak. Weak verbs are those with one or more
weak letters و) or (ي as radicals. There are four
sub-classes:

• Assimilated. Assimilated verbs have ini-

tial و or (much more rarely) ,ي and two sound
radicals or middle ء and a sound final radical.
Typical doubled roots are سبي , لصو .

• Hollow. Hollow verbs have middle و or ي and
two sound radicals or initial ء and a sound
final radical. Typical hollow roots are لوق ,
ريص .

• Defective. Defective verbs have final و or
ي and two sound radicals. Typical roots are
وجر , يمر .

• Doubly weak. Doubly weak verbs have two
weak radicals, ,و ي or .ء Typical doubly weak
roots are يلو , ىوس , يتأ , يأر , ءوس .

\textbf{Weak}. Weak verbs are those with one

or more weak letters (\arab{U} or \arab{Y})

as radicals. There are four sub-classes:

\begin{itemize}

\item\textbf{Assimilated.} Assimilated verbs

have \emph{initial} \arab{U} or (much more

rarely) \arab{Y}, and two sound radicals or

middle \arab{|} and a sound final radical.

Typical doubled roots are \arab{Ybs},

\arab{USl}.

\item\textbf{Hollow.} Hollow verbs have

\emph{middle} \arab{U} or \arab{Y} and two

sound radicals or initial \arab{|} and a

sound final radical. Typical hollow roots

are \arab{qUl}, \arab{SYr}.

\item\textbf{Defective.} Defective verbs have

\emph{final} \arab{U} or \arab{Y} and two

sound radicals. Typical roots are \arab{rjU},

\arab{rmY}.

\item\textbf{Doubly weak.} Doubly weak verbs

have two weak radicals, \arab{U}, \arab{Y}

or \arab{|}. Typical doubly weak roots

are \arab{UlY}, \arab{sUI}, \arab{’atY},

\arab{r’aY}, \arab{sU|}.

\end{itemize}

In the middle of a verse hamzah is merged with
the final vowel of the preceding word, e.g., قََلهَك

َناَسْنإِْلا , He created man. Note that the َق or قََلَهك has
joined the ْل or َناَسْنإِْلَأ and while the hamzah sign
has disappeared from the text, ’alif is retained
but it is not pronounced.

Practice text 11
1. Man says — ُناَسْنإِْلاَلاَق
2. Does man think? — ُناَسْنإِْلاُبَسْحَيَأ
3. He said: How long hast thou tarried? — ْمَكَلاَق

َتْثِبَل
4. The truth is out— �قَحْلاَصَحصَْح
5. He created man from dry clay — َناَسْنإِْلاانََقَلهَك

ٍلاصَْلصَْنِم

In the middle of a verse \emph{hamzah} is

merged with the final vowel of the preceding

word, e.g., \arab{khalaqa Alo’iinosaAna},

He created man. Note that the \arab{qa}

or \arab{khalaqa} has joined the \arab{lo}

or \arab{’aalo’iinosaAna} and while the

\emph{hamzah} sign has disappeared from the

text, \emph{’alif} is retained but it is not

pronounced.\\[6pt]

\textbf{Practice text 11}\\

1. Man says --- \arab{qaAla Alo’iinosaAnu}\\

2. Does man think? --- \arab{’aaYaHosabu

Alo’iinosaAnu}\\

3. He said: How long hast thou tarried? ---

\arab{qaAla kamo labithota}\\

4. The truth is out --- \arab{HaSoHaSa

AloHaq+u}\\

5. He created man from dry clay ---

\arab{khalaqanaA Alo’iinosaAna mino

SaloSaAliN}

\end{document}

Figure 2: Sample LATEX document using ض ([16, p. 5] and [21, p. 54–55])

A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād

282 TUGboat, Volume 35 (2014), No. 3

3.2.1 The ه�ل ligature and Unicode

The ه�ل ligature is traditionally used for writing the
name of God: ه�لا . It can be found in religious texts,
but also in expressions (for example, ه�لاءاشنإ which
means “hopefully” appears even in the French lan-
guage as inchallah and in Portuguese as oxalá) and
in the very common surname ه�لادبع Abdullah.

The problem with this ligature is that it con-
tains a rather rare diacritic (a šadda combined with
a vertical fath. a—the latter is available in the Apple
Arabic keyboard layout but not the Microsoft one)
and, as a convenience, most standard fonts will re-
place the character string lām-lām-hā❡ (which would
normally look like هلل) by the complete ligature ه�ل ; in
other words: the font not only changes the glyphs
but, at the same time, also adds the diacritics. This
behavior is barely legitimate: a ligature (as in ‘fi’ or
‘ ال ’) is normally limited to a change of glyphs, and
should not add new characters (in this case, charac-
ters U+0651 arabic shadda and U+0671 arabic

letter superscript alef) since this means that
what is rendered no longer corresponds to the under-
lying Unicode character string.

Nevertheless, for the user’s convenience, we have
adopted that behavior also in ,ض but only in the
case of Unicode input. Therefore when the user
types Unicode lām-lām-hā❡ (the first lām must not
be preceded by a quadriform letter), the system will
produce the ه�ل ligature.

This method will not work if a diacritic is in-
serted between the two lāms, or if the first lām

follows a quadriform letter and hence will be medial.
For that case, we have defined a macro هلل / (the
macro name is in Arabic script so that right-to-left
direction is not disrupted) which takes an argument:
the vowel between the two lāms. Hence, to obtain
هِ�لَِف the user can choose between one of the following:

ûِ {ûِ } هلل / َـف

faLiLhi

The dotted circle, used to show the combining nature
of short vowels and other diacritics, can be obtained
by the macros \arabdottedcircle or ةرئاد / with
the macro name in Arabic script.

4 TEXnicalities

The ض font is a tour de force of smart ligature use:
for example, to obtain k1t2b3 (بتك) out of ktb =
k0t0b0 (or "0643"062A"0628) input, one needs the
following smart ligatures:

k0 LIG/ t0 → k1 t0

k1 /LIG t0 → k1 t3

t3 LIG/ b0 → t2 b0

t2 /LIG b0 → t2 b3

∅
l0

ل
ll0

لل
ll5A3

الل

ll1k3

كلل
LLh0

ه�ل
l1k3

كل
l4A4

ال

l0 ل l0 ل A0 ا

k0 h0ك k0ه ك
A0 ا

Figure 3: Finite state automaton starting with an
isolated lām (❡alif ا stands for the set of letter A = { ,ا
,أ ,إ ,آ ٱ }; ك stands for any Arabic letter besides ه and
set A.

as well as the following four for Unicode input:

"0643 LIG/ "062A → k1 t0

k1 /LIG "062A → k1 t3

t3 LIG/ "0628 → t2 b0

t2 /LIG "0628 → t2 b3

The first ligature of each group leaves t/"062A un-
changed (isolated) and turns k/"0643 into initial
form. Then the second ligature takes k1t0/k1"062A,
leaves k unchanged (initial) and turns t/"062A into
final form. But, because of the following b/"0628,
the third ligature will turn t into medial form, leaving
b/"0628 unchanged. And, finally, the fourth ligature
will leave t unchanged and turn b/"0628 into final
form. It is noteworthy that t changes form thrice:
from isolated (default) it turns into final and then
into medial form.

All basic Arabic glyphs are placed into the first
8-bit table. Then one 8-bit table (except for table
"06xx which is used for Unicode input) is added for
every letter + diacritic(s) combination, so that we
have, in total, 20 tables. The complete font contains
3,514 virtual glyphs, 403,913 ligatures (321,935 of
which are smart) and 7,810 kerns.

The most challenging letter is lām: the font
contains 3 initial lāms, 4 medial ones as well as 3
“fake” ligatures lām-lām (“fake” in the sense that
they are only needed because of TEX’s approach of
building ligature stepwise and hence needing inter-
mediate steps for all ligatures of length three and
more: to obtain the lām-lām-hā❡ ligature (see § 3.2.1)
one needs an intermediate lām-lām, even though this
pair of letters does not take any special form. In
Fig. 3 the reader can see the finite state automaton
starting with an isolated lām.

The virtual OVP font is built from the met-
rics of the PostScript Type 1 font by a Perl script.
This script also reads configuration files specifying
all kern pairs as well as all horizontal and vertical
adjustments of diacritics. By this method, every
letter has its diacritics placed at optimal positions.
To compile the OVP file produced by the script into

Yannis Haralambous

TUGboat, Volume 35 (2014), No. 3 283

OVF, it is mandatory to use tool wovp2ovf of ver-
sion higher than “1.13 (build 34787)”, which will be
included in TEX Live 2015.

Names of PostScript glyphs are standard,2 so
that copy-paste from a PDF file results in almost
perfect Unicode strings.

4.1 Conversion to and from UTF-8

As a tool for users, we provide two Perl scripts al-
lowing conversion from UTF-8 to our transliteration
scheme and back. These scripts can be applied se-
lectively using, for example, the feature of many
advanced text editors of applying text filters to se-
lected text areas.

5 Conclusion

There was a period (in the early days of non-Latin-
alphabet TEX [4, 5, 14]) where transliteration of in-
put text was the only available method. Then, when
Unicode was sufficiently widespread, TEX switched
to tools allowing direct non-Latin input. In the case
of Arabic, because of the particular characteristics
of this script, this is—even today—not always the
optimal solution, especially when we are dealing with
short extracts of Arabic text combined with Latin-
alphabet text and TEX commands. Maybe now is
the time to return to methods based on translitera-
tion, as an alternative to direct-input methods. We
have implemented this approach, using only smart
ligatures, as defined by Donald Knuth in 1990 [13],
and the large virtual font format introduced by Ω
and taken over by LuaTEX.

We hope that this package will be useful to users
seeking a straightforward method to introduce short
Arabic extracts into Latin-alphabet documents.

References

[1] Adobe Systems. Adobe glyph list.
http://partners.adobe.com/public/developer/

en/opentype/glyphlist.txt, 2002.

[2] Hàn Thé̂ Thành. Micro-typographic extensions
to the TEX typesetting system. TUGboat,
21(4):317–434, 2000. http://pdftex.org.

[3] John Hammersley, John Lees-Miller, et al.
The writeLATEX online collaborative LATEX editor.
http://www.writelatex.com.

[4] Yannis Haralambous. Arabic, Persian and
Ottoman TEX for Mac and PC. TUGboat,
11:520–522, 1990.

[5] Yannis Haralambous. Towards the revival of
traditional Arabic typography through TEX.

2 These names are either taken from the Adobe Glyph
List [1], or using the standard convention uniXXXX.var where
XXXX is the Unicode position of the character and var ∈ {ini,
med, fin, iso}. Ligatures are named by the names of their
components, concatenated using underscores.

In Proceedings of EuroTEX’92, pages 293–305.
CSTUG, 1992.

[6] Yannis Haralambous. Fonts & Encodings. O’Reilly,
2007.

[7] Yannis Haralambous, Yassir Elidrissi, and Philippe
Lenca. Arabic language text classification using
dependency syntax-based feature selection.
Submitted to CITALA 2014.

[8] Yannis Haralambous and John Plaice.
First applications of Ω: Adobe Poetica, Arabic,
Greek, Khmer. TUGboat, 15:344–352, 1994.

[9] Yannis Haralambous and John Plaice. Multilingual
typesetting with Ω, a case study: Arabic. In
Proceedings of the International Symposium on

Multilingual Information Processing ’97, pages
137–154. ETL, Tsukuba, Japan, 1997.

[10] Yannis Haralambous and John Plaice. The design
and use of a multiple-alphabet font with Ω.
In Electronic Publishing, Artistic Imaging,

and Digital Typography, volume 1375 of LNCS.
Springer, 1998.

[11] Taco Hoekwater. LuaTEX. TUGboat, 28:312–313,
2007. http://luatex.org.

[12] Jonathan Kew. X ETEX, the multilingual lion:
TEX meets Unicode and smart font technologies.
TUGboat, 26:115–124, 2005. http://tug.org/

xetex.

[13] Donald E. Knuth. The new versions of TEX and
METAFONT. TUGboat, 10:325–328, 1989.

[14] Klaus Lagally. ArabTEX—Typesetting Arabic
with vowels and ligatures. In Proceedings

of EuroTEX’92, pages 153–172. CSTUG, 1992.

[15] Ahmed Lakhdar-Ghazal. Pour apprendre

et mâıtriser la langue arabe. Institut d’études et
de recherches pour l’arabisation, Rabat, Morocco,
1991.

[16] John Mace. Arabic verbs and essential grammar.
Teach yourself books, 1999.

[17] Nicole Richert. Arabisation et technologie.
Institut d’études et de recherches pour
l’arabisation, Rabat, Morocco, 1987.

[18] Karin C. Ryding. Arabic. A linguistic introduction.
Cambridge University Press, Cambridge, 2014.

[19] Michael Shell. IEEEtran LATEX class.
http://ctan.org/pkg/ieeetran, 2007.

[20] John R. Smart. Arabic. Teach yourself books,
1986.

[21] Barakat Ahmad Syed. Introduction to

Quranic script. Curzon Press, 1984.

⋄ Yannis Haralambous
Institut Mines Télécom, Télécom Bretagne,

UMR CNRS 6285 Lab-STICC
Technopôle Brest Iroise CS 83818,

29238 Brest Cedex 3, France
yannis.haralambous (at) telecom-bretagne

dot eu

A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād

284 TUGboat, Volume 35 (2014), No. 3

Visual editing (in a specialized case): prerex

Bob Tennent

Abstract

It is sometimes desirable and straightforward to sup-
port visual editing for LATEX; this article describes
one such case—course prerequisite charts, supported
by the (v)prerex programs.

1 Introduction

One of the most frequently asked questions by LATEX
beginners is whether a graphical interface “like a
word processor” is available. Most readers of this
article know how to respond: we emphasize logi-
cal structure and we point out the availability of
LATEX-friendly text editors, LATEX development envi-
ronments, preview-latex1 and, in recalcitrant cases,
Scientific Word,2 or the LYX

3 or TEXmacs4 “docu-
ment processors”. Not as often mentioned is the
difficulty of parsing arbitrary TEX documents; it’s
been said that only TEX can process TEX.

In this article, I discuss the design of a sys-
tem that allows (but doesn’t require) a form of vis-
ual editing of a specialized LATEX environment for
“prerequisite charts”.

2 Prerequisite charts

A prerequisite chart gives an attractive graphical
presentation of courses in a program (or set of related
programs), organized by terms or years, linked by pre-
and co-requisite arrows (directed edges), and, when
possible, supplemented by timetable information;
Figure 1 on page 286 is a small example. Realistic
examples may be found at http://www.cs.queensu.
ca/students/undergraduate/prerequisites.

Some notable properties of these charts:

• Each course box is sized to just enclose the text
within it, with uniform standard margins.

• Each arrow between courses is oriented from
box centre to box centre, rather than from/to
standard “connection points” on the box out-
lines.

• The arrows are “clipped” by the course boxes,
but the arrowheads abut the target box exactly.

These desirable properties are not easily achieved
using conventional drawing software, no matter how
“user-friendly” it purports to be.

1 http://preview-latex.sourceforge.net/
2 http://www.sciword.demon.co.uk
3 http://www.lyx.org/
4 http://www.texmacs.org/

In contrast, the use of LATEX to produce these
charts provides complete flexibility as well as profes-
sional quality.

• Text within a course box may be partitioned
into regions with varying characteristics. For
example, the course code and the timetable in-
formation on the first line of course boxes are
in a smaller font than the course name. The
latter is centered and the former are left- and
right-justified, respectively. Arbitrary LATEX for-
matting can be used for the text.

• Any available fonts may be used. The TEX
typesetting engine takes advantage of kerns and
ligatures in the fonts.

• Line thickness for boxes may be varied; in the
example diagram, heavier boxes (and bold-face
text) are used to indicate that a course is “re-
quired” in the program, rather than an option.

• Different styles of connectors can be used, for ex-
ample to distinguish prerequisites, co-requisites,
and recommended prerequisites.

• Various sizes or shapes of course boxes may be
used, for example to distinguish between half
and full courses.

• Graphic images such as logos can be imported.

• Colours and hyperlinks to on-line course descrip-
tions or calendars are possible.

As an example, the chart in Figure 1 is produced
by the LATEX code in Figure 2. A conventional two-
dimensional Cartesian coordinate system is used to
specify the locations of diagram elements. The origin
(where x = 0 and y = 0) is at the lower-left corner of
the diagram. The coordinates of boxes are those of its
centre point; an arrow is described by the coordinates
of the centre points of its source and target boxes.
The order of commands is not significant except that
the commands for the source and target boxes of an
arrow should precede the command for the arrow.

The prerex package5 currently uses pgf6 and
other standard packages to implement the chart

environment and a specified set of commands within
that environment. Some implementation details:

• The half-course boxes are assigned a minimum
height to give a more uniform appearance to
horizontal rows of such boxes.

• Arrows with a small height are always drawn
straight (using a specialized and simpler macro)
unless a non-zero curvature is explicitly requested.

• A wider white edge is drawn below every arrow
to improve the appearance of crossing arrows.

5 http://www.ctan.org/pkg/prerex
6 http://www.ctan.org/pkg/pgf

Bob Tennent

TUGboat, Volume 35 (2014), No. 3 285

3 The prerex editor

It is certainly possible, though rather tedious and
error-prone, to use a conventional text editor to
create and revise such descriptions, with some op-
erations, such as global or partial “shifts” of chart
elements, being particularly problematic.

The prerex editor is a C program that allows
chart descriptions to be edited interactively. The
editor supports add, remove, cut-and-paste, and edit
operations on diagram elements, and vertical or hori-
zontal shifts of: a list of specified elements, all the el-
ements in a rectangular region, or the entire diagram.
The edited diagram may be saved, re-processed, and
viewed in any PDF viewer, without exiting the editor.

The program reads the source file (possibly for
an initial “blank” chart), saving text until the chart
environment is found, then parses the chart com-
mands into an internal representation of the diagram.
The rest of the source file is saved as text. Macro
definitions and calls are not processed or expanded.

When the internal representation of the chart
(linked lists of node and arrow data) is available,
it is routine to implement editing operations. At
any time, the user can ask for a source file to be
re-created (using the saved texts and the possibly re-
vised internal representation) and then re-processed.
The revised output is available in about four seconds
and can be observed in any PDF viewer.

Also observable in most PDF viewers are the
coordinates of nodes, or the coordinates of the ini-
tial and terminal nodes of arrows, when the cursor is
moved over the node or arrow; this is because, during
editing, the usual URL associated with nodes is re-
placed by a special URI containing these coordinates.
On initialization, a coordinate grid is generated for
the background of the chart in order to facilitate
determination of coordinates. If necessary, the user
can “escape” from the editor to a shell, for example,
to edit the source file with a conventional text editor.
A multi-level “undo” command is available. If a box
is “cut” and then “pasted” elsewhere, the target or
source coordinates of arrows into or out of the box
are adjusted automatically, and similarly if nodes
are shifted or raised.

The source code for the prerex editor is avail-
able in the documentation directory of the prerex

package. The only non-standard library dependence
is readline (or libedit).

4 The vprerex interface to prerex

Of course, interactive editing with revisions moni-
tored in a PDF viewer is not what is usually meant
by visual editing. But most of the convenience of
visual diagram editing can be obtained by simply

allowing coordinates of “selected” diagram elements
or background points to be conveyed via the “clip-
board” from the PDF viewer to the prerex editor
command line.

To implement this, a bare-bones open-source
PDF viewer was hacked so that, when nodes, arrows
or background points are mouse-clicked, the relevant
chart coordinates are loaded into the clipboard. For
nodes and arrows, the relevant chart coordinates are
already available in the special URIs. For background
points, it is necessary to transform PDF coordinates
into chart coordinates. To allow this transformation,
two “anchors” (i.e., virtual nodes) are inserted at
the southwest and northeast corners of the chart;
from their PDF coordinates and their known chart
coordinates, it is possible to compute the chart co-
ordinates of arbitrary clicked points on the chart.
All the vprerex application does is to start up the
prerex editor in an xterm terminal and the prerex-
enabled PDF viewer. This naive approach to visual
editing is relatively simple to implement and quite
pleasant to use.

The source code for the vprerex application
is available in the documentation directory of the
prerex package. It depends on the poppler-qt4

and other Qt-4 libraries.

5 Discussion

An interactive editor like prerex is feasible because
it only has to deal with a single very specialized
environment and specialized commands within that
environment. The “visual editor” vprerex is notable
for being unambitious: it simply puts coordinates
into the clipboard for the user to convey to the inter-
active editor, whereas very ambitious projects such as
VorTEX (Visually-oriented TEX) [1] and TEXLite [2]
have apparently foundered. Perhaps the approach
described here might be applicable to other projects
which could benefit from a form of visual editing.

References

[1] Pehong Chen et al. The VorTEX document
preparation environment. In TEX for Scientific

Documentation, volume 236 of Lecture Notes in

Computer Science, pages 45–54. Springer, 1986.
[2] Igor I. Strokov. A WYSIWYG TEX

implementation. TUGboat, 20(4):356–359,
December 1999. http://tug.org/TUGboat/

tb20-4/tb65strok.pdf.

⋄ Bob Tennent

School of Computing, Queen’s University

Kingston, Ontario K7L 3N6 Canada

rdtennent (at) gmail dot com

http://www.ctan.org/pkg/prerex

Visual editing (in a specialized case): prerex

286 TUGboat, Volume 35 (2014), No. 3

Computer
Science 1083 TTh 10:00

Comput. Sci.

Concepts1303 MWF 9:30

Discrete
Structures

2813 MWF 8:30

Computer
Organiz. I

2023 MWF 2:30

Procedural
Prog. Devel.

2513 TTh 1:00

Informat.
Systems

1083

2333 TTh 11:30

Computab. &
Formal Lang.

2013 MWF 11:30

Software
Engineer. I

2685 no

C++

Program.

2013

3323 MWF 10:30

Data
Structures

3813 TTh 8:30

Comput.
Organiz. II

3413 MWF 9:30

Operating
Systems I

3013 MWF 11:30

Software
Engineer. II

3513 MWF 8:30 pm

Database
Mngt. Sys. I

3503 TTh 10:00

Sys. Anal.
& Design

• A solid arrow indicates a required prerequisite, a dotted arrow indicates a corequisite (to

be taken before or concurrently), and a dashed arrow indicates a recommended prerequisite.

Core courses are in bold boxes; other courses (i.e., options or prerequisites) are in light boxes.

• Timetabling abbreviations: M, T, W, Th, F=Mon, Tue, Wed, Thur, Fri, resp.; eve=7:00–9:50 pm; no=not offered.

Figure 1: A prerex-formatted prerequisite chart

\begin{chart}

\text 10,50:{\Large Computer\\\Large Science}

\reqfullcourse 50,45:{1083}{Comput.\,Sci.\\Concepts}{TTh 10:00}

\reqhalfcourse 25,40:{1303}{Discrete\\Structures}{MWF 9:30}

\reqhalfcourse 30,30:{2813}{Computer\\Organiz.\,I}{MWF 8:30}

\prereq 50,45,30,30:

\prereq 25,40,30,30:

\reqhalfcourse 45,30:{2023}{Procedural\\Prog.\,Devel.}{MWF 2:30}

\prereq 50,45,45,30:

\reqhalfcourse 65,30:{2513}{Informat.\\Systems}{TTh 1:00}

\coreq 50,45,65,30:

\mini 10,26:{1083}

\reqhalfcourse 10,20:{2333}{Computab.\,\&\\Formal\,Lang.}{TTh 11:30}

\prereq 25,40,10,20:

\prereq 10,26,10,20:

\reqhalfcourse 45,20:{2013}{Software\\Engineer.\,I}{MWF 11:30}

\prereq 45,30,45,20:

\halfcourse 55,20:{2685}{\texttt{C++}\\Program.}{no}

\prereq 45,30,55,20:

\mini 21,16:{2013}

\reqhalfcourse 15,10:{3323}{Data\\Structures}{MWF 10:30}

\prereq 25,40,15,10:

\prereq 21,16,15,10:

\reqhalfcourse 25,10:{3813}{Comput.\\Organiz.\,II}{TTh 8:30}

\prereq 30,30,25,10:

\reqhalfcourse 35,10:{3413}{Operating\\Systems\,I}{MWF 9:30}

\prereq 30,30,35,10:

\recomm 45,20,35,10:

\halfcourse 45,10:{3013}{Software\\Engineer.\,II}{MWF 11:30}

\prereq 45,20,45,10:

\halfcourse 58,10:{3513}{Database\\Mngt.\,Sys.\,I}{MWF 8:30 pm}

\prereq 65,30,58,10:

\prereq 45,20,58,10:

\reqhalfcourse 70,10:{3503}{Sys.\,Anal.\\\&\,Design}{TTh 10:00}

\prereq 65,30,70,10:

\end{chart}

Figure 2: LATEX source for the prerequisite chart in Fig. 1

Bob Tennent

TUGboat, Volume 35 (2014), No. 3 287

l3build—A modern Lua test suite
for TEX programming

Frank Mittelbach, Will Robertson and
The LATEX3 team

Contents

1 Introduction 287

2 History 287
2.1 The needs in the ’90s 288
2.2 The general approach 288
2.3 The new needs (in the new century) 289

3 Overview of the new system 289
3.1 Modes of testing 290

4 Setting up the regression test system 290
4.1 Creating and checking test output . 290
4.2 An example driver file 291
4.3 The structure of test files 291
4.4 Options 292

5 Operating the system 292

6 Acknowledgements 293

1 Introduction

Regression tests are an important tool in any mod-
erately complex programming environment. They
allow the programmer to make extensive changes to
their code while providing confidence that something
that used to work still does. Extensive regression test
suites have been an essential component of the main-
tenance and development of LATEX2ε and LATEX3.

A regression test suite is typically composed of
a number of individual files that contain one or more
testable units of the code being tested. A testable
unit might be either a certain computation with
an expected outcome, a series of logic tests, or—
in particular for TEX-based code—material that
is typeset and intended to achieve some particular
formatting.

During code development and before any new
code is released to the public, this test suite can
be compiled to ensure that any changes to the code
have not introduced bugs or changed the behaviour
compared to previous versions. As bugs in the code
are reported, minimal examples demonstrating the
bug often form test files of their own, showing that
the bug has been fixed and won’t re-occur.

As TEX-based code operates in at least three dif-
ferent ‘modes’ (mouth, stomach, and output), regres-
sion testing is more complex than simply asserting
the outcome of certain programming logic. As part

of the work of the LATEX3 project, a new Lua-based
testing environment has been written to support
ongoing development. This testing environment, pre-
sented at the 2014 TUG conference in Portland [3],
is suitable for use by the general TEX community.

2 History

The ideas for a regression test suite for LATEX date
back to the early nineties1 when LATEX2.09 existed
in various incompatible flavours around the world
due to its limitations in properly supporting font
selection, complex mathematics, and languages other
than English. Because of that situation LATEX2ε was
designed and implemented to reunite the different
format and to provide a stable platform for future
LATEX development.

However, to successfully introduce LATEX2ε as
an accepted successor of LATEX2.09 it was essential
to win over the huge LATEX user base and provide
them with a system that was as stable and upward
compatible as possible. Thus existing user interfaces
should be preserved and typesetting should provide
identical output except in those cases where bug fixes
or deliberate design decisions resulted in changes.

To achieve this we devised a validation mech-
anism that could be used to ensure that interfaces
behave as expected and typesetting results do not
change even though the underlying code gets mod-
ified. With this in place the LATEX3 Project Team
together with additional volunteers set out to create
a large number of test files and verify them against
the current LATEX2.09 implementation. Figure 1
shows the original request for volunteers (exhibiting
a severe underestimation of the amount of work in-
volved); see also [2] for a more extensive description
of this endeavor.

This effort resulted in something like 200 test
files that were then used to assure ourselves that
the new LATEX2ε implementation was faithfully sup-
porting all interfaces— it was one of the key factors
that ensured the new system became an accepted
replacement for LATEX2.09 within a reasonably short
period.

Once in place this regression test suite was aug-
mented over time and now contains roughly 350 test
files altogether. Whenever a bug was found and fixed
we added a new test file that would exhibit the unde-
sired behavior if that bug would somehow resurface
through later changes.

Though not perfect (after all we introduced a
number of bugs that initially were not caught by the

1 As with many ideas in the TEX world, this one too can
be partly traced back to Don Knuth, who already provided
his own regression test for TEX a decade earlier [1].

l3build—A modern Lua test suite for TEX programming

288 TUGboat, Volume 35 (2014), No. 3

Validating LATEX2.09

Writing test files for regression testing:
checking bug fixes and improvements to verify
that they don’t have undesirable side effects;
making sure that bug fixes really correct
the problem they were intended to correct;
testing interaction with various document
styles, style options, and environments.
We would like three kinds of validation files:

1. General documents.

2. Exhaustive tests of special
environments/modules such as tables,
displayed equations, theorems, floating
figures, pictures, etc.

3. Bug files containing tests of all bugs that
are supposed to be fixed (as well as those
that are not fixed, with comments about
their status).

A procedure for processing validation files
has been devised; details will be furnished
to anyone interested in this task. Estimated
time required: 2 to 3 weeks, could be
divided up.

Figure 1: Original request for volunteers

regression test suite), the approach served us very
well and prevented a number of horrible mistakes that
would otherwise have made it into public releases
of LATEX.

2.1 The needs in the ’90s

With the initial regression test suite we solved a
number of burning problems. First of all we wanted
to be confident that the code and the documented
user interfaces worked as expected. Whenever we
recoded an internal function the test suite would au-
tomatically alert us if that resulted in any noticeable
changes at the user level or in downright bugs.

Furthermore LATEX2ε came with much more
documentation and the tests included compiling and
checking the documentation files for errors and miss-
ing references.

In addition the Makefiles that ran the tests also
included goals to build the distribution automati-
cally. Compared to LATEX2.09, which consisted of
very few files, the format for LATEX2ε was generated
from many source .dtx files, so the housekeeping
complexity was greatly increased.

Another issue we had to tackle was that the
code was no longer maintained by a single person
but by developers living in different places around
the world and using different operating systems and

installations. So the regression suite had to function
with different installations without creating spurious
differences.

Finally all tasks had to work without user in-
tervention or manual work because only in that case
will such a system be used on a regular basis and
thus benefits be realized.

2.2 The general approach

Designing a test system for verifying TEX’s type-
setting behavior is not easy—how do you test for
correctness and how do you ensure that the tests are
repeatable over time and in different places?

The approach we came up with was to build
test files that generate suitable data in their .log
files. Suitable data would be, for example, the state
of counters or dimensions produced with \showthe,
data written with \typeout, and box content shown
with \showbox. Some of the tracing parameters
of TEX could be used to verify paragraph build-
ing or page breaking decisions, but something like
\tracingall would be inadvisable, as that would
show the internal coding and not the expected func-
tionality.

The result of running such a test file would then
be manually verified and stored away as a certified re-
sult. However, as many readers will already be aware,
LATEX’s .log files contain a lot of irrelevant data,
some of which differs from run to run and some of
which differs when running on different installations.
So to make this approach workable we introduced
a cleanup step in which we modified the result files
removing irrelevant material and normalized some of
the remaining parts. Of course one has to be careful
not to sanitize too far, but we found a number of
things necessary or at least advisable, including

• shortening file path info to avoid differences
between installations

• drop empty lines (different TEX implementations
put in different numbers of these)

• drop line numbers in ‘on line <num>’ to avoid
differences just because extra lines got intro-
duced in a test file.

Putting it all together we ended up with a system
consisting of test files (with the extension .lvt), cer-
tified result files to compare against (extension .tlg)
and a fairly complex Makefile and a number of Perl
scripts used to run the different tasks. These tasks
included running the test suite, producing the doc-
umentation and generating the distribution (ready
to be shipped to CTAN). It also contained a number
of special functions such as unpacking and locally
installing the code, cleaning up the source directories,

Frank Mittelbach, Will Robertson and The LATEX3 team

TUGboat, Volume 35 (2014), No. 3 289

checking individual test files, and producing a new
.tlg file for a given test file.

2.3 The new needs (in the new century)

As mentioned above, the initial system served us
well, when moving from LATEX2.09 to LATEX2ε and
then throughout the ’90s, which had very active
LATEX2ε development with releases produced at half-
year intervals.

In this century, development of the core of the
LATEX2ε kernel has slowed to a minimum (releases
are now only every couple of years and the changes
are small) while it has intensified in other areas such
as actively progressing the development of the LATEX3
programming language expl3. With this new focus,
newly important requirements for a regression test
system became apparent.

Instead of a single distribution we now had to
deal with a growing number of distributions: core
LATEX2ε and its packages, Babel (with a different
release cycle), expl3 and possibly smaller and larger
distributions of third party code that also wanted to
benefit from a functional regression test system.

Windows and MacOSX became the operating
systems of choice for several developers and the Make-
file approach of the original test suite did not work on
Windows and only with modifications on MacOSX.

Last but not least, a number of new TEX-based
engines matured and people now wanted to use LATEX
and friends not only on pdfTEX but also on these new
engines all of which provided additional capabilities.
These new engines showed a number of subtle differ-
ences when adding data to the .log file, or due to
extended capabilities showed additional data (such
as extra nodes in listings). Furthermore the new
engines still have bugs and a number of them showed
up when we initially ran test files and compared their
output with the certified .tlg data.

Thus testing became a multi-dimensional prob-
lem: one had to verify test results with several en-
gines and it had to work on multiple operating sys-
tems. Furthermore new code sources posed new or
different requirements for building a distribution or
doing the testing and we soon found that the original
approach made a number of hardwired decisions that
were no longer applicable if the system was used with
a distribution different from LATEX2ε.

For a short while we tried to accommodate the
need for Windows support by using a set of .bat files
in parallel with the Makefile approach but obviously
that was doomed to failure, being impractical to
maintain. Another avenue we explored was switch-
ing to a fully Perl-based approach (using Cons) but
that again didn’t work well with Windows and fur-

thermore it would have been a solution not available
out of the box on any TEX installation.

Eventually, we decided to apply the same prin-
ciple used long ago with docstrip.tex: use the
scripting language with some operating system ca-
pabilities that is available out of the box on all TEX
installations. Back then the answer was that only
TEX itself fit that bill and so TEX became the tool
to build style files, etc., from .dtx sources. However,
while TEX as such is too limited to be used for script-
ing a regression test system, we now had LuaTEX as
an engine that offers a full-fledged Lua interpreter—
and these days LuaTEX is part of all modern TEX
installations.

Moving to Lua (or texlua to be precise) means
that the test and distribution system is now not tied
to either the operating system (as the script runs on
Windows and Unix variants) or to third-party tools
(as Lua is available as part of a modern TEX system).

−− ∗ − −

In the remaining sections of this article we describe
the new system and how it can be applied to support
arbitrary code within the TEX world.

3 Overview of the new system

To illustrate, a hypothetical package will be described
that uses the new system: consider a package abc

with a collection of source files in the following layout.

abc/

abc.dtx

abc.ins

build.lua

README

testfiles/

test1.lvt

test1.tlg

...

support/

abc-test.cls

What is added in addition to the normal source files
is a short Lua script, normally called build.lua.
Test files and their certified results are located in the
folder ‘testfiles/’ with extensions .lvt and .tlg,
respectively. The files in support/ (if any) are used
when running the test files.

Upon running the test suite, a new folder ‘build’
is created in which the package is unpacked, support
files are copied across, and each test file is run in turn
and compared to its original .tlg file. Directories
and file names are adjustable and other setups are
possible; the above structure is simply the default.

l3build—A modern Lua test suite for TEX programming

290 TUGboat, Volume 35 (2014), No. 3

3.1 Modes of testing

The best way to perform regression tests for TEX
programming is to use the .log file; only here can box
content be tested, not just logical and programmatic
constructs. Box content is essential for checking from
the very highest level that code changes do not result
in different typeset output.

TEX programming can be either expandable or
not. Code that is expected to be expandable should
be tested as such. This can be done by evaluating
it within something like \typeout (in the case of
LATEX). For non-expandable tests one should out-
put their results to the .log once they have been
evaluated. As mentioned earlier there are also a
number of TEX tracing parameters and commands
like \showbox, \showlists, or \showthe that can
be used to generate relevant test data in the .log file.

To aid in producing a structured test suite we
provide a number of commands for use in the test
files. The \TYPE command is used to write material
to the .log file; it works like \typeout, but it allows
‘long’ input. A variety of commands, following, then
use \TYPE to output strings to the .log file.

• \SEPARATOR inserts a long line of = symbols to
break up the output.

• \TRUE, \FALSE, \YES, \NO insert text strings for
standardized comparison.

• \ERROR is not defined but is commonly used
to indicate a code path that should never be
reached.

To produce individual tests we offer the commands
\TEST and \TESTEXP. These commands take two ar-
guments: a title and the actual test body. \TESTEXP
executes the body within a \TYPE command to test
expandability but with \TEST you are responsible for
generating test output using \TYPE, \TRUE, etc. as
it is intended to be used for non-expandable tests.
Both commands surround the generated output with
\SEPARATORs and display the title and a test number.
Here is an example:

\begin{TEST}{stepping counters}

{

\setcounter{chapter}{2}

\setcounter{section}{5}

\setcounter{subsection}{4}

\stepcounter{chapter}%

\TYPE{\arabic{chapter}-%

\arabic{section}-\arabic{subsection}}

\SEPARATOR

\refstepcounter{section}

\TYPE{\arabic{chapter}-%

\arabic{section}-\arabic{subsection}}

}

This test will then produce the following output, as
in standard LATEX only a counter directly “within”
is reset to zero (e.g., the subsection counter is not
touched when chapter is stepped):

==

TEST 8: stepping counters

==

3-0-4

==

3-1-0

==

(Assuming it’s the eighth test in the file.)

4 Setting up the regression test system

Consider the case that a LATEX package consists of
one or more .dtx files in a flat directory structure.
By default, to set up a regression test suite, you
would create a driver file named ‘build.lua’ and
sub-folder named ‘testfiles/’ to contain the test
files. An example driver file is shown in Section 4.2.

The test files can be called basically anything
(but should be logical in some way), and by default
have the extension .lvt. These are accompanied
by a pre-saved .tlg file which contains the ‘results’
of the test file to be checked against subsequent
compilation of that test. If a test file has different
results for different engines it is possible to “certify”
.tlg files for each engine; those then have extensions
such as .luatex.tlg.

4.1 Creating and checking test output

The first time a .lvt test file is written, it will need
to be compiled to obtain the necessary .tlg output
for future tests. This is performed with:

texlua build.lua save 〈test name〉

(To produce an engine-specific .tlg file an additional
〈engine〉 argument can be given.) This task can be
re-run as many times as necessary until the test file
demonstrates the necessary behaviour being tested.
At this point,

texlua build.lua check 〈test name〉

will then re-run the .lvt file and compare the result
to the original .tlg output. If no 〈test name〉 is
specified all tests in the test directory are run. Pre-
suming no code has changed to affect the output of
the tests, the console output of this task will show
the name of the test files being processed followed
by the line:

All checks passed

If only one test file is run the usual console output
from the TEX compilation is also shown otherwise it
is suppressed.

Frank Mittelbach, Will Robertson and The LATEX3 team

TUGboat, Volume 35 (2014), No. 3 291

#!/ usr/bin/env texlua

-- Build script for abc package

module = "abc"

-- variable overwrites (if needed)

-- call standard script

kpse.set_program_name ("kpsewhich")

dofile (kpse.lookup ("l3build.lua"))

Figure 2: Driver file for a hypothetical abc package

\documentclass{breqn-test}

\input{regression-test}

\usepackage{breqn}

\begin{document}

\START

\AUTHOR{Will Robertson}

\begin{dmath}

a+b+c+d+e+f+g+h+i+j+k+l+m+

n+o+p+q+r+s+t+u+v+w+x+y+z

\end{dmath}

\showoutput

\end{document}

Figure 3: Example test from breqn

These compilations take place in the subdirec-
tory ‘build/test’, and if a test fails, a diff file is
deposited there with the information about what has
changed in the output of the test file. Also deposited
there are the full .log files for each 〈engine〉 (i.e.,
without modifications from the cleanup step) which
can be helpful to debug complex issues.

4.2 An example driver file

For a simple setup such as shown in the overview in
Section 3, the driver file (build.lua) is quite simple.
An example of such a driver file is shown in Figure 2;
it need do little more than inform the build system of
the name of the package and perhaps set some flags
or change some defaults if they are not adequate.

The main script is l3build.lua, which is auto-
matically found in the texmf tree (via kpsewhich)
and then loaded. Thus, there is no need to hard-
wire locations in the driver file and it will work on
different installations.

4.3 The structure of test files

As mentioned previously, the method of using the
.log file allows various types of tests to be conducted.
The most simple test might load a package and exe-

cute some commands to produce a small amount of
typeset output. A complete example of such a test
is shown in Figure 3. Some points to note:

1. The first line, \input{regression-test} loads
the necessary settings and commands to format
the .log file properly for testing.

2. It is not necessary to load a special document
class (most tests use article or minimal), but a
package author may wish to adjust page margins,
etc., without repeating the commands for each
test. Such a special test class or package could
then be kept in the support/ directory.

3. The test begins proper at \START—everything
before that point in the .log file will be ignored.
This prevents, for example, package version num-
bers displayed while the preamble is processed
from becoming part of the test. The \AUTHOR

declaration is an optional way of indicating who
might know how to fix the problem should the
test begin failing.

4. In this example \showoutput generates the ac-
tual test data by generating a symbolic repre-
sentation of the page content in the .log file.

5. A slightly modified version of \end{document}
finishes the test document. Alternatively, one
can end the test file with \END which avoids
the final processing done by \end{document}

and thus prevents unwanted material from be-
coming part of the test data. In this example
\END cannot be used as that would stop the run
immediately without producing a page—which
is our goal here.

Not shown is the \OMIT . . . \TIMO construction, which
puts flags into the .log file between which no test
comparisons will be made. This can be used around
code that generates variable log information that is
known to be irrelevant for the test. For example,
statements like \newlength or \newcounter write
some tracing information into the .log that shows
the allocated register number. If the code gets revised
these numbers might change and thereby unneces-
sarily invalidate the test result.

\OMIT can also be used before \end{document}
if you need the final processing to happen, but want
to ensure that nothing written at that time becomes
part of the test.

An example of a more structured test from the
LATEX3 test suite is shown in Figure 4. Here, a
number of different tests are contained within a single
file, and a few of these are included in the example.
The content of the test is not really important here (it
is testing aspects of the integer module from expl3)
but it does show a few best practices.

l3build—A modern Lua test suite for TEX programming

292 TUGboat, Volume 35 (2014), No. 3

\OMIT/\TIMO is used to hide the register alloca-
tion numbers from \int_new:N. The first test then
exercises integer addition and subtraction which is
not expandable (therefore \TEST together with \TYPE
is used) and it consists in fact of several small tests.
The expected results are written as comments into
the test file which is helpful in case it ever fails.

Converting integers is supposed to be expand-
able so \TESTEXP is used for the second test. The
same is true for the case selection commands. Here
the test output is generated by \YES or \NO.

Can you guess the test results, even if you are
not familiar with the expl3 language? They are
shown in Figure 5.

4.4 Options

While the examples shown previously demonstrate
the behaviour in the standard setup, the new build
system provides significantly greater flexibility. This
is achieved by providing a large number of variables
that can be (re)set as necessary in the driver file. For
example, the new system supports building complex
distributions consisting of several modules in different
directories with dependencies between them. You
can also control if the processing should happen in a
sandbox or if it is allowed to draw any support files
needed for the tests (e.g., extra packages or classes)
from the TDS tree. The latter is the default as this
is better for most distributions. For details consult
the documentation in [4].

There is one option that one may have to modify
even for simple setups: checkruns. This controls
the number of times each test file is run; to speed
up processing it defaults to 1. If, however, the codes
require multiple runs to function (e.g., if you test
material that is passed through the .aux file) you
have to set this variable to 2 or higher to ensure that
your tests actually work correctly.

5 Operating the system

As indicated earlier the system does a bit more than
managing a set of test files, so here is a short descrip-
tion of the main tasks that can be executed once
the setup is in place. Each task takes zero or more
arguments as described below and is executed by
running the driver file (default build.lua) through
a Lua interpreter (texlua) and passing it the task
name and any further argument as necessary, e.g.,

texlua build.lua check 〈test name〉

would run the check on 〈test name〉 using all engines.
So here is the list of available tasks:

check 〈name〉 〈engine〉 Without arguments, runs
all test files found in the directory that contains

\documentclass{minimal}

\input{regression-test}

\RequirePackage{expl3}

\begin{document}

\START

\AUTHOR{Frank Mittelbach, LaTeX3 Project}

\ExplSyntaxOn

\OMIT

\int_new:N \l_testa_int

\int_new:N \g_testa_int

\TIMO

\TEST { adding~and~subtracting }

{

\int_zero:N \l_testa_int

\int_add:Nn \l_testa_int { 5 * 7 }

\int_add:Nn \l_testa_int { 15 }

% we hope for a value of 50

\TYPE { \int_use:N \l_testa_int }

\int_sub:Nn \l_testa_int { 3 * 5 }

% we hope for a value of 35

\TYPE { \int_use:N \l_testa_int }

\int_gzero:N \g_testa_int

{

\int_gadd:Nn \g_testa_int

{ (2 + 13) / (2 * 3) }

\int_gadd:Nn \g_testa_int { 3 }

% we hope for a value of 6

\TYPE { \int_use:N \g_testa_int }

\int_gsub:Nn \g_testa_int { 5 * 5 }

}

% we hope for a value of -19

\TYPE { \int_use:N \g_testa_int }

}

\TESTEXP { converting~from~and~to~base }

{

\int_to_base:nn { 17 } { 8 } ~

\int_from_base:nn { 21 } { 8 }

}

\TESTEXP{ Case~statements }

{

\int_case:nnn

{ -1 + 1 }

{ { -1 } { \NO }

{ 3 - 3 } { \YES } }

{ \NO }

\NEWLINE

\int_case:nnn

{ 7 - 2 }

{ { -1 + 3 } { \NO } }

{ \YES }

}

% more tests here omitted

\END

Figure 4: Expandable and non-expandable tests

Frank Mittelbach, Will Robertson and The LATEX3 team

TUGboat, Volume 35 (2014), No. 3 293

===

TEST 1: adding and subtracting

===

50

35

6

-19

===

===

TEST 2: converting from and to base

===

21 17

===

===

TEST 3: Case statements

===

YES

YES

===

Figure 5: Test results

the .lvt files. It reports progress by displaying
each test file name currently processed (but oth-
erwise hides any TEX output to avoid cluttering
the screen) and at the end displays a summary
indicating success or failure.

If 〈name〉 is specified, it will run only the tests
for that .lvt file, and if additionally given an
〈engine〉 name will run only the test for that
specific engine. In either case it will show ev-
erything on the screen, which is helpful if the
run shows abnormal behaviour (especially if it
ends up in an endless loop and never returns for
some reason).

clean Cleans up the source tree, removing tempo-
rary files and directories.

ctan Runs all tests, typesets all documentation
and if there are no errors, generates a .zip file
suitable for uploading to CTAN.

doc Typesets all documentation (by default .dtx
files), thus checking them for trivial processing
errors.

install This installs the distribution in the local
tree of the user.

save 〈name〉 〈engine〉 This generates (or regener-
ates) the .tlg file for 〈name〉. If additionally
supplied an 〈engine〉 argument it generates a
specific .tlg as discussed above.

It is the responsibility of the developer to ver-
ify that the data placed into the .tlg produces
the desired result, i.e., is actually correct. Once
produced or updated with save, the output is

considered certified and will be used to verify
future check runs!

6 Acknowledgements

The original test suite system was a joint effort by the
whole LATEX project team at that time, i.e., Frank
Mittelbach, Rainer Schöpf, David Carlisle, Michael
Downes, Alan Jeffrey, and Chris Rowley. We also
had significant help when writing the initial set of
test files from a number of volunteers, in particular
Daniel Flipo and Chris Martin.

Around 2008 Rainer replaced the Makefile ap-
proach used for LATEX2ε by Cons (a Perl-based solu-
tion) as the Makefile got so complex over time that
it was difficult to manage.

For the LATEX3 development we stayed with
Make as the requirements of the expl3 distribution
were initially much simpler.

Joseph Wright wrote a first set of .bat files
for expl3, as by then many developers worked on
Windows. Modelled after this, Frank replaced the
Cons solution for LATEX2ε in 2013.

Finally in 2014 Joseph then implemented most of
the new Lua-based system and it is now successfully
used to manage the LATEX3 (expl3) distribution as
well as several smaller package distributions. The
LATEX2ε distribution will follow shortly.

References

[1] Donald E. Knuth. A torture test for TEX.
Report STAN-CS-84-1027, 1984.

[2] Frank Mittelbach. A regression test suite for
LATEX2ε. TUGboat, 18(4):309–311, December
1997. http://tug.org/TUGboat/tb18-4/

tb57mitt.pdf

[3] Frank Mittelbach. A modern regression
test suite for TEX programming, July
2014. Talk given at TUG conference in
Portland. Video and slide material available at
http://www.latex-project.org/papers.

[4] LATEX3 Project. The l3build package: Checking
and building packages, September 2014.
http://ctan.org/pkg/l3build

⋄ Frank Mittelbach

Mainz, Germany

⋄ Will Robertson

School of Mechanical Engineering,

The University of Adelaide,

Australia

⋄ The LATEX3 team

http://www.latex-project.org

l3build—A modern Lua test suite for TEX programming

294 TUGboat, Volume 35 (2014), No. 3

MetaPost path resolution isolated

Taco Hoekwater

Abstract

A new interface in MPlib version 1.800 allows one to
resolve path choices programmatically, without the
need to go through the MetaPost input language.

1 MetaPost path solving . . .

As readers may agree, MetaPost is pretty good at
finding pleasing control points for paths. What may
be less commonly known is that besides drawing on a
picture, MetaPost can also display the found control
points in the log file.

An initial illustration at this point is useful.
Here is the MetaPost path input source of a very
simple path (as well as a visualisation of the path):

tracingchoices := 1;

path p;

p := (0,0) ..(10,10) ..(10,-5) ..cycle;

And here is what MetaPost outputs in the log file
(with some editorial line breaks):

Path at line 5, before choices:

(0,0)

..(10,10)

..(10,-5)

..cycle

Path at line 5, after choices:

(0,0)

..controls (-1.8685,6.35925) and (4.02429,12.14362)

..(10,10)

..controls (16.85191,7.54208) and (16.9642,-2.22969)

..(10,-5)

..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

A more complex path of course creates more
output, as in:

p := (0,0)..(2,20){curl1}..{curl1}(10, 5)

..controls (2,2) and (9,4.5)

..(3,10)..tension 3 and atleast 4..(1,14){2,0}

..{0,1}(5,-4);

Editor’s note: Originally published in ConTEXt Group:

Proceedings, 6th meeting, pp. 13–18. Reprinted with

permission.

which produces:

Path at line 7, before choices:

(0,0){curl 1}

..{curl 1}(2,20){curl 1}

..{curl 1}(10,5)..controls (2,2) and (9,4.5)

..(3,10)..tension 3 and atleast4.5

..{4096,0}(1,14){4096,0}

..{0,4096}(5,-4)

Path at line 7, after choices:

(0,0)

..controls (0.66667,6.66667) and (1.33333,13.33333)

..(2,20)

..controls (4.66667,15) and (7.33333,10)

..(10,5)

..controls (2,2) and (9,4.5)

..(3,10)

..controls (2.34547,10.59998) and (0.48712,14)

..(1,14)

..controls (13.40117,14) and (5,-35.58354)

..(5,-4)

2 . . . outside MetaPost?

But what if you want to use that functionality outside
of MetaPost, for instance in a C program? Before
MPlib 1.8000, you would have to . . .

compile MPlib into your program;
create a MetaPost language input string;
execute it;
and parse the log result.

All of that is not very appealing. It would be much
better if you could . . .

compile MPlib into your program;
create a path programmatically;
run the MetaPost path solver directly,
automatically updating the original path.

And that is what the current version of MPlib allows
you to do.

3 How it works

Once again, it is easiest to show how it works by
using a source code example:

#include "mplib.h"

int main (int argc, char ** argv) {

MP mp;

MP_options * opt = mp_options ();

opt -> command_line = NULL;

opt -> noninteractive = 1;

mp = mp_initialize (opt);

my_try_path (mp); /* the crux */

mp_finish (mp);

free (opt);

return 0;

}

Most of the example code above is just what
one would need, to do anything with MPlib program-
matically. The new line for our purpose here calls
my_try_path(mp):

Taco Hoekwater

TUGboat, Volume 35 (2014), No. 3 295

void my_try_path(MP mp) {

mp_knot first, p, q;

first = p = mp_append_knot (mp, NULL, 0, 0);

q = mp_append_knot (mp, p, 10, 10);

p = mp_append_knot (mp, q, 10, -5);

mp_close_path_cycle (mp, p, first);

if (mp_solve_path (mp, first)) {

mp_dump_solved_path (mp, first);

}

mp_free_path (mp, first);

}

This function uses a new type, mp_knot, as well
as several new library functions in MPlib available
as of version 1.800.

• mp_append_knot creates a new knot, appends it
to the path that is being built, and returns it as
the new tail of the path.

• mp_close_path_cycle is like cycle in the Meta-
Post language.

• mp_solve_path() finds the control points of the
path. solve_path does not alter the state of the
given MPlib instance in any way, it only modifies
its argument path.

• mp_dump_solved_path() user defined function,

see below for its definition.

• mp_free_path() releases the used memory.

Our user-defined mp_dump_solved_path routine uses
even more new functions. First let us look at its
definition:

#define SHOW(a,b) mp_number_as_double \

(mp,mp_knot_##b(mp,a))

void mp_dump_solved_path (MP mp, mp_knot h) {

mp_knot p, q;

p = h;

do {

q = mp_knot_next(mp, p);

printf("(%g,%g)\n "

"..controls (%g,%g) and (%g,%g)",

SHOW(p,x_coord), SHOW(p,y_coord),

SHOW(p,right_x), SHOW(p,right_y),

SHOW(q,left_x), SHOW(q,left_y));

p = q;

if (p != h

|| mp_knot_left_type(mp, h) != mp_endpoint)

printf ("\n ..");

} while (p != h);

if (mp_knot_left_type(mp, h) != mp_endpoint)

printf ("cycle");

printf ("\n");

}

Somewhat hidden in the source above is the
existence of another new type, mp_number, which is
the data structure representing a numerical value
inside MPlib.

The MPlib library functions used in our routine
mp_dump_solved_path are as follows:

• mp_knot_next() moves to the next knot in
the path.

• mp_knot_x_coord(), mp_knot_y_coord(),
mp_knot_right_x(), mp_knot_right_y(),
mp_knot_left_x(), mp_knot_left_y()
all return the value of a knot field, as an
mp_number object (the calls to these functions
are hidden inside the definition of the SHOW

macro).

• mp_knot_left_type() returns the type
of a knot, normally either mp_endpoint
or mp_open.

• mp_number_as_double() converts an
mp_number to double.

To satisfy our curiosity, here is the actual output
of the example program listed above:

(0,0)

..controls (-1.8685,6.35925) and (4.02429,12.1436)

..(10,10)

..controls (16.8519,7.54208) and (16.9642,-2.22969)

..(10,-5)

..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

which is almost exactly the same as in the log file
(except we’ve altered the line breaks for this article):

(0,0)

..controls (-1.8685,6.35925) and (4.02429,12.14362)

..(10,10)

..controls (16.85191,7.54208) and (16.9642,-2.22969)

..(10,-5)

..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

The numerical output is not exactly the same because
MetaPost itself does not use mp_number_as_double
and printf’s %g for printing the scaled values that
are (by default) used to represent numerical values.

This difference is not really relevant, since any
programmatic use of the path solver should not have
to be 100% compatible with the MetaPost program-
ming language.

4 More complex paths

Of course there are also new functions to create the
more complex paths that make use of curl, tension
and/or direction specifiers.

Here is how to encode the second MetaPost path
in the earlier example:

first = p = mp_append_knot (mp, NULL, 0, 0);

q = mp_append_knot (mp, p, 2, 20);

p = mp_append_knot (mp, q, 10, 5);

if (!mp_set_knotpair_curls (mp, q, p, 1.0, 1.0))

exit (EXIT_FAILURE);

q = mp_append_knot(mp, p, 3, 10);

if (!mp_set_knotpair_controls (mp, p, q,

2.0, 2.0, 9.0, 4.5))

exit (EXIT_FAILURE);

MetaPost path resolution isolated

296 TUGboat, Volume 35 (2014), No. 3

p = mp_append_knot (mp, q, 1, 14);

if (!mp_set_knotpair_tensions (mp, q, p, 3.0, -4.0))

exit (EXIT_FAILURE);

q = mp_append_knot (mp, p, 5, -4);

if (!mp_set_knotpair_directions (mp, p, q,

2.0, 0.0, 0.0, 1.0))

exit (EXIT_FAILURE);

mp_close_path (mp, q, first);

Elaborate documentation for these extra func-
tions (and a few more) is in the file mplibapi.tex,
included in the MetaPost distribution.

5 Lua interface

There is also a Lua interface for use in LuaTEX,
which is a bit higher-level:

<boolean> success

= mp.solve_path(<table> knots,

<boolean> cyclic)

This modifies the knots table, which should con-
tain an array of points in a path, with the substruc-
ture explained below, by filling in the control points.
The boolean cyclic is used to determine whether
the path should be the equivalent of --cycle. If
the return value is false, there is an extra return
argument containing the error string.

On entry, the individual knot tables can con-
tain the six knot field values mentioned above (but
typically the left_x,y and right_x,y will be miss-
ing). x,y_coord are both required. Also, some extra

values are allowed, all numbers:

left_tension A tension specifier
right_tension Like left_tension

left_curl A curl specifier
right_curl Like left_curl

direction_x x displacement of a
direction specifier

direction_y Like direction_x

6 Issues to watch out for

All the ‘normal’ requirements for MetaPost paths
still apply using this new interface. In particular:

• A knot has either a direction specifier, or a curl
specifier, or a tension specification, or explicit
control points, with the additional note that
tensions, curls and control points are split in a
left and a right side (directions apply to both
sides equally).

• The absolute value of a tension specifier should
be more than 0.75 and less than 4096.0, with
negative values indicating ‘atleast’.

• The absolute value of a direction or curl should
be less than 4096.0.

• If a tension, curl, or direction is specified, any
existing control points will be replaced by the
newly computed value.

⋄ Taco Hoekwater

Docwolves B.V.

http://metapost.org

http://luatex.org

Taco Hoekwater

Typeset MMIX programs with TEX

Udo Wermuth

Abstract

A TEX macro package is presented as a literate pro-
gram. It can be included in programs written in the
languages MMIX or MMIXAL without affecting the
assembler. Such an instrumented file can be pro-
cessed by TEX to get nicely formatted output. Only
a new first line and a new last line must be entered.
And for each end-of-line comment a flag is set to
indicate that the comment is written in TEX.

How to read the following program

The text that starts in the next chapter is a literate

program [2, 1] written in a style similar to noweb [7].
Readers who are not familiar with literate program-
ming might find the following remarks useful.

The program is divided into sections. Each sec-
tion has a number that is written in bold at the be-
ginning of the section. A section contains two parts
and at least one of them must be present: (1) a doc-

umentation part with one or more paragraphs, and
(2) a code part starting with a headline that is fol-
lowed either by ≡ or +≡ and the replacement code.
The headline has the format “〈Name Number 〉”.

Example: Sections 9 and 10 of the program have
the respective headlines “〈List symbols that are spe-

cial in TEX 9 〉 ≡” and “〈List symbols that are special

in TEX 9 〉 +≡”. Section 9 has five lines of replace-
ment code and section 10 three.

The Name is the name under which the replace-
ment code can be called by other sections. The
Number is either the number of the section (the
case with ≡) or a smaller number when a previously
defined replacement code is extended with the new
code lines (case +≡). In the second case the code
part of the previous section that owns the smaller
section number is followed by a line “See also sec-
tions . . . ” and the current section number is some-
where listed in the “. . . ”. Also, in the first case
the code part is also often followed by a line “This
code is used in sections . . . ”. Then the headline
of this section is used inside the replacement code
of other sections (listed in the “. . . ”), in which the
final output of the complete replacement code with
all extensions must be inserted. The number in the
headline states the first section that contains code
for it. So a reader sees in a call of a section where
it starts and under this section he finds the other
sections that add replacement code.

TUGboat, Volume 35 (2014), No. 3 297

Example: In section 9 the lines “See also sec-

tion 10.” and “This code is used in section 24.” are given.
No such line appears in section 10 as it only ex-
tends the replacement code of section 9. (Note that
section 10 has in its headline the number 9.) In
section 24 the reference to section 9 stands for all of
the eight code lines stated in sections 9 and 10.

If a section is not used in any other section then
it is a root and during the extraction of the code a
file is created that has the name of the root. This file
collects all the code in the sequence of the referenced
sections from the code part. The collection process
for all root sections is called tangle. A second pro-
cess is called weave. It outputs the documentation
and the code parts as a TEX document.

Example: The following program has only one
root that is defined in section 4 with the headline
“〈mmix.tex 4 〉 ≡”. The file that is created by the
tangle process is therefore called “mmix.tex”.

The tangled output in the original WEB system
for literate programming is intended to be read only
by computers (see [2], p. 116). In the present system
output is created that is readable by humans. But
changes to the program should only be made in the
original source of the literate program.

The following text is the output that TEX has
produced from the woven document. (A few edits
have been made to follow the style of this journal.)

Contents

Introduction § 1
Format of the output § 6
Preparation § 8
Line numbers § 15
Times column § 22
Setting the output format § 25
Input format § 29
Activation § 33
Last line § 40
Shortcuts § 44
More shortcuts § 50
Final remarks § 52
Index and List of sections § 55

Introduction

1. Algorithms in The Art of Computer Program-

ming (TAOCP) [3] by Donald E. Knuth are stated
in plain English. But every time an implementation
is needed a machine language or assembler language
is used. In the first three volumes the language is
MIX; in Volume 4a the algorithms are implemented
in the language of a new computer called MMIX [4].
For the next editions of the TAOCP volumes all the

Typeset MMIX programs with TEX

MIX programs of the first three volumes must be
rewritten either in MMIX or in the new assembler
language MMIXAL. On his web page http://www-

cs-staff.stanford.edu/~uno/mmix.html, Knuth
asks volunteers to start the conversion of the MIX

programs before he has finished Volume 5 and new
editions of Vols. 1–3 are created.

2. I decided to be one of the volunteers to do the
conversion (although I’m not an MMIXmaster; see
[6]). I asked myself the question: How to present the
result? The MMIX programs are stored in mms files,
which allow a very flexible input format. For exam-
ple, a line that starts with a backslash will be treated
as a comment and is ignored during the assembly.

So my idea is to write the mms files in a way that
they can be processed not only by the assembler but
also by TEX. The output of TEX shall reflect the
style that is used in the TAOCP volumes to present
the MIX and MMIX programs. And TEX can be
used to implement a second idea: Not only shall
the conversion be done but an analysis of the new
implementation shall be added.

A macro package for TEX is developed that is
included in the mms files. Then TEX is able to process
and pretty-print such mms files.

3. Other volunteers for the conversion from MIX to
MMIX have obviously felt the same need for TEX
output. The solution on the MMIX home page [6] is
a lex script mmixtotex.l to create a program that
reads the mms file and outputs a TEX file that can
be typeset with a macro package mmstotex.sty.

4. Here is the plan for the macro package.

〈mmix.tex 4 〉 ≡
〈 Initialization 5 〉
〈Definitions 24 〉
〈Useful commands and shortcuts 44 〉
〈Add an analysis of the algorithm 40 〉
〈Format the mms file 19 〉
〈Take off 33 〉

This is a root.

5. The file mmix.tex might be shipped with an mms

file without this description. Therefore I will be
adding plenty of comments to the TEX code to help
others to read and understand the macro package.

〈 Initialization 5 〉 ≡
% Package to format MMIX programs with TeX
% (and some useful commands to document them)
% Author: Udo Wermuth
% %%%
〈Description 14 〉
% %%%

See also sections 11, 12, and 13.

This code is used in section 4.

298 TUGboat, Volume 35 (2014), No. 3

Format of the output

6. Most of the time programs are not written in
MMIX but in the MMIX Assembly Language, called
MMIXAL. MMIXAL allows labels, alphabetic names,
etc. and introduces new operations that are called
pseudo-ops. As we are only interested in formatting
the source lines of a program the details of the exten-
sions provided by MMIXAL are not discussed here.
The reference [4] defines not only MMIX but gives all
the information aboutMMIXAL too. A source line of
a MMIXAL program has up to five elements. Three
elements are of principal interest for the program
behavior: (1) an optional label, (2) the operation (or
short: the op-code), and (3) an expression field. The
other two elements are not needed for the execution
of the program but for the analysis and the compre-
hension: (4) optional timing information, i.e., the
number of times the statement is executed in a run,
and (5) an optional comment.

For the presentation of the program one more
element is printed: an optional line number. The
line number is printed in italics, the elements 1–3 are
output verbatim in a monospaced font, element 4 is
written in math mode, and element 5 is formatted
by TEX as normal text. Therefore the output shall
look like this:
line label op-code expression time comment

07 Maximum SL kk,$0,3 1 M1. Initialize.

7. Following this example, let us state the complete
requirements for the output format:
R1 The line number is either empty or has two or

three digits; leading zeros are printed. It is writ-
ten left-aligned in 9 pt italics.

R2 The label is optional. If it is present it is written
verbatim in a 10 pt monospaced font.

R3 The op-code is written verbatim in the mono-
spaced font.

R4 The expression field may contain one or more
items but it does not contain a blank (except
in a string). Like the label and the op-code it
is printed verbatim in the monospaced font.

R5 The timing information is optional. If present,
it is printed in 9 pt as a math expression cen-
tered in its column.

R6 The optional comment is written in a 9 pt ro-
man font. It is written in TEX.

R7 Lines that contain only a comment written in
the monospaced font are allowed. Lines with
more than one source statement are allowed.

R8 The program source ends with a thick vertical
bar in the comment area.

R9 It is possible to add a runtime analysis. The
text uses a 10 pt roman font.

Udo Wermuth

R10 The output shall show the name and the source
of the MIX program, the name of the author,
who programmed the MMIX source, and the
date of the conversion.

Preparation

8. The monospaced font is a 10 pt font (see R2), the
other fonts have size 9 pt (R1, R5, and R6). The
9 pt fonts (and the 6 pt fonts for subscripts) are not
activated in plain TEX. Let’s give them names.

〈Fonts 8 〉 ≡
% name 9pt and 6pt fonts
\font\ninerm=cmr9 \font\sixrm=cmr6
\font\ninesy=cmsy9 \font\sixsy=cmsy6
\font\ninei=cmmi9 \font\sixi=cmmi6
\font\nineit=cmti9 \font\ninesl=cmsl9
\font\ninett=cmtt9
\font\ninebf=cmbx9 \font\sixbf=cmbx6

This code is used in section 24.

9. The example in section 6 shows that MMIXAL

uses characters that have a special meaning in TEX,
for example, the dollar sign and hash mark are im-
portant symbols in MMIXAL. Therefore the output
must be filtered and the functions assigned to the
special characters in TEX have to be deactivated.

Plain TEX provides a \dospecials command,
but let us separate the MMIXAL and TEX special
characters.

〈List symbols that are special in TEX 9 〉 ≡
% special in TeX but common in MMIX
\def\mmixdospecials{\do\ \do\$\do\&\do\#%

\do\^\do_\do\%\do\~}
% remaining special characters in TeX
\def\texdospecials{\do\\\do\{\do\}}

See also section 10.

This code is used in section 24.

10. To switch off the special meaning of the above
listed characters a command from The TEXbook [5],
p. 380, is used.

〈List symbols that are special in TEX 9 〉 +≡
\def\uncatcodespecials{% redef special chars

\def\do##1{\catcode‘##1=12 }%
\mmixdospecials\texdospecials}

11. In the header the author, the name of the pro-
gram and the original source are listed. The footer
states the date and provides a page number. This
fulfills requirement R10.

〈 Initialization 5 〉 +≡
% Header and Footer
\headline={\sevenrm Author: \authorH\hfill

Program: \pgmnameH.mms (\sourceH)}%
\footline={\sevenrm Date: \dateF\hfill

\sevenbf\folio}%

TUGboat, Volume 35 (2014), No. 3 299

12. The printed document shall not only show the
program but also provide the possibility of including
an analysis of the algorithm (R9). The analysis is
placed in a second file (a plain TEX file) and it is
included with an \input statement. The name of
the file is created from the name of the program
extended by the suffix aoa and, of course, with file
extension .tex.

〈 Initialization 5 〉 +≡
% file name for the ‘‘Analysis of Algorithm’’
\def\AoAfile{\pgmnameH_aoa.tex}

13. The name of the program is by default the name
of the MMIXAL file—but the user has the ability
to override that name. The name of the author,
the source location and the date are initialized with
some text, but it is expected that the user speci-
fies them before mmix.tex is loaded. The external
control sequences are copied and made \undefined.

〈 Initialization 5 〉 +≡
\def\checkextdata{%
\ifundef pgmname \def\pgmnameH{\jobname}%
\else\let\pgmnameH=\pgmname
\let\pgmname=\undefined

\fi
\ifundef author \def\authorH{Unknown}%
\else\let\authorH=\author
\let\author=\undefined

\fi
\ifundef source \def\sourceH{TAOCP}%
\else\let\sourceH=\source
\let\source=\undefined

\fi
\ifundef date \def\dateF{\number\year}%
\else\let\dateF=\date
\let\date=\undefined

\fi}

14. The values for date, author and source must be
declared outside of the package. Let us document
this at the beginning of the package.

〈Description 14 〉 ≡
% before the macro package is loaded the
% following must be \def’ed
% required: \date, \author, \source
% the program name is taken from the mms-file
% but it can be overwritten
% optional: \pgmname

See also sections 26, 41, and 53.

This code is used in section 5.

Line numbers

15. The output format states all the information
about line numbers, as they are not part of the input
file. Of course a counter for the numbers is needed.

Typeset MMIX programs with TEX

〈Counters 15 〉 ≡
% count registers
\newcount\lnocnt % counter for line numbers

See also section 25.

This code is used in section 24.

16. Next the width of the column for the line num-
bers has to be defined. Two cases are stated in the
requirements: 2 and 3 digits (see R1).

〈Dimensions 16 〉 ≡
% dimen registers
\newdimen\lnotwodigitswidth % 2 digits col
\newdimen\lnothreedigitswidth % or 3 digits

See also section 22.

This code is used in section 24.

17. Here are the default widths of the columns.

〈 Set values of dimen-registers 17 〉 ≡
{\setbox0=\hbox{\nineit 00\tentt\quad}%
\global\lnotwodigitswidth=\wd0
\global\lnothreedigitswidth=1.25\wd0 }%

See also section 23.

This code is used in section 35.

18. Lines can only be numbered if the space is re-
served for the column of numbers: \colforlnotrue
must be set. Then a number is printed if the flag
\ifnumberlines is true. A third flag is needed to
set the number of digits for line numbers.

〈Flags 18 〉 ≡
% if flags
\newif\ifcolforlno % true: add col for lno
\newif\ifnumberlines % true: number the lines
\newif\ifthreedigitlno % true: use 001..999

See also section 43.

This code is used in section 24.

19. The output routine for line numbers prints lead-
ing zeros (R1).

〈Format the mms file 19 〉 ≡
\def\printlinenumber{% with leading 0s

\ifthreedigitlno % how many digits?
\hbox to \lnothreedigitswidth{\it

\ifnum\lnocnt<100 0\fi
\ifnum\lnocnt<10 0\fi \number\lnocnt
\hss}%

\else\hbox to \lnotwodigitswidth{\it
\ifnum\lnocnt<10 0\fi \number\lnocnt
\hss}%

\fi}

See also sections 20, 21, 27, 28, 29, 30, 31, 32, 34, 35, and 38.

This code is used in section 4.

20. But before the output routine can be called it
must be checked that line numbers shall be printed
at all. Therefore the following macro is called to
output the line number.

300 TUGboat, Volume 35 (2014), No. 3

〈Format the mms file 19 〉 +≡
\def\numbermmixline{% shall no. be printed?
\ifcolforlno
\ifnumberlines
\global\advance\lnocnt by 1
\printlinenumber % yes

\else% no
\fi\fi}

21. To have the style of line numbers available if a
comment or the text of the analysis of the algorithm
needs to reference a line number, one more control
sequence is provided. The command is used in text
printed in roman type. It gets either a single line
number or a range of line numbers and prints this
in italics. So a simple solution is implemented which
doesn’t force the user to type in the italic correction.

〈Format the mms file 19 〉 +≡
\def\pgmline#1{% print #1 as line number
\gdef\argpgmline{#1}% store #1 and look ahead
\futurelet\next\pgmlinex}

\def\pgmlinex{% check if \next is . or ,
\if.\next {\it\argpgmline}% no \/
\else\if,\next {\it\argpgmline}% no \/
\else {\it\argpgmline\/}% add \/
\fi\fi}

Times column

22. The optional column for the timing information
(R5) gets its own dimen register.

〈Dimensions 16 〉 +≡
\newdimen\timecolumnwidth % column for time

23. To allow entries like “A − 1” the column must
be wider than three symbols.

〈 Set values of dimen-registers 17 〉 +≡
{\setbox0=\hbox{$2M+M$}% 10pt gives white space
\global\timecolumnwidth=\wd0 }%

24. Of course, as the column is optional one more
flag needs to be declared.

It is time to collect all definitions in a sorted
list. Such a list might be easier to understand if the
mmix.tex file comes without this documentation, so
some sub-entries are created.

〈Definitions 24 〉 ≡
% %%% Definitions
〈Counters 15 〉
〈Dimensions 16 〉
〈Flags 18 〉
\newif\iftimeinfostated % true: add time col
〈Fonts 8 〉
〈List symbols that are special in TEX 9 〉

See also section 39.

This code is used in section 4.

Udo Wermuth

Setting the output format

25. To identify the size of the field for the line
numbers a hint must be given by the author of the
program. This hint is a counter called \mmixtype.
Three cases must be considered according to R1:
The values 0 and 1 mean no line numbers are used,
2 and 3 stand for two-digit line numbers, and 4 and 5
for three-digit numbers.

And requirement R5 is also covered: If the value
is odd the timing information is present: 0, 2, and 4
format the program without timing information, but
1, 3, and 5 have such information.

And a third bit of information is included: if
the number is positive the line numbering starts im-
mediately. Otherwise a command must be given to
start the numbering.

〈Counters 15 〉 +≡
\newcount\mmixtype % a value between -5 and 5
% -1,0,1: no line numbers, no space reserved
% absolute value 2,3: add column for 2 digits
% absolute value 4,5: add column for 3 digits
% > 1: start line numbering directly
% <-1: a user command starts numbering
% write a line (‘!’ is the commchar) with
% even value: label op expr ! comment
% odd value: label op expr ! time ! comment

26. I decided to set this counter by an “assignment”
to the macro package. Therefore, a typical first line
looks like the following lines in the comment.

〈Description 14 〉 +≡
% start a programm with all \def’s in one line
% (n is the \mmixtype explained elsewhere):
% \def\date{<date>}\def\author{<name>}
% \def\source{<volume, page>}\input mmix =n

27. The value of \mmixtype determines the values
of all flags. They are set even when \mmixtype has
a value outside the defined range from −5 to +5.
Such an error situation is tested and reported later.

〈Format the mms file 19 〉 +≡
% %%% Format
\def\setflagsformmixtype{% analyse \mmixtype

\ifnum\mmixtype<0
\mmixtype=-\mmixtype % wait with numbering

\else
\numberlinestrue % prep. to number 1st line

\fi
\ifnum\mmixtype>1 % activate numbering
\colforlnotrue
\ifnum\mmixtype>3 % use 3 digits

\threedigitlnotrue
\fi\fi
\ifodd\mmixtype % timing info is present
\timeinfostatedtrue

\fi}

TUGboat, Volume 35 (2014), No. 3 301

28. In the case that \mmixtype < −1 the numbering
of lines is activated by user commands. They are
placed in the comment of a source line.

〈Format the mms file 19 〉 +≡
% start and stop line numbering
\let\startnumbering=\numberlinestrue
\let\stopnumbering=\numberlinesfalse

Input format

29. How shall the MMIXAL program line of sec-
tion 6 be entered into the input file? Requirements
R2–R4 state that a monospaced font is used for the
above defined elements 1–3. As special symbols of
TEX might be present the best way to typeset them
is to use verbatim mode. My idea is to use a special
character that ends the verbatim mode, which is au-
tomatically started in every line, and then to format
the rest of the line in TEX. Such a flag makes it
possible to fulfill the requirements R6 and R7. I call
this special character the commchar and by default
the exclamation mark is used for it.

A single commchar is required if no timing in-
formation is present and two are used to identify the
timing information. The above stated program line
is therefore coded like this:
Maximum SL kk,$0,3 !1! \step M1. Initialize.

The label, the op-code, and the expression must al-
ways start at the same column to be properly aligned
in the output. The macros shouldn’t destroy other
input styles, for example, several MMIXAL state-
ments might be written in one line (see R7).

Note: The control sequence \step is one of the
useful macros defined later in this package.

〈Format the mms file 19 〉 +≡
\def\setcommchar#1{% boundary for verbatim
\vskip-\baselineskip% for first end of line
\gdef\commchar{#1}%
\def\par{\endgraf\verbatim#1}}

30. The verbatim mode is defined in a standard way
(see The TEXbook [5], pp. 380–382).

〈Format the mms file 19 〉 +≡
% Verbatim macros
\def\verbatim{\begingroup % ends in \doverbatim
\setupverbatim
\doverbatim}

\def\setupverbatim{%
\def\par{\leavevmode\endgraf\noindent}%
\catcode‘\‘=\active
\obeylines
\uncatcodespecials
\obeyspaces}

% now make a blank a control space
{\obeyspaces\global\let =\ }%
% and avoid ligatures of ? and ! with ‘
{\catcode‘\‘=\active \gdef‘{\relax\lq}}%

Typeset MMIX programs with TEX

31. When the verbatim mode is executed the tests
for the line numbering and the timing information
are made. The change of \everypar and \par is
reverted in the comment field to allow, for example,
a command like \smallskip.

Note that a missing second commchar with an
odd \mmixtype results in a couple of errors (runaway
argument) in \printtimeinfo, but forgetting the
second commchar seems unlikely.

〈Format the mms file 19 〉 +≡
\long\def\doverbatim#1{% #1 is the commchar

\everypar{\numbermmixline}%
\def\nextmmixline##1#1{\noindent
\tentt##1%
\endgroup % opened in \verbatim
\printtimeinfo}%

\iftimeinfostated
\gdef\printtimeinfo##1#1{% #1<time>#1

\hbox to \timecolumnwidth{%
\hss$ ##1 $\hss}\resetpar}%

\else\global\let\printtimeinfo\resetpar
\fi
\nextmmixline}

\def\resetpar{\everypar{}\let\par=\endgraf
\ignorespaces}

32. The exclamation mark seems to work fine as the
commchar, but there might be reasons to switch the
commchar in a program.

〈Format the mms file 19 〉 +≡
\def\newcommchar#1{% change the commchar

\gdef\commchar{#1}%
\def\par{\endgraf\verbatim#1}% new \par
\obeylines}% end-of-line is the new \par

Activation

33. In order to get all macros working together
they must be called in a certain sequence. First,
the macro \setflagsformmixtype has to be exe-
cuted, which makes the value of \mmixtype posi-
tive and sets the flag for immediate line numbering.
Next, the commchar must be defined. The com-
mand starts the verbatim mode after the first \par
command and reads in the first line of the MMIXAL

program. And of course the assignment statement
for the \mmixtypemust be executed. All this is done
in the following way:
a) With \afterassignment a (not yet opened)

group is closed; the counter \mmixtype gets the
value that appears after the \input mmix.

b) A group is opened. It will be closed with the
construction in a).

c) With \aftergroup the following sequence is
prepared:

• \setflagsformmixtype is called;
• \setcommchar is called (in a group);

302 TUGboat, Volume 35 (2014), No. 3

• an exclamation mark is given as an argu-
ment for \setcommchar;

• \obeylines is called;
• and \par starts the verbatim mode.

d) Finally, \global\mmixtype is the left side of
the assignment statement (see a)).
And here is the place where we call the test

for the value of \mmixtype. If an error would be
reported in the macro \setflagsformmixtype the
user would see a bunch of tokens that have to be
read again. Therefore the test for an error is made
just before \par at the end of part c) is executed
and the verbatim mode starts.

〈Take off 33 〉 ≡
% %%% Start
〈Last-minute procedures 36 〉
\def\getmmixtype{% needs a ‘‘right side’’

〈Prepare the environment 37 〉
\afterassignment\egroup% an assignment ends
\bgroup % this group
\aftergroup\setflagsformmixtype
\aftergroup\begingroup% closed in last line
\aftergroup\setcommchar
\aftergroup!% this is the default commchar
\aftergroup\obeylines
\aftergroup\testvalueofmmixtype
\aftergroup\par
\global\mmixtype}% now get \mmixtype

\getmmixtype

This code is used in section 4.

34. What has to be done to prepare the environ-
ment? Answer: set the fonts, initialize the variables
(external and internal) and handle TEX comments.

The \ninepointmacro of The TEXbook [5], pp.
414–415, does more than we need, but it shows how
to switch to the 9 pt fonts.

〈Format the mms file 19 〉 +≡
% switch to 9pt fonts
\def\setupfonts{\def\rm{\fam0\ninerm}%
\textfont0=\ninerm \scriptfont0=\sixrm
\textfont1=\ninei \scriptfont1=\sixi
\textfont2=\ninesy \scriptfont2=\sixsy
% no changes for fam3
\def\it{\fam\itfam\nineit}%

\textfont\itfam=\nineit
\def\sl{\fam\slfam\ninesl}%

\textfont\slfam=\ninesl
\def\tt{\fam\ttfam\ninett}%

\textfont\ttfam=\ninett
\def\bf{\fam\bffam\ninebf}%

\textfont\bffam=\ninebf
\scriptfont\bffam=\sixbf

\def\oldstyle{\mit\ninei}%
\rm}

35. Here the variables are set to their initial values.

Udo Wermuth

〈Format the mms file 19 〉 +≡
% set the variables to their default values
\def\setvariables{\mmixtype=0 \lnocnt=0

〈 Set values of dimen-registers 17 〉
\colforlnofalse \numberlinesfalse
\threedigitlnofalse \timeinfostatedfalse}

36. One problem remains: If a TEX comment is
placed at the end of the comment field the end-of-
line information is not available and the verbatim
mode isn’t restarted. So the % is made active. It
gobbles the comment and behaves like the current
definition of \par.

〈Last-minute procedures 36 〉 ≡
{\obeylines \catcode‘\%=\active
\gdef\handleTeXcomments{\catcode‘\%=\active
{\obeylines \gdef%##1
{\endgraf\expandafter\verbatim\commchar}}}}%

\def\resetTeXcomment{\catcode‘\%=14 }

This code is used in section 33.

37. Now we collect the pieces together to prepare
the environment.

〈Prepare the environment 37 〉 ≡
\checkextdata \setupfonts
\setvariables \handleTeXcomments

This code is used in section 33.

38. One task is open: To give a warning message
if \mmixtype is out of range. I prefer to issue an
error message. The following macro is called after
\mmixtype was made positive.

〈Format the mms file 19 〉 +≡
\def\testvalueofmmixtype{% value must be < 6
\ifnum\mmixtype>5
\errhelp\mmixtypeerror
\errmessage{The number \string\mmixtype

\space must be between -5 and 5}%
\fi}

39. We append the help message to the definitions.

〈Definitions 24 〉 +≡
% help messages
\newlinechar=‘\^^J
\newhelp\mmixtypeerror{%
mmixtype is the number
stated after \string\input\space mmix.^^J%

It must be between -5 and 5.
Three aspects are coded into it:^^J%
if it is odd
time information is given (use two !);^^J%

if it is -1, 0, 1
no line numbers are present;^^J%

if it is -3, -2, 2, 3
line numbers have two digits;^^J%

if it is -5, -4, 4, 5
line numbers have three digits;^^J%

if it is >1
immediate numbering of lines is started.}%

TUGboat, Volume 35 (2014), No. 3 303

Last line

40. At the end of the program source the possibility
of including a separate file with the analysis of the al-
gorithm shall be given (see R9). The name of the file
was already defined above. The text shall be printed
in a roman font of size 10 pt. Therefore we must
switch back to 10 pt before that section can start.

〈Add an analysis of the algorithm 40 〉 ≡
% %%% Macros for the last line(s)
% typeset the Analysis of the Algorithm
\def\Analysis{\medbreak

\def\rm{\fam0\tenrm}% back to 10pt
\textfont0=\tenrm \scriptfont0=\sevenrm
\textfont1=\teni \scriptfont1=\seveni
\textfont2=\tensy \scriptfont2=\sevensy
% fam3 was not changed
\def\it{\fam\itfam\tenit}%

\textfont\itfam=\tenit
\def\sl{\fam\slfam\tensl}%

\textfont\slfam=\tensl
\def\tt{\fam\ttfam\tentt}%

\textfont\ttfam=\tentt
\def\bf{\fam\bffam\tenbf}%

\textfont\bffam=\tenbf
\scriptfont\bffam=\sevenbf

\def\oldstyle{\mit\teni}%
\rm % activate \tenrm
\noindent{\tenbf Analysis}\par% the headline
\nobreak\smallskip\noindent}

See also section 42.

This code is used in section 4.

41. The section with the analysis is started with the
last line of the file. Similar to the first line it follows
a special convention.

All programs have to use the control sequence
\eop. It typesets a thick vertical rule as it is stated
in requirement R8. It also stops the line numbering.

〈Description 14 〉 +≡
% use \eop in the comment of the last
% source line
% end the input file with a line that
% contains either (! is the commchar)
% ‘‘!\endprogram\bye’’ (even \mmixtype)
% or ‘‘!!\endprogram\bye’’ (odd \mmixtype)
% or use \endwAoA instead of \endprogram
% to input a file with an analysis

42. At the end of the input file a group is still open
that must be closed. And % gets back its default
meaning. But first, up to two empty hboxes are
deleted (that might have been created on the current
horizontal line) to avoid a line break in front of this
“empty line”.

〈Add an analysis of the algorithm 40 〉 +≡
\def\eop{% end of program symbol

\qquad\vrule height 7pt depth 1pt width 3pt
\eopusedtrue\stopnumbering}

Typeset MMIX programs with TEX

\def\clearline{% remove 0--2 empty hboxes
{\setbox0=\lastbox \setbox0=\lastbox}}

\def\endprogram{\clearline
\ifeopused\eopusedfalse
\else\message{^^JWarning: end the program

with \string\eop^^J}%
\fi
\endgroup% opened in \getmmixtype
\resetTeXcomment}

\def\endwAoA{\endprogram\bigskip
\Analysis \input\AoAfile}

43. 〈Flags 18 〉 +≡
\newif\ifeopused % true: ‘‘\eop’’ was used

Shortcuts

44. When the analysis is written some commands
for often-used idioms reduce the amount of typing.

〈Useful commands and shortcuts 44 〉 ≡
% %%% Useful commands
\def\MIX{{\ninett MIX}}
\def\MMIX{{\ninett MMIX}}
\def\MMIXAL{{\ninett MMIXAL}}
\let\NULL\Lambda % the null link
\def\AVAIL{\hbox{\ninett AVAIL}}% free space
\let\Gets\Leftarrow % get space from AVAIL
\let\implies\Rightarrow % more ‘‘logical’’
% units for the analysis: oops and mems
\def\oops{\hbox{υ}}\let\oop=\oops
\def\mems{\hbox{μ}} \let\mem=\mems
% reference to equation numbers of TAOCP
\def\numeq(#1){\hbox{$({\oldstyle#1})$}}
\def\eq(#1){% outputs Eq. (...)

\hbox{Eq.\thinspace\numeq(#1)}}
\def\Eq(#1){% outputs Equation (...)

\hbox{Equation \numeq(#1)}}

See also sections 45, 46, 48, 49, 50, 51, and 52.

This code is used in section 4.

45. Some commands and shortcuts are needed in
the comments to a program. For example, the steps
of an algorithm are labeled with the identifying let-
ter of the algorithm, a number, and a phrase. This
information is often stated in the comment to a pro-
gram. (The phrase might be omitted; for example,
see [3], Vol. 1, p. 236.)

〈Useful commands and shortcuts 44 〉 +≡
% steps in algorithms
\def\algidphrase#1#2#3.#4.{% #1 #arguments;

% #2 phrase delimiter; #3 step id; #4 phrase
$\underline{\hbox{\sl

\vphantom{y}#3.%
\ifnum #1>1 \enspace #4#2\fi}}%

$\space}
\def\step#1. #2.{\algidphrase2.#1.#2.}
\def\steq#1. #2?{\algidphrase2?#1.#2.}
\def\stepid#1.{\algidphrase1-#1.-.}

46. Sometimes several lines get a single comment:
In [3], Vol. 1, p. 258 and 278 (and in [4], p. 107)

304 TUGboat, Volume 35 (2014), No. 3

a right brace is used to collect the statements for
a comment. Place the command \mlsc (multiple
lines, single comment) in the middle or just above
the middle of the lines that get one comment.

〈Useful commands and shortcuts 44 〉 +≡
% place the command in (odd number) or
% just above (even number) the middle
\def\mlsc#1:#2{% #1 #lines; #2 comment
\smash{\ifodd#1\else\lower.45\baselineskip\fi
\hbox{$% next line: see \TeX book, p.194
\openup-1\jot % cancel for \eqalign
〈Compute \dimen255 from #1 (i.e., #lines) 47 〉
\left.\kern-.5em % empty left brace
\eqalign{\vrule height\dimen255

width 0pt depth 0pt }%
\right\}% visible right brace
$\thinspace#2}}}

47. The height of the brace is of course roughly the
number of lines, which are combined by the brace,
multiplied by the \baselineskip. I use the formula:

number of lines× (\baselineskip+ 3pt)− 8 pt.

〈Compute \dimen255 from #1 (i.e., #lines) 47 〉 ≡
% compute height of brace
\dimen255=\baselineskip
\advance\dimen255 by 3pt
\multiply\dimen255 by #1\relax
\advance\dimen255 by -8pt

This code is used in section 46.

48. Next some special constructions: The dot minus
(monus operation or saturating subtraction) is a bi-
nary operation defined by a .

− b = max(0, a− b). It
isn’t coded like \doteq as it is not a relation and
some care must be taken with the position of the
dot. The notation of the conditional expression is
changed in TAOCP, Vol. 4a.

〈Useful commands and shortcuts 44 〉 +≡
% special operations
\def\dm{% dot minus: saturating subtraction
\mathbin{\mathop{\kern0pt \smash{-}}%
\limits^{\raise.55ex\hbox{$\textstyle.$}}}}

\def\ite(#1?#2:#3){% if-then-else; Vol.4a, p.96
(#1\,{\rm?\ }#2{\rm:}\enspace#3)}

49. The following shortcuts make special symbols
of TEX available for comments.

The plain TEX command for \l is redefined
here. The original definition is stored in \lstroke.

〈Useful commands and shortcuts 44 〉 +≡
% symbols of \TeX
\def\vs{{\tt\char32 }}% visible space
\def\bs{{\tt\char92 }}% backslash
\def\bo{{\tt\char123 }}% open brace
\def\bc{{\tt\char125 }}% close brace
\let\lstroke\l
\def\l_{{\tt\char95 }}% long underline
\def\h\#{\hbox{${}^\#$}}% high # (hex no.)

Udo Wermuth

More shortcuts

50. Here are some shortcuts that I find useful. In
a comment short words must be processed in math
mode either as roman text or monospaced text. So
I define a couple of commands for that.

Often text must be placed in an hbox. And a
short cut for an array with a roman or monospaced
name and a math mode index is quite useful.

〈Useful commands and shortcuts 44 〉 +≡
% %%% my shortcuts
% output rm or tt in math with 1 to 3 chars
\def\r#1{{\rm #1}}
\def\rr#1#2{{\rm #1#2}}
\def\rrr#1#2#3{{\rm #1#2#3}}
\def\m#1{{\tt #1}}
\def\mm#1#2{{\tt #1#2}}
\def\mmm#1#2#3{{\tt #1#2#3}}
% output of rm or tt text in boxes or arrays
\def\rb#1{\hbox{\rm #1}}% rm box
\def\mb#1{\hbox{\tt #1}}
\def\ra#1[#2]{\hbox{\rm #1[$#2$]}}% rm array
\def\ma#1[#2]{\hbox{\tt #1[$#2$]}}

51. I add a comment in front of a subroutine or
procedure. A few lines describe the calling sequence,
the entry and exit conditions, and changed special
or global registers. This is described on page 55 of
[4]. I start such comments indented at the column
of the op-code and with a > that sticks out to the
left. To get this alignment in the case when timing
information is present some care must be taken.

〈Useful commands and shortcuts 44 〉 +≡
\def\gts{% align ‘g’ with the op-code col

\iftimeinfostated
{% omit time column if \mmixtype is odd
\ninerm\hskip-\timecolumnwidth
{\tentt\ }}% add space for 2nd commchar

\fi
{\tentt>\space }}

Final remarks

52. The following command doesn’t produce any
output. Nevertheless I find it useful in the analysis
of the algorithm. The timing information states how
often a source line is executed but for a line with a
branch instruction it is also useful to know how often
a bad branching decision was made.

Therefore I place the following command di-
rectly after the second commchar and state the num-
ber of bad decisions.

〈Useful commands and shortcuts 44 〉 +≡
% used to state number of bad decisions
\def\bad#1\bad{\ignorespaces}% no output

53. The macros have been presented for a single
mms file. But the conversion project needs to rewrite

TUGboat, Volume 35 (2014), No. 3 305

many MIX programs. So, to create a book of con-
verted programs, for example, for a complete chap-
ter of TAOCP, the individual files can be \input in a
main file which is then processed by TEX. (Of course
the main file must include a definition like, for exam-
ple, \let\goodbye=\bye and then the redefinition
of \bye: \outer\def\bye{\par\vfill\supereject
\endinput}.)

To avoid reloading this package a test is added
that determines if the package is already known.
And all the counters, fonts etc. are reset to their
initial value.

Note that \endinput and \fi must appear in
the same line (see The TEXbook [5], p. 214).

〈Description 14 〉 +≡
% %%%
% don’t load the file several times
% but reset variables, fonts etc.
\def\ifundef #1 {% see \TeX book, ex. 7.7
\expandafter\ifx\csname #1\endcsname\relax}

\ifundef mmixisloaded \def\mmixisloaded{true}%
\else\getmmixtype\endinput\fi

54. To test the scripts and to give an example of
how to use the macro package a small example is
shown in the appendix.

Index and List of sections

55. A literate program comes usually with an index
of the names of used identifiers—variables, types,
functions, procedures, or whatever the used pro-
gramming language offers. It includes also certain
aspects of the program that might be of interest to
users or developers who want to change the code.
For example, error messages are listed.

The index lists the section numbers, in which
the entry appear. The section number, in which an
identifier is defined, is written in slanted digits.

(space) : 30

% : 36

‘ : 30

\algidphrase : 45

\Analysis : 40, 42

\AoAfile : 12, 42

\argpgmline : 21

\author : 13, 14, 26

\authorH : 11, 13

\AVAIL : 44

\bad : 52

\bc : 49

\bo : 49

\bs : 49

changed plain TEX

commands : 30, 36, 49

\checkextdata : 13, 37

\clearline : 42

\colforlnofalse : 35

\colforlnotrue : 27

\commchar : 29, 32, 33, 36

conditional expression : 48

\date : 13, 14, 26

\dateF : 11, 13

default values : 12, 13, 17, 23,

29, 33

\dm : 48

\do : 9, 10

\doverbatim : 30, 31

\endprogram : 41, 42

\endwAoA : 41, 42

\eop : 41, 42

\eopusedfalse : 42

\eopusedtrue : 42

\Eq : 44

\eq : 44

\everypar : 31

\footline : 11

\getmmixtype : 33, 42, 53

\Gets : 44

Typeset MMIX programs with TEX

\gts : 51

\h : 49

\handleTeXcomments : 36, 37

\headline : 11

\ifcolforlno : 18, 20

\ifeopused : 42, 43

\ifnumberlines : 18, 20

\ifthreedigitlno : 18, 19

\iftimeinfostated : 24, 31,

51

\ifundef : 13, 53

\implies : 44

\ite : 48

Knuth, Donald Ervin : 1

\l : 49

\lnocnt : 15, 19, 20, 35

\lnothreedigitswidth :

16, 17, 19

\lnotwodigitswidth : 16,

17, 19

\lstroke : 49

\m : 50

\ma : 50

\mb : 50

\mem : 44

\mems : 44

MIX : 1

\MIX : 44

\mlsc : 46

\mm : 50

MMIX : 1

MMIX home page : 3

\MMIX : 44

mmix.tex : 4, 5, 24

MMIXAL : 6, 9, 29

\MMIXAL : 44

\mmixdospecials : 9, 10

\mmixisloaded : 53

\mmixtype : 25, 26, 27, 33,

35, 38, 41, 51

\mmixtypeerror : 38, 39

\mmm : 50

mms files : 2, 53

\newcommchar : 32

\newlinechar : 39

\next : 21

\nextmmixline : 31

\ninebf : 8, 34

\ninei : 8, 34

\nineit : 8, 17, 34

\ninerm : 8, 34, 51

\ninesl : 8, 34

\ninesy : 8, 34

\ninett : 8, 34, 44

\NULL : 44

\numberlinesfalse : 28, 35

\numberlinestrue : 27, 28

\numbermmixline : 20, 31

\numeq : 44

\oop : 44

\oops : 44

\par : 29, 30, 31, 32, 33

\pgmline : 21

\pgmlinex : 21

\pgmname : 13, 14

\pgmnameH : 11, 12, 13

\printlinenumber : 19, 20

\printtimeinfo : 31

\r : 50

\ra : 50

\rb : 50

\resetpar : 31

\resetTeXcomment : 36, 42

\rr : 50

\rrr : 50

Runaway argument : 31

saturating subtraction : 48

\setcommchar : 29, 33

\setflagsformmixtype : 27, 33

\setupfonts : 34, 37

\setupverbatim : 30

\setvariables : 35, 37

\sixbf : 8, 34

\sixi : 8, 34

\sixrm : 8, 34

\sixsy : 8, 34

\source : 13, 14, 26

\sourceH : 11, 13

\startnumbering : 28

\step : 45

\stepid : 45

\steq : 45

\stopnumbering : 28, 42

TAOCP : 1, 2, 6, 45, 46, 48

\testvalueofmmixtype : 33, 38

\texdospecials : 9, 10

The number \mmixtype ... : 38

\threedigitlnofalse : 35

\threedigitlnotrue : 27

\timecolumnwidth : 22, 23, 31,

51

\timeinfostatedfalse : 35

\timeinfostatedtrue : 27

\uncatcodespecials : 10, 30

usage, first line : 14, 26

last line : 41

program lines : 25, 29, 41

value of \mmixtype : 25, 39

user commands : 14, 21, 28,

32, 42, 44, 45, 46, 48, 49

my collection : 50, 51, 52

\verbatim : 29, 30, 31, 32, 36

\vs : 49

Warning: end the . . . : 42

Wermuth, Udo : 5

56. The second index collects all headlines of the
code parts. Here the headlines contain all section
numbers that define the replacement code for the
section name.

〈Add an analysis of the algorithm 40, 42 〉 Used in 4.

306 TUGboat, Volume 35 (2014), No. 3

〈Compute \dimen255 from #1 (i.e., #lines) 47 〉 Used in

46.

〈Counters 15, 25 〉 Used in 24.

〈Definitions 24, 39 〉 Used in 4.

〈Description 14, 26, 41, 53 〉 Used in 5.

〈Dimensions 16, 22 〉 Used in 24.

〈Flags 18, 43 〉 Used in 24.

〈Fonts 8 〉 Used in 24.

〈Format the mms file 19, 20, 21, 27, 28, 29, 30, 31, 32, 34,

35, 38 〉 Used in 4.

〈 Initialization 5, 11, 12, 13 〉 Used in 4.

〈Last-minute procedures 36 〉 Used in 33.

〈List symbols that are special in TEX 9, 10 〉 Used in 24.

〈mmix.tex 4 〉 Root.

〈Prepare the environment 37 〉 Used in 33.

〈 Set values of dimen-registers 17, 23 〉 Used in 35.

〈Take off 33 〉 Used in 4.

〈Useful commands and shortcuts 44, 45, 46, 48, 49, 50,

51, 52 〉 Used in 4.

References

[1] Bart Childs, “Thirty years of literate programming
and more?” TUGboat 31(2010), 183–188.
http://tug.org/TUGboat/tb31-2/tb98childs.

pdf (accessed: August 4, 2014)
[2] Donald E. Knuth, Literate Programming,

CSLI Lecture Note No. 27, 1992.
http://www-cs-staff.stanford.edu/~uno/

lp.html (accessed: August 4, 2014)
[3] Donald E. Knuth, The Art of Computer

Programming, Addison-Wesley, Vol. 1 (3rd ed.),
1997; Vol. 2 (3rd ed.), 1998; Vol. 3 (2nd ed.), 1998;
Vol. 4a (1st ed.), 2011.
http://www-cs-staff.stanford.edu/~uno/

taocp.html (accessed: August 4, 2014)
[4] Donald E. Knuth, The Art of Computer

Programming—MMIX: A RISC Computer

for the new Millennium, Vol. 1, Fascicle 1,
Addison-Wesley, 2005.
http://www-cs-staff.stanford.edu/~uno/

mmix.html (accessed: August 4, 2014)
[5] Donald E. Knuth, The TEXbook, Volume A of

Computers & Typesetting, Addison-Wesley, 1984.
[6] MMIX home page, hosted by: The MMIX Group

at Munich University of Applied Sciences.
http://mmix.cs.hm.edu (accessed: August 4, 2014)

[7] Norman Ramsey, “Literate programming
simplified”, IEEE Software 11 (1994), 97–105.
http://www.cs.tufts.edu/~nr/noweb/ (accessed:
August 4, 2014)

⋄ Udo Wermuth
Babenhäuser Straße 6
63128 Dietzenbach
Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

TUGboat, Volume 35 (2014), No. 3 307

Appendix: An Example

First the input (file 1-3-3I.mms) is shown. Note that commchars are used only in lines that contain a
comment. Line numbers and timing information are given only for the lines that belong to the subroutine.

The value of \mmixtype is −3 meaning that (a) the first line is not numbered (the value is negative),
(b) line numbers need only two digits (i.e., value is −2 or −3), and (c) timing information is given (so value
must be odd).

\def\date{04 Aug 2014}\def\source{V1, p.\ 177}\def\author{Udo Wermuth}\input mmix =-3
!!\clearline{\tenbf Program I} ({\tenit Inverse in place\/})% use a lot of ‘‘features’’
!!\clearline\smallskip\timecolumnwidth=2.5em % (some are not necessary in this conversion)
n GREG 6 !! Number of elements in the permutation
j IS $0 !! Variables of the algorithm
i IS $1
mm IS $2 !! $\mm mm = 8m$

LOC Data_Segment
X GREG @

OCTA 0 !! $X[0]$ is not used
OCTA 6,2,1,5,4,3 !! The data of Table 1.3.3--3
LOC #100

!!\gts Inverse a permutation in place
!!\gts Entry condition: $X[1]\,\ldots\,X[n]$ is a permutation of $\{1,\ldots,n\}$
!!\gts Exit condition: array X contains inverted permutation \startnumbering

:Invert SL mm,n,3 !1! \step I1. Initialize. $m\gets n$.
NEG j,1 !1! $j\gets-1$.

2H LDO i,X,mm !N! \step I2. Next element. $i\gets X[m]$.
PBN i,5F !N!\bad C\bad To I5 if $i<0$.

3H STO j,X,mm !N! \step I3. Invert one. $X[m]\gets j$.
SR j,mm,3 !N! \mlsc 2:{$j\gets-m$.} % multi-line comment
NEG j,j !N!
SL mm,i,3 !N! $m\gets i$.
LDO i,X,mm !N! $i\gets X[m]$.

4H PBP i,3B !N!\bad C\bad \steq I4. End of cycle? To I3 if $i>0$.
SET i,j !C! Otherwise set $i\gets j$.

5H NEG i,i !N! \step I5. Store final value.
STO i,X,mm !N! $X[m]\gets-i$. \newcommchar. % change the commchar

6H SUB mm,mm,8 .N. \step I6. Loop on m.
PBP mm,2B .N.\bad 1\bad To I2 if $m>0$. \stopnumbering

* inspect memory locations of array X for the result
TRAP 0,Halt,0

Main IS :Invert .. \eop
..\endwAoA\bye

The last line of the input file ends the source with \endwAoA. So a second file with the analysis of the
algorithm is needed; it is the file 1-3-3I_aoa.tex:

In step~I3 each slot of the array~X once receives a negative value and in step~I5 it is
filled with a positive number. Using Kirchhoff’s law the number of times step~I6 is executed is
equal to the number of times steps~I5 and~I2 are executed; that is steps~I2 and~I6 have count
N. Step~I5 is entered from I4 C~times, so I2 goes $N-C$~times to step~I5 and C~times
to~I3. And step~I3 goes N~times to step~I4, which must return $N-C$~times to~I3.

Of course, N is the number of elements in the permutation and~C is the number of its
cycles. The \mb{PB..}~instructions in lines~\pgmline{04} and~\pgmline{10} are based on the
assumption that in most cases $C\leq N/2$. An analysis of~C shows that its average value is
the harmonic number~H_n. So the assumption is correct.

The program needs $4N\mems + (12N+5C+4)\oops$. The execution with the test data, the
permutation $(4 5)(2)(1 6 3)$, gives the statistic for \mb{Invert}: {\tt 78~instructions,
24~mems, 91~oops; 11~good guesses, 7~bad}. (The total run time is 96\oops\ as the \mb{TRAP}
instruction needs 5\oops.) As in this case $N=6$ and $C=3$ the above formula calculates
$(4\times6)\mems=24\mems$ and $(12\times6+5\times3+4)\oops=(72+15+4)\oops=91\oops$ in agreement
with the measured data.

Typeset MMIX programs with TEX

308 TUGboat, Volume 35 (2014), No. 3

And this shows the final output (with simulated headline and footline). I assume that in a TAOCP volume
only the numbered lines appear.

Author: Udo Wermuth Program: 1-3-3I.mms (V1, p. 177)

Program I (Inverse in place)

n GREG 6 Number of elements in the permutation

j IS $0 Variables of the algorithm

i IS $1

mm IS $2 mm = 8m

LOC Data_Segment

X GREG @

OCTA 0 X[0] is not used

OCTA 6,2,1,5,4,3 The data of Table 1.3.3–3

LOC #100

> Inverse a permutation in place

> Entry condition: X[1] . . . X[n] is a permutation of {1, . . . , n}

> Exit condition: array X contains inverted permutation

01 :Invert SL mm,n,3 1 I1. Initialize. m← n.

02 NEG j,1 1 j ← −1.

03 2H LDO i,X,mm N I2. Next element. i← X[m].

04 PBN i,5F N To I5 if i < 0.

05 3H STO j,X,mm N I3. Invert one. X[m]← j.

06 SR j,mm,3 N
}

j ← −m.
07 NEG j,j N

08 SL mm,i,3 N m← i.

09 LDO i,X,mm N i← X[m].

10 4H PBP i,3B N I4. End of cycle? To I3 if i > 0.

11 SET i,j C Otherwise set i← j.

12 5H NEG i,i N I5. Store final value.

13 STO i,X,mm N X[m]← −i.

14 6H SUB mm,mm,8 N I6. Loop on m.

15 PBP mm,2B N To I2 if m > 0.

* inspect memory locations of array X for the result

TRAP 0,Halt,0

Main IS :Invert

Analysis

In step I3 each slot of the array X once receives a negative value and in step I5 it is filled with a positive
number. Using Kirchhoff’s law the number of times step I6 is executed is equal to the number of times
steps I5 and I2 are executed; that is steps I2 and I6 have count N . Step I5 is entered from I4 C times, so
I2 goes N − C times to step I5 and C times to I3. And step I3 goes N times to step I4, which must return
N − C times to I3.

Of course, N is the number of elements in the permutation and C is the number of its cycles. The
PB.. instructions in lines 04 and 10 are based on the assumption that in most cases C ≤ N/2. An analysis
of C shows that its average value is the harmonic number Hn. So the assumption is correct.

The program needs 4Nµ + (12N + 5C + 4)υ. The execution with the test data, the permutation
(45)(2)(163), gives the statistic for Invert: 78 instructions, 24 mems, 91 oops; 11 good guesses,

7 bad. (The total run time is 96υ as the TRAP instruction needs 5υ.) As in this case N = 6 and C = 3 the
above formula calculates (4× 6)µ = 24µ and (12× 6+5× 3+4)υ = (72+15+4)υ = 91υ in agreement with
the measured data.

Date: 04 Aug 2014 1

Udo Wermuth

TUGboat, Volume 35 (2014), No. 3 309

A Citation Style Language (CSL) workshop

Daniel Stender

Abstract

CSL is a free and open XML-based language for the
programming of citation styles. With these styles,
bibliographical references can be printed out in dif-
ferent ways from several database formats, including
BibTEX. The so-far over 7000 CSL styles which are
currently available can be used with several popular
applications like Zotero, Mendeley, or Pandoc. This
article is an introduction into the programming of
citation styles with CSL, based on a few example
BibTEX bibliographic database records.

1 Introduction

Bibliographical references, as used in scientific publi-
cations, are pointers to cited or regarded literature.
Regularly, they consist of two standardized compo-
nents: an in-line citation (the “cite”) refers to an
entry in the publication’s bibliography. Despite the
common concepts, there is no uniform outline for
references; rather, each scientific discipline and ev-
ery publishing house has its own traditional set of
conventions, which also might change between series.

In electronic typesetting, bibliographical infor-
mation is often gathered in comprehensive, reusable
data files. CSL1 is a programming language for ci-
tation styles, with which differently formatted refer-
ences can be generated from the same bibliographic
databases. CSL (current version: 1.0.1) is XML-based,
open and free, and was substantially developed for
the all-around reference manager Zotero.2

This article demonstrates how a rudimentary ex-
ample citation style could be implemented with CSL,
with reference to the BibTEX data format. The usage
of several programs refers to a Debian GNU/Linux
based system (like Ubuntu and Linux Mint), but
CSL styles could also be easily developed on other
operating systems. Some basic knowledge of XML

and the BibTEX data format is definitely needed to
follow every detail.

2 CSL styles

The citation styles which have already been imple-
mented in CSL (file extension: .csl) are collected
by the CSL developers in the official style reposi-
tory,3 and in the Zotero style repository.4 The so-
far more than 7000 styles are distributed under the

1 http://citationstyles.org/
2 http://www.zotero.org/
3 http://github.com/citation-style-language/

styles/
4 http://zotero.org/styles/

Attribution-ShareAlike 3.0 Unported license by Cre-
ative Commons.5 For the search of specific citation
styles the online CSL style editor6 is quite useful
because it provides, in addition to other features, a
search by example.

3 Pandoc-citeproc

Among the several current applications which al-
ready know how to use CSL styles for the automatic
generation of references, there is the popular univer-
sal markup converter Pandoc [1].7 With short cita-
tion keys like @doe2014 [p. 40-42] for its extended
Markdown lightweight markup, Pandoc can query
bibliographical data files and recognize CSL styles to
put out variously formatted references for documents
either in HTML, LATEX or ConTEXt markup, along
with several others [3]. Pandoc is a command line
interface application; thus, the CSL style which is
going to be processed and the bibliographical data-
base(s) are given as arguments in the program call.
Here’s an example (some line breaks are editorial) for
Pandoc’s LATEX output of a random BibTEX data-
base record (see below for details), formatted using
chicago-author-date.csl:8

$ echo "On this, see @reference2 [p. 127]." \

| pandoc --to=latex \

--csl=chicago-author-date.csl \

--bibliography=references.bib

On this, see Flom (2007, 127).

Flom, Peter. 2007. ‘‘LaTeX for Academics and

Researchers Who (Think They) Don’t Need It.’’

\emph{TUGboat} 28 (1): 126--128.

As shown in this example, the bibliography is printed
at the end of a document. Incidentally, in the input
(shown later), the title is given in lowercase; the
titlecasing done here is automatic, a feature of this
style [8, chp. 14].

Processors which produce formatted citations
out of bibliographic databases according to CSL styles
are called CiteProcs.9 CiteProcs are being developed
in several programming languages. The one which is
used normally by Pandoc is pandoc-citeproc,10 writ-
ten in the same functional programming language
Haskell as Pandoc itself, and developed closely to-
gether with it. This CiteProc (currently: 0.3.0.1)
already deals with a number of different database

5 http://creativecommons.org/licenses/by-sa/3.0/
6 http://editor.citationstyles.org/about/
7 http://johnmacfarlane.net/pandoc/
8 Although given explicitly here, this CSL style is the

default in Pandoc.
9 http://en.wikipedia.org/wiki/CiteProc/

10 http://github.com/jgm/pandoc-citeproc/

A Citation Style Language (CSL) workshop

310 TUGboat, Volume 35 (2014), No. 3

formats, but it’s said that it works best with BibTEX
resp. BibLATEX [4] databases so far.11

4 Developing CSL styles

CSL styles are XML, and therefore the whole related
XML tool chain can also be used with them. For
somebody who deals with XML regularly, a special-
ized editor is useful, but fundamentally CSL styles
can be created and modified with any text editor.
CSL is described in detail in the specification [10],
and the primer which has been written by the devel-
opers [9] is a good starting point for beginners.

CSL is standardized as an XML grammar in the
schema language RELAX NG,12 and in principle any
CSL style file can checked with an XML validator
against the CSL schema to determine if it is correct
(valid).13 Unfortunately, some validators, for exam-
ple xmllint (Debian package: libxml2-utils), cannot
cope with XML schemes in RELAX NG compact syn-
tax like the one shipped by the CSL developers (file
extension: .rnc); the scheme has to be converted
(e.g. with Trang) into the regular RELAX NG syn-
tax (file extension: .rng) before a CSL style can be
validated against it:

$ git clone https://github.com/\

citation-style-language/schema.git

Cloning into ’schema’ [...]

$ trang schema/csl.rnc schema/csl.rng

$ xmllint --noout -relaxng schema/csl.rng \

chicago-author-date.csl

chicago-author-date.csl validates

5 XML declaration and CSL header

The standard XML declaration commonly starts a
CSL style file:

<?xml version="1.0" encoding="UTF-8"?>

Incidentally, although it is often suggested to be
included, specifying the UTF-8 encoding like this
could be omitted because UTF-8 is the XML default
[2, p. 28].

The next thing which is needed is a well-formed
CSL header to specify that the XML file is a CSL

style. A standard CSL header goes like this:

<style xmlns="http://purl.org/net/xbiblio/csl"

version="1.0" class="in-text">

This defines 〈style〉 to be the root element, and the
CSL namespace is set as the default with xmlns.14

That the style is compatible with CSL 1.0 is stated

11 cf. Readme.md.
12 http://relaxng.org/
13 http://github.com/citation-style-language/

schema/tree/v1.0.1/
14 At no time will a connection to this url be established;

it’s only for the purpose of identification.

by version, while the class attribute determines that
this style provides cites in the running text by default,
rather than as footnotes or end notes (which would
be “note”).

6 Info block

The next mandatory unit of a CSL style is an 〈info〉
block, which provides metadata for labeling and iden-
tification. A typical info block looks like this:

<info>

<title>An example CSL style</title>

<id>http://www.danielstender.com/csldemo</id>

<updated>2014-09-18T23:53:00+02:00</updated>

</info>

Even if it is not intended to publish the style, there
are at least three mandatory child elements that are
meant for this purpose:

〈title〉 is the title of the CSL style as it is going to
be displayed to users,

〈id〉 contains, like xmlns in the CSL header (see
above), a random URI, which may be real or
fictitious, and which is solely for identification
purposes,

〈updated〉 carries a xsd:dateTime compliant time
stamp15 of the last modification.

7 Example BIBTEX records

Before getting any deeper into CSL style program-
ming, here are a few sample BibTEX records to be
referred to hereafter to demonstrate how CSL works.
A typical @Book entry type [5, chp. 13.2] goes like
this

@Book{reference1,

author = {Kopka, Helmut and Daly, Patrick W.},

title = {A Guide to LaTeX and Electronic

Publishing},

publisher = {Addison-Wesley},

year = 2004,

address = {Boston},

edition = {Fourth}}

The next one is an @Article data set of a (well-
known) journal whose issues are counted as volume
numbers:

@Article{reference2,

author = {Flom, Peter},

title = {LaTeX for academics and researchers

who (think they) don’t need it},

journal = {TUGboat},

year = 2007,

volume = 28,

number = 1,

pages = {126-128}}

15 http://books.xmlschemata.org/relaxng/ch19-77049.

html

Daniel Stender

TUGboat, Volume 35 (2014), No. 3 311

And another @Article data set of a journal which
appears monthly and doesn’t have any issue numbers:

@Article{reference3,

author = {Sharma, Tushar},

title = {Why I never close Emacs},

journal = {Open Source For You},

year = 2014,

pages = {53-55},

month = {jan}}

The main body of a CSL style consists of several
instructions for how exactly the CiteProc is going to
typeset citations, thus the cites and the correspond-
ing references in the bibliography of a document,
from standardized data records like these.

8 The cite

Another child element of 〈style〉 is 〈macro〉. Multi-
ple macros are permitted, and this element serves
to deliver data and reusable formatting sets. The
following macro provides the author surnames out
of the BibTEX data field author :

<macro name="surname">

<names variable="author">

<name form="short" and="symbol"/>

</names>

</macro>

From the CSL variable author, which has the same
name as the BibTEX data field and initially also con-
tains the full author names, <name form="short"/>

extracts the surnames, while symbol for the attribute
and specifies the ampersand as delimiter between
multiple authors. Macro names (like “surname”)
are user-defined. Their result could be typeset with
the rendering element 〈text〉 (see below), but macros
have necessarily to be written before they are refer-
enced (the XML parser needs it this way).

Another macro fetches the year of the publica-
tion out of the date variable16 issued :

<macro name="year">

<date variable="issued">

<date-part name="year"/>

</date>

</macro>

In CSL, the year of the publication from the BibTEX
data field year isn’t available independently; for ex-
ample, issued also contains the BibTEX field month,
if the data item holds that. Thus, the year of the
publication has to be extracted from issued like this,
before it is available.

With these two macros it’s already possible to
set up an author–year cite. Also needed is the stan-
dard variable locator, which provides the page refer-

16 The CSL variables are divided into four different classes:
standard, number, date, and name.

ence out of the citation key in the document source.
The cite is described within the element 〈citation〉,
looking, for example, like this:

<citation>

<layout>

<text macro="surname" suffix=" "/>

<group prefix="(" suffix=")">

<text macro="year"/>

<text variable="locator" prefix=":\,"/>

</group>

</layout>

</citation>

Along with the 〈layout〉 element, 〈citation〉 has an-
other child for sorting, 〈sort〉, which defines the order
of multiple references within one and the same cite.
When 〈sort〉 isn’t used, the order of appearance is
kept as is the case here.

With a 〈citation〉 block like this one the bib-
liographic records above could be cited easily, for
example again with Pandoc:

$ echo "@reference1 [p. 100], @reference2

[p. 127], @reference3 [54-55]." \

| pandoc --to=latex --csl=example.csl \

--bibliography=references.bib

Kopka \& Daly (2004:\,100), Flom (2007:\,127),

Sharma (2014:\,54--55).

The parentheses and colon punctuation were set up
using the prefix and suffix attributes of the 〈group〉
element, above.

9 The bibliography

In CSL, how the full records appear is defined within
the 〈bibliography〉 block. Using the bibliographical
records above as an example, we will set up a citation
style resulting in the following (with \frenchspacing
in effect):

[Kopka & Daly 2004] Helmut Kopka, Patrick W.
Daly: “A Guide to LaTeX and Electronic Publishing”.
Fourth edition. Boston: Addison-Wesley 2004.

[Flom 2007] Peter Flom: “LaTeX for academics and
researchers who (think they) don’t need it”. In: TUG-
boat 28,1 (2007), p. 126–128.

[Sharma 2014] Tushar Sharma: “Why I never close
Emacs”. In: Open Source For You 1/2014, p. 53–55.

The individual elements of this style can be
implemented in CSL as follows. As was the case with
〈citation〉, everything which is going to be printed
has to be put within the 〈layout〉 child element of
〈bibliography〉 (see p. 313 for the complete code).

A Citation Style Language (CSL) workshop

312 TUGboat, Volume 35 (2014), No. 3

9.1 Label

The first element that is going to be set up is a
label which matches the cite. That’s for the purpose
of easily locating the corresponding record in the
bibliography. As we did with 〈citation〉 above, a
label like this can be constructed using the macros
surname and year :

<group delimiter=" " prefix="[" suffix="] ">

<text macro="surname"/>

<text macro="year"/>

</group>

9.2 Authors

As explained above, the CSL variable author contains
the full author names. This information can easily be
output directly with the rendering element 〈names〉,
when it is needed:

<names variable="author" delimiter=", "

suffix=":"/>

9.3 Title

The variable title is meant to be used with the ren-
dering element 〈text〉:

<text variable="title" prefix="“" suffix="”."/>

Features like the wanted quotation marks are imple-
mented in Unicode.17 The CiteProc converts them
into LATEX standard quotes, if this is chosen as the
output format (see below for the result).

9.4 container-title

The variable container-title represents the BibTEX
data field journal :

<text variable="container-title" prefix="In: "

font-style="italic"/>

This variable remains empty when entry types like
@Book are processed, and therefore nothing would be
printed out in this case.

9.5 Journal issue

The following macro extracts the month of publi-
cation, which comes from the BibTEX field month,
from the date variable issued :

<macro name="month">

<date variable="issued">

<date-part name="month" form="numeric"/>

</date>

</macro>

In the same process, the month of appearance, which
is commonly recorded in BibTEX in the form of “jan”,

17 These are the Unicode entities U+201C LEFT DOUBLE

QUOTATION MARK and U+201D RIGHT DOUBLE QUOTA-

TION MARK.

“feb”, etc.,18 gets converted into the corresponding
number by setting the attribute form to numeric.

Using this macro, we can define a second macro
to render the desired output of the journal issue either
as “volume,number (year)”, or as “month/year” for
journals appearing monthly:

<macro name="issue">

<choose>

<if type="article-journal" variable="volume">

<text variable="volume"/>

<text variable="issue" prefix=","/>

<text macro="year" prefix=" (" suffix=")"/>

</if>

<else-if type="article-journal">

<text macro="month"/>

<text macro="year" prefix="/"/>

</else-if>

</choose>

</macro>

The CSL variable issue represents the BibTEX field
number. This macro checks whether the publication
type is article-journal (a condition which is satisfied
by @Article entry types of BibTEX), and, depending
on whether volume data for the record is available,
prints the element of the reference in the desired way.

Generally, it’s best to keep formatting switches
dependent on publication type out of 〈bibliography〉,19

but it’s fine to have a macro like this:

<text macro="issue" suffix=","/>

9.6 Page numbers

The page numbers in a BibTEX data set are directly
available through the rendering variable page. If
a record carries any, they can be output with, for
example:

<text variable="page" prefix="p. "/>

9.7 Edition

The same is true for edition, which also could be
rendered directly, like this:

<text variable="edition" suffix=" edition."/>

However, although in theory it ought to be homoge-
neous,20 when dealing with data files from different
origins the literal BibTEX field edition often carries

18 “For reasons of consistency the standard three-letter
abbreviations (jan, feb, mar, etc.) should be used” [5, p. 765].

19 “The use of macros can improve style readability, com-
pactness and maintainability. It is recommended to keep the
contents of cs:citation and cs:bibliography compact and
agnostic of item types (e.g., books, journal articles, etc.) by
depending on macro calls” [10].

20 “However, the edition field poses a bit of a challenge.
The BibTEX standard way of specifying edition numbers is
to use ordinal words with capital first letters such as “First”,
“Second”, “Third” and so forth” [7, Q13].

Daniel Stender

TUGboat, Volume 35 (2014), No. 3 313

Figure 1: The full code of 〈bibliography〉

<bibliography>

<sort>

<key macro="surname"/>

</sort>

<layout suffix=".">

<group delimiter=" " prefix="[" suffix="] ">

<text macro="surname"/>

<text macro="year"/>

</group>

<group delimiter=" ">

<names variable="author" delimiter=", " suffix=":"/>

<text variable="title" prefix="“" suffix="”."/>

<text variable="container-title" prefix="In: "font-style="italic"/>

<text macro="issue" suffix=","/>

<text variable="page" prefix="p. "/>

<text variable="edition" suffix=" edition."/>

<text macro="published"/>

</group>

</layout>

</bibliography>

</style>

record types of different natures, such as “Second”,
“second”, “2nd”, “2”, etc. Therefore, if a CSL style
needs to be robust, and requires an exact format
for edition information, type queries and conversions
routines may be needed especially for this field. For
this purpose, CSL provides a number of different tests
for complex, conditional processing of data fields; for
example, is-numeric returns a (Boolean) “false” if a
variable has the form “Second”, “second”, etc.

9.8 Publication details

The rendering of the publication details of books can
be implemented like this:

<macro name="published">

<choose>

<if variable="publisher">

<group delimiter=" ">

<text variable="publisher-place" suffix=":"/>

<text variable="publisher"/>

<text macro="year"/>

</group>

</if>

</choose>

</macro>

This macro first checks whether the variable publisher
is defined (which is not the case with @Article), and,
if this is true, renders it together with publisher-place
(which adopts the BibTEX field address) and again
the macro year in the desired way for this citation

style. This macro could be employed similarly to the
others, with:

<text macro="published"/>

9.9 Sorting key

With an author–date citation style like this it’s useful
to install a sort order, or the records are going to ap-
pear in the order of occurrence of the corresponding
cites, which is typically not wanted. The following
sort key puts the entries of the bibliography into the
alphabetical order of the author’s surnames:

<sort>

<key macro="surname"/>

</sort>

10 Result

With these features and the closing 〈/style〉 root ele-
ment, the very basic citation style which we intended
to implement is completed. Like the others, this CSL

style could be used to produce complete formatted
citations out of the example BibTEX data.

The LATEX formatted Pandoc output of the ex-
ample references looks like this (with some editorial
line breaks):

{[}Flom 2007{]} Peter Flom: ‘‘LaTeX for

academics and researchers who (think they)

don’t need it’’. In: \emph{TUGboat} 28,1

(2007), p. 126--128.

{[}Kopka \& Daly 2004{]} Helmut Kopka,

A Citation Style Language (CSL) workshop

314 TUGboat, Volume 35 (2014), No. 3

Patrick W. Daly: ‘‘A Guide to LaTeX and

Electronic Publishing’’. Fourth edition.

Boston: Addison-Wesley 2004.

{[}Sharma 2014{]} Tushar Sharma: ‘‘Why I never

close Emacs’’. In: \emph{Open Source For You}

1/2014, p. 53--55.

To be sure, what has been set up here is far from
robust and is just for demonstration purposes. The
experienced bibliography writer knows that even with
only the basic publication types which have been
discussed, plenty of open questions remain which
would go beyond our scope here. A more refined
style would need additional features such as book
titles set in italics, using the prefix “pp.” for page
ranges, using “et al.” for multiple authors if required
by the style, etc. These topics and several others are
planned to be the subject of a follow-up article.

In general, CSL offers features for every last de-
tail of bibliographical typesetting; the styles which
are actually used in production are much more com-
plex than what has been demonstrated here.

11 Conclusion

CSL provides a sophisticated and versatile tool (e.g.
it also supports localization) for the programming
of citation styles. It has already become widespread,
for good reason.

In my opinion, CSL responds to the natural com-
plexity of the subject “citation” with a very elegant,
intuitive and simple XML-based user interface. This
distinguishes CSL from the, for example, difficult-
to-penetrate stack-based BibTEX language for .bst
styles [6].

Although a CSL preprocessor for LATEX, to the
best of my knowledge, still remains a desideratum, it
is still highly recommended to become familiar with
CSL when dealing with bibliographical typesetting.
Finally, until a CSL capable replacement for the
BibTEX preprocessor becomes available, Pandoc’s
LATEX output is useful.

References

[1] Massimiliano Dominici. An overview of
pandoc. TUGboat, 35(1):44–50, 2014.
URL: http://tug.org/TUGboat/tb35-1/
tb109dominici.pdf.

[2] Joe Fawcett, Liam R.E. Quin, and Danny
Ayers. Beginning XML. John Wiley & Sons
Inc., Indianapolis, fifth edition, 2012.

[3] Axel Kielhorn. Multi-target publishing.
TUGboat, 32(3):272–277, 2011. URL:
http://tug.org/TUGboat/tb32-3/

tb102kielhorn.pdf.

[4] Philipp Lehman, Philip Kime, Audrey
Boruvka, and Joseph Wright. The BibLATEX
package: Programmable bibliographies and
citations. version 2.9a. 24/06/2014, 2014. URL:
http://ctan.org/pkg/biblatex.

[5] Frank Mittelbach, Michel Goossens, et al.
The LATEX Companion. Addison-Wesley
Series on Tools and Techniques for Computer
Typesetting. Addison-Wesley, Boston, second
edition, 2004.

[6] Oren Patashnik. Designing BibTEX styles,
1988. URL: http://mirror.ctan.org/
biblio/bibtex/base/btxhak.pdf.

[7] Michael Shell and David Hoadley. BibTEX
tips and FAQ. version 1.1, 2007. URL:
http://mirror.ctan.org/biblio/bibtex/

contrib/doc/btxFAQ.pdf.

[8] University of Chicago Press staff, editor.
The Chicago Manual of Style. University of
Chicago Press, Chicago, Ill., sixteenth edition,
2010.

[9] Rintze M. Zelle. Citation style language 1.0:
Primer, 2011. URL: http://citationstyles.
org/downloads/primer.html.

[10] Rintze M. Zelle, Frank G. Bennet, Jr., and
Bruce D’Arcus. Citation style language
1.0.1: Language specification, 2012. URL:
http://citationstyles.org/downloads/

specification.html.

⋄ Daniel Stender

Hamburg, Germany

daniel (at) danielstender.com

http://www.danielstender.com/

Daniel Stender

TUGboat, Volume 35 (2014), No. 3 315

TheTreasure Chest

This is a list of selected new packages posted to CTAN

(http://ctan.org) from March through Septem-
ber 2014, with descriptions based on the announce-
ments and edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believe to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions.

We’d especially like to point out the welcome
proliferation of font packages. A wide variety of
fonts are available to (LA)TEX users nowadays, almost
all usable with any TEX engine. We recommend
the DK-TUG Font Catalogue (http://www.tug.dk/
FontCatalogue) for exploration.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Karl Berry
http://tug.org/ctan.html

fonts

almfixed in fonts

Arabic Unicode extending Latin Modern Mono.
* baskervaldx in fonts

Greatly extended and modified BaskervaldADF.
caladea in fonts

Caladea fonts.
calibri in fonts

Carlito sans serif fonts.
cinzel in fonts

Cinzel and Cinzel Decorative fonts.
clearsans in fonts

Clear Sans fonts.
dantelogo in fonts

Using the DANTE e.V. logo.
drm in fonts

Revised modern meta-font.
ebgaramond-maths in fonts

LATEX support for using EBGaramond in math.
erewhon in fonts

Extends Heuristica which extends Utopia.
fira in fonts

Fira fonts, designed for Firefox.
heuristica in fonts

Heuristica fonts, extending Utopia with Cyrillic.
newtxtt in fonts

Enhancement of typewriter fonts from newtx.
obnov in fonts

Obyknovennaya Novaya Cyrillic font.
(See article in this issue.)

parisa in fonts

Persian fonts derived from FarsiTEX et al.
playfair in fonts

Playfair Display fonts.
ptmsc in fonts

Use proprietary Adobe TimesSC with newtx.
roboto in fonts

Roboto fonts.
* universalis in fonts

Universalis fonts, alternatives to Univers and Frutiger.

graphics

asypictureb in graphics

User-friendly integration of Asymptote into LATEX.
blox in graphics/pgf/contrib

Draw block diagrams.
dsptricks in graphics/pstricks/contrib

Digital signal processing plots.
interactiveplot in graphics

Creating interactive 2D/3D functions inside a PDF.
pst-spirograph in graphics/pstricks/contrib

Simulate operation of a spirograph.
qcircuit in graphics

Macros to generate quantum circuits.

info

latexsource-ng in info

Introduction to LATEX, with setup information.

language

dad in language/arabic

Typesetting Arabic and mixed Arabic/Latin.
(See article in this issue.)

macros/generic

bagpipe in macros/generic

Typesetting bagpipe music.
docbytex in macros/generic

Creating documentation from source code.
lpform in macros/generic

Linear programming formulations.
tracklang in macros/generic

Determining user-requested languages.

macros/latex/contrib

afparticle in macros/latex/contrib

Typeset articles for the open access journal
Archives of Forensic Psychology.

assoccnt in macros/latex/contrib

Advancing many counters simultaneously.
bangorcsthesis in macros/latex/contrib

Thesis class for Bangor University.
bnumexpr in macros/latex/contrib

Extends eTEX’s \numexpr to big integers.
clrscode3e in macros/latex/contrib

Typeset pseudo-code as in Introduction to Algorithms.

macros/latex/contrib/clrscode3e

316 TUGboat, Volume 35 (2014), No. 3

dithesis in macros/latex/contrib

Undergraduate theses at the University of Athens.
doctools in macros/latex/contrib

Tools for documentation of LATEX code.
efbox in macros/latex/contrib

Enhanced inline box with optional frames and colors.
environ in macros/latex/contrib

New interface for LATEX environments.
fifo-stack in macros/latex/contrib

FIFO and stack implementations.
fullminipage in macros/latex/contrib

Minipage spanning a complete page.
getmap in macros/latex/contrib

Downloading OpenStreetMap maps.
gitinfo2 in macros/latex/contrib

Use metadata from git repositories in LATEX.
graphbox in macros/latex/contrib

Provide more options for placement of graphics.
grundgesetze in macros/latex/contrib

Typeset Frege’s Grundgesetze der Arithmetik.
handout in macros/latex/contrib

Handout for audiences at a talk.
komacv in macros/latex/contrib

Typeset CV with various style options.
* l3build in macros/latex/contrib

Test and build system for (LA)TEX.
labyrinth in macros/latex/contrib

Drawing labyrinths and related.
lastpackage in macros/latex/contrib

Defines last point where packages can be loaded.
* latexdemo in macros/latex/contrib

Demonstrate LATEX code with resulting output.
logicproof in macros/latex/contrib

Box proofs for propositional and predicate logic.
longfigure in macros/latex/contrib

Figure-like environment that breaks over pages.
matlab-prettifier in macros/latex/contrib

Pretty-print Matlab source code.
mugsthesis in macros/latex/contrib

Marquette University Graduate School theses.
listlbls in macros/latex/contrib

List of all labels used in a document.
pressrelease in macros/latex/contrib

Class for typesetting press releases.
pygmentex in macros/latex/contrib

Typeset code listings using Pygments.
qrcode in macros/latex/contrib

Generate QR codes.
repltext in macros/latex/contrib

Control text copied from a PDF.
sclang-prettifier in macros/latex/contrib

Pretty-print SuperCollider source code.
sphdthesis in macros/latex/contrib

Theses at National University of Singpore.
sympytexpackage in macros/latex/contrib

Support for sympy (Symbolic Python) expressions.
tablestyles in macros/latex/contrib

Separation of text and style in tables.

templatetools in macros/latex/contrib

Conditionals helpful in templates.
testhyphens in macros/latex/contrib

Testing hyphenation patterns.
tudscr in macros/latex/contrib

Technische Universität Dresden documents.
ucbthesis in macros/latex/contrib

UC Berkeley thesis class, based on memoir.
yathesis in macros/latex/contrib

Writing a thesis following French rules.

macros/latex/contrib/babel-contrib

latvian in m/l/c/babel-contrib

Babel support for Latvian.

macros/latex/contrib/beamer-contrib

themes/beamerdarkthemes in m/l/c/beamer-contrib

Bundle of dark color (black background) themes.

macros/latex/contrib/biblatex-contrib

biblatex-anonymous in m/l/c/b-c

Managing anonymous works.
biblatex-bookinarticle in m/l/c/b-c

New entry type @bookinarticle.
biblatex-multiple-dm in m/l/c/b-c

Load multiple datamodels in biblatex.
biblatex-realauthor in m/l/c/b-c

Indicate real author of a work.
biblatex-true-citepages-omit in m/l/c/b-c

Avoid limitations of standard citepages=omit option.

macros/luatex

luatodonotes in macros/luatex/latex

Add editing annotations in margins.
placeat in macros/luatex/latex

Absolute content positioning for LuaLATEX.

macros/xetex

bidi-atbegshi in macros/xetex/latex

Bidi-aware shipout macros.
bidicontour in macros/xetex/latex

Bidi-aware version of contour.
bidipagegrid in macros/xetex/latex

Bidi-aware version of pagegrid.
bidipresentation in macros/xetex/latex

Bidi-aware presentations.
bidishadowtext in macros/xetex/latex

Typesetting bidi-aware shadow text.

support

texlive-dummy in support

Dummy RPM to satisfy package requirements.

systems

hktex in systems/android

TEXish formula parsing software for Android.

macros/latex/contrib/dithesis

TUGboat, Volume 35 (2014), No. 3 317

Book review: Practical LATEX,

by George Grätzer

William Adams

George Grätzer, Practical LATEX, http:

//www.springer.com/new+%26+forthcoming+

titles+(default)/book/978-3-319-06424-6.
Paperback, 216 pp., Springer, 2014.

For those interested, Grätzer is also the author of
Math Into LATEX , More Math Into LATEX , several
other LATEX books, and many non-LATEX books also.

Practical LATEX is a slim, well-named volume,
since it is eminently practical. It is an excellent intro-
ductory text, covering contemporary markup, macros
and packages, eschewing obsolete material. Cover-
ing the essentials of document production including
niceties such as BibTEX and TikZ, it is an excellent,
up-to-date introduction which one can hand to any
potential user with confidence that it will help them
to rapidly achieve a basic proficiency allowing for the
production of documents with an efficiency which
would be the envy of other tools.

Nicely designed and typeset, it covers document
elements including text, environments, formulas, il-
lustrations, symbols and bibliographies as well as

presentations and the customization of LATEX. The
coverage of illustrations is especially nice, includ-
ing both the basics of placing image files using the
graphicx package and creating illustrations using
the code-oriented tool TikZ (this chapter is based on
Jacques Crémer’s publicly available A very minimal

introduction to TikZ).
There is an excellent index as well as several

very useful appendices for symbols and commands
which also make the book a useful quick reference.

If the book has a flaw, it is the rather inexpli-
cable appendix “LATEX on the iPad” which unneces-
sarily limits itself to a specific platform and swerves
into a political screed which at once complains that
the GNU Public License (GPL) “stops you from hav-
ing it used on the fastest growing platform of all
time” while at the same time discussing several dif-
ferent LATEX apps for the iPad which are capable of
typesetting LATEX documents.

As an historical footnote and commentary: Dun-
can P. Steele of Valletta Ventures had initially au-
thored a blog post complaining of the LATEX codebase
and noting that the GPL licensing of the mainstream
TEX distributions made producing a TEX editor for
the iPad impossible due to the interactions of Apple’s
licensing and the GPL, http://vallettaventures.
com/2011/12/10/messy-latex/. However, after be-
ing informed of the existence of KerTEX (http://
www.kergis.com/en/kertex.html), which is avail-
able under a permissive license, and being convinced
that TEX itself was available in the public domain,
Steele was able to produce a version of TEXpad which
runs on the iPad: http://vallettaventures.com/
2012/09/07/texpad-ipad-v1.1/.

Highly recommended for beginners, in particular
those who might wish to make use of LATEX on their
iPad, as well as the occasional user who needs a
reference. An updated version which eschewed the
political commentary and included coverage of at
least one of the many LATEX editors for Android
tablets would be especially welcome.

⋄ William Adams

608 Wayne Drive

Mechanicsburg, PA

willadams (at) aol dot com

318 TUGboat, Volume 35 (2014), No. 3

Book review: Apprendre à programmer

en TEX, by Christian Tellechea

Jacques André

Christian Tellechea, Apprendre à programmer en

TEX (Learning programming in TEX), http://www.
lulu.com/us/en/shop/christian-tellechea/

apprendre-%C3%A0-programmer-en-tex/

paperback/product-21816783.html. Paperback,
580 pp., Lulu, 2014. Revision of 21/9/2014.

This book is in French and let me say right out that
it deserves an English translation.

There are many books on TEX, as a typesetting
tool (e.g., see list at [1]). Very few are dedicated
to TEX as a programming language. Not a func-
tional or general-purpose language, rather the kind
of “programming language with a documentation
language, thereby making programs more robust,
more portable, more easily maintained, and arguably
more fun to write than programs that are written
only in a high-level language” (preface of [2]).

Tellechea’s book could be seen as a rewrite of
a subset of The TEXbook [3]. However it avoids
everything concerning, e.g., mathematical formula
setting and focuses only on matters that are used
today, e.g., to write (LA)TEX macros. Furthermore it
uses a new framework, since it is a tutorial manual

(even if, in the end, it can also be considered a refer-
ence manual, since it offers complete coverage of its
chosen topics).

In the first hundred or so pages, the author ex-
plains the very low-level concepts such as catcodes,
commands, active characters, arguments, develop-
ments, expansions, . . . At first glance, this part
appears a bit verbose or slow, and you can’t see the
forest for the trees. Nevertheless, this is probably
the best way to make sure these concepts are fully
understood by people not familiar with such a lan-
guage. The odds are that even experienced macro
users will learn something!

The second part describes numbers, recursion
and control structures. Exercises allow the readers
used to conventional programming to write macros to
simulate their conventional structures such as for. . .
do. . . or various forms of if then else fi.

Boxes, dimensions and input/output are studied
in the following chapters and exercises answer every-
day needs (lists, stacks, grids, etc., not to mention
curve drawing without waste of memory or time!),
as well as classical algorithms.

A final part revisits all the material in the con-
text of long and thoroughly-commented examples
such as the layout of paragraphs.

This book is easy to read and progressive. It
leaves no question unanswered, and the exercises are
useful both to understand the underlying concepts
and to be reused in our programs.

As I said at first: a most worthwhile book to be
translated into English.

References

[1] Books about TEX and Friends,
http://tug.org/books

[2] Donald E. Knuth, Literate Programming,
CSLI Lecture Notes, no. 27, Stanford, 1992.

[3] Donald E. Knuth, The TEXbook, Reading,
Massachusetts: Addison-Wesley, 1984.

⋄ Jacques André

jacques dot andre35 (at) gmail

dot com

http://jacques-andre.fr

TUGboat, Volume 35 (2014), No. 3 319

Book review: The Imitation Game,

by Jim Ottaviani & Leland Purvis

Michael S. Berry

Jim Ottaviani & Leland Purvis, The Imitation

Game. http://www.tor.com/stories/2014/

06/the-imitation-game-jim-ottaviani-

leland-purvis, 2014.

From the editors. While Alan Turing of course died long
before TEX existed, there are several reasons why we
think his biography as a graphic novel might be interest-
ing for TUGboat readers. First, many of us are involved
with computer science, and Turing was one of the found-
ing fathers of this fascinating field. Second, both DEK

and (more recently) Leslie Lamport are recipients of the
Turing Award—the highest distinction for computer sci-
entists. Third, many TUGboat readers are interested
in modern book design, and therefore might appreciate
an online graphic novel. Last but not least, this is an
interesting and unusual book.

−− ∗ − −

Alan Turing was a young man in search of himself
as well as universal truths, or so he is cast by Otta-
viani and Purvis in The Imitation Game. Socially
awkward and eccentric, he nonetheless managed to
gain success through a combination of innate genius
and happenstance, the latter due to Great Britain’s
involvement in World War II. The authors take us
through Turing’s life from childhood, advanced math-
ematical and philosophical education, his lead role
in breaking the German Enigma code, subsequent
lack of recognition for theoretical accomplishments,
and, finally, his persecution and premature death.
The story is told by Turing, himself, his mother and
a host of associates from various periods of his life.
The dialog is, of course, conjectural reconstruction,
but the authors do a convincing job of portraying
the “essential” Turing and, for the most part, the
narrative flows well.

The novel is decidedly not a primer on the Tur-
ing Machine or its underlying philosophical issues.
It traverses critical points in the evolution of Tur-
ing’s thought processes in a manner assuming a fairly
sophisticated knowledge on the part of the reader,
knowledge this reviewer did not possess. The salu-
tary effect (in my case and I suspect the same will be

true for other readers) is to stimulate sufficient cu-
riosity to research the critical issues. The Internet is
replete with references to the entscheidungsproblem

(Church–Turing thesis), working code for various it-
erations of Turing Machines and detailed analyses of
the Enigma code and its decipherment (some heavy
lifting involved but it fleshes out an understanding
of the novel).

As noted earlier, Turing was not fully appreci-
ated in his time beyond a small circle of colleagues.
His brilliant, leading effort to break the Enigma code
was largely masked due to national security issues.
Then there was the familiar academic practice of
extensive “borrowing” (some would say plagiarism)
of ideas on the part of established, senior scholars
(e.g. von Neumann) at the expense of lesser known
contributors. But such slights paled in comparison to
the tragic events of his final years. The authors walk
us through Turing’s arrest and trial for homosexu-
ality (a fact he did not challenge), the subsequent
conviction and his untimely death (the authors ac-
cept the designation of suicide whereas others opt for
accidental ingestion of cyanide). I believe that the
authors have here missed an opportunity to place
these events in broader context so as to clearly convey
the ludicrous irony involved.

The issue involved the academic imprimatur
afforded eugenics at the time. Led by Charles Dav-
enport in the United States, positive (encouraging
reproduction by superior lineages) and negative (elim-
ination of inferior lineages) eugenics was a widely
accepted, if terribly wrongheaded, derivation of Dar-
winian natural selection. Nazi Germany appropriated
Davenport’s eugenics theory in toto and extended
it to its logical ends: the enormity of genocide and
the holocaust. Turing was awarded the OBE (Most
Excellent Order of the British Empire) for his role
in defeating Hitler and the Nazi regime. Yet he was
convicted and chemically castrated for a crime, the
rationale of which was based in the assumed valid-
ity of the theory of eugenics (i.e., the elimination
of the “unfit” from the gene pool) and suffered the
consequent physical impairment and ignominy. It
should not be lost to history, or the readers of this
novel, that Winston Churchill, who lauded Turing’s
World War II contributions, was a vocal advocate of
eugenics for the improvement of the British people.

In sum, with the above exception noted, I found
the novel both illuminating for those unfamiliar with
Turing’s too-brief life history and stimulative of ad-
ditional research for those interested in the more
arcane aspects addressed. A good read.

⋄ Michael S. Berry
Dominguez Archaeological Research Group
msberry49 (at) gmail dot com

320 TUGboat, Volume 35 (2014), No. 3

Book review: Let’s Learn LATEX,

by S. Parthasarathy

Nicola L. C. Talbot

S. Parthasarathy, Let’s Learn LATEX, http://
www.freewebs.com/profpartha/teachlatex.htm,
2014. 24 pp., free ebook. Version 201408e.

L 3

Let’s Learn LATEX

(Version : 201409c)

This ebook is constantly updated. Make sure that you have the latest

version of this ebook.

Texts shown in winered are click-sensitive hyperlinks.

S. Parthasarathy
drpartha@gmail.com

Algologic Research and Solutions

Secunderabad

India

This book is licensed under a
Creative Commons Attribution-ShareAlike 4.0 Unported license.

The license is adequately described in

https://creativecommons.org/licenses/by-sa/4.0/legalcode .

A copy of this licence is also available with this L 3 book.

This is a free ebook licensed under the Creative
Commons Attribution-ShareAlike 4.0 Unported li-
cense. The preface starts with a tribute to Richard
Stallman and brief information about FOSS (free
and open source software—the acronym could do
with an expansion in the book). The preface then
states that the purpose of the book is to encour-
age hacking as a method of learning LATEX. The
book, rather than being a reference text containing
instructions and definitions, provides a list of ex-
ample documents that the reader can try out and
modify as a learning tool.

The idea of learning by hacking example code is
a useful concept, and one that I often employ when
investigating a new programming language. How-
ever, I’m concerned that the sample documents pro-
vided with this book use obsolete code and depre-
cated practices. Some illustrations follow below.

Most of the sample documents use the obsolete
LATEX2.09 font commands, such as \bf. These are

deprecated in LATEX2ε and should be avoided [5].
There are also some instances where a font chang-
ing declaration, such as \Huge, is followed by an un-
necessary group, which may confuse the reader into
thinking the command requires an argument. For
example, on line 50 of certif0.tex there are two
sets of redundant braces in

{\bf{\Huge{‘‘\LaTeX\ hands-on’’}}}

since neither \bf nor \Huge have an argument. Only
the outermost set of braces scope the effects of the
declarations.

Many of the sample documents load the epsfig
package [7]. The original epsfig style that was pro-
vided with LATEX2.09 is now obsolete and should not
be used. Current TEX distributions provide a newer
epsfig package that is just a wrapper package that
loads the graphicx package [2]. The recommended
practice is to use graphicx directly and not spec-
ify the image file extensions [4]. Incidentally, there is
also no longer any need to specify the dvips package
option, which occurs in many of the sample docu-
ments. The only time a driver option is needed is
in the cases where it can’t be determined, such as
dvipdfm [10]. Omitting the driver and the file ex-
tensions helps to make the document more portable.

Curiously, some of the documents, such as the
file spacing.tex load both epsfig and graphicx,
which is redundant. There are other instances of
unnecessary repetition where there are multiple at-
tempts to load the same package. For example, in
the file torture1.tex not only are both epsfig and
graphicx loaded on line 5, but there is also an at-
tempt to load epsfig on line 11 and graphicx on
line 13. Similarly, there are two attempts to load
amssymb (on lines 4 and 10), amsmath (on lines 4
and 8) and amsfonts (on lines 4 and 9). Removing
this duplication would provide a more streamlined
example.

On the subject of images, the image files aren’t
actually provided with the sample documents for
copyright and licensing issues, so I think it would
be useful if the author could mention the use of
the demo option provided by the graphicx package,
which would enable the documents to be compiled
without error. Alternatively, perhaps mention the
image files provided with the mwe package [9].

There is prolific use of \\ within paragraphs
in the sample documents, which is generally best
avoided [1]. I think using paragraph breaks instead
of \\ would be more appropriate in most of these
cases, and blank lines would additionally help read-
ability of the code.

Nicola L. C. Talbot

TUGboat, Volume 35 (2014), No. 3 321

More surprising is the use of \\ immediately
before paragraph breaks. The LATEX user guide [6,
p. 213] warns against this as it produces underfull
\hbox warnings and extra vertical space. (If vertical
spacing is required between paragraphs, there are
more appropriate methods of achieving this [3].)

I was somewhat bemused by the line

%\documentstyle[epsfig, picinpar, 12pt]{article}

in the file latexography.tex. Even though the line
is commented, \documentstyle should not appear
in any modern LATEX tutorial, except where it is
being pointed out as obsolete. There’s a danger here
that new curious users may uncomment the line and
try it out.

I was interested to see that the sample docu-
ment kuralengtam3a.tex loads the fontspec pack-
age [8], which is a X ELATEX and LuaLATEX package.
It’s not often that a LATEX tutorial uses a different
engine. I think this is a good idea, but it would help
if the author pointed out to the reader in a comment
at the start of the file that X ELATEX or LuaLATEX is
required, otherwise users eager to compile the sam-
ple document before reading it may not realise they
need a different engine.

This sample document requires the Arial font.
As a GNU/Linux user, I don’t have any commercial
fonts installed, and it wasn’t immediately obvious
at what point the document was switching to Arial,
but the command-line invocation of grep Arial *

tracked it down to eight of the accompanying files.
After I had replaced all instances of Arial with
Liberation Sans in those files, I was able to get
the document to compile without error. Windows
users won’t have this problem, but I was puzzled by
the author’s choice of Arial rather than a free font
given the book’s FOSS ethos.

If the author updates the sample documents so
that the redundancy, obsolescence and deprecated
practices are removed, this book could be a useful
tool in learning LATEX and introducing the reader to
X ELATEX.

References

[1] David Carlisle. Answer to: When to
use \par and when \\. TeX –LaTeX
Stack Exchange, 2012. URL: http:
//tex.stackexchange.com/a/82666

(version: 2012-11-14).

[2] David Carlisle. The graphicx package,
April 2014. Available from CTAN, macros/
latex/required/graphics (version: 1.0g,
2014-04-25).

[3] TEX FAQ. Zero paragraph indent.
URL: http://www.tex.ac.uk/cgi-bin/
texfaq2html?label=parskip (version: 3.28,
2014-06-10).

[4] TEX FAQ. Portable imported graphics,
2014. URL: http://www.tex.ac.uk/
cgi-bin/texfaq2html?label=graph-pspdf

(version: 3.28, 2014-06-10).

[5] TEX FAQ. What’s wrong with \bf,
\it, etc.?, June 2014. URL: http:
//www.tex.ac.uk/cgi-bin/texfaq2html?

label=2letterfontcmd (version: 3.28,
2014-06-10).

[6] Leslie Lamport. LATEX: A document

preparation system. Addison-Wesley, 1994.

[7] Sebastian Rahtz and David Carlisle. The
epsfig package, February 1999. Available
from CTAN, macros/latex/required/
graphics (version: 1.7a, 1999-02-16).

[8] Will Robertson and Khaled Hosny. The
fontspec package: Font selection for
X ELATEX and LuaLATEX, June 2014. Available
from CTAN, macros/latex/contrib/
fontspec (version: 2.4a, 2014-06-21).

[9] Martin Scharrer. The mwe package,
May 2012. Available from CTAN,
macros/latex/contrib/mwe (version: 0.3,
2012-05-15).

[10] Joseph Wright. Answer to: Driver
specification for hyperref and graphicx.
TeX–LaTeX Stack Exchange, 2010. URL:
http://tex.stackexchange.com/a/6949

(version: 2010-12-12).

⋄ Nicola L. C. Talbot

School of Computing Sciences

University of East Anglia

Norwich Research Park

Norwich

NR4 7TJ

United Kingdom

N.Talbot (at) uea dot ac dot uk

http://theoval.cmp.uea.ac.uk/~nlct/

Book review: Let’s Learn LATEX, by S. Parthasarathy

322 TUGboat, Volume 35 (2014), No. 3

Die TEXnische Komödie 2–3/2014

Die TEXnische Komödie is the journal of DANTE e.V., the
German-language TEX user group (http://www.dante.
de). [Non-technical items are omitted.]

Die TEXnische Komödie 2/2014

Andreas Entenmann and Walter Entenmann,
Zum Entwurf von Postern [On the creation of posters];
pp. 37–51

Thanks to the a0poster package by Kettl and Weiser
one can create posters for scientific meetings using LATEX’s
standard formatting commands. Conventions of corpo-
rate design can be incorporated without problems, if the
logo files and colors are available. After a short intro-
duction to the a0poster class this article provides some
general insights on the design of posters for scientific
conferences. We also present some little tricks to, e.g.
create A4 testprints, to convert the output format or to
slice the poster into printable pieces. Based on a specific
example the different steps are described and bundled in
a package.

Dominik Wagenführ, Registerhaltiger Satz mit
LATEX [Grid typesetting with LATEX]; pp. 52–64

If one looks at a modern newspaper, one will likely
see that in multi-column typesetting the adjacent lines are
always on the same height. This property is called grid
typesetting. While LATEX does not offer this functionality
out-of-the-box one may achieve good results with some
manual interventions.

Ulrike Fischer, BibLATEX-Variationen [BibLATEX
variations]; pp. 65–75

[Translation published in this issue of TUGboat.]

Uwe Ziegenhagen, Spendenbescheinigungen
[Creating donation receipts using LATEX, SQL and
Python]; pp. 76–82

In my capacity as treasurer for the Cologne-based
Dingfabrik “fab lab” one of my tasks is to create the
annual donation receipts for all donors. The process in
place until recently involved manual aggregation in Excel
and manual creation of the receipts in MS Word, not a
desirable way to go for a TEXie. This article describes
how the forms were created from scratch with LATEX and
filled using an intelligent combination of Quicken, Excel,
MySQL and Python.

Axel Kielhorn, Präsentationen mit Beamer
[Presentations with Beamer]; pp. 83–93

The beamer document class offers an easy way to
create presentations. Due to the numerous options and
templates, getting started with Beamer may not seem
that easy. A presentation example shows many of the
available options and presents some of the challenges
(and their solutions) a new Beamer user might face.

Axel Kielhorn, LATEX für Nichtlateiner [LATEX for
non-Latinates]; pp. 94–98

For historical reasons, different operating systems
use different character encodings. Windows uses CP-1252,

Mac OS X MacRoman, the various Unix derivatives offer
HPRoman8, CP-850 and ISO Latin 1, among others. But
these are only sufficient for Western Europe and parts
of the Americas; for central Europe one needs additional
encodings.

Günter Partosch, Anforderungen an
wissenschaftliche Abschlussarbeiten [Requirements for
scientific theses]; pp. 94–98

The usual way to finish a course of studies in Ger-
many is to write a thesis. Form, length and other param-
eters are usually defined not just by the university but
also by the thesis supervisor. Additional requirements
are introduced when the thesis is to fulfill good scientific
work or to be published on the Internet. In this article
it is shown how LATEX can be successfully applied.

Die TEXnische Komödie 3/2014

Jacob Wiersma, Mehr Möglichkeiten mit Fußnoten
[More options with footnotes]; pp. 6–13

For some time there have been packages that extend
the limits of LATEX’s standard footnote algorithms. This
article presents the bigfoot, manyfoot and footmisc

packages and discusses a few suggestions for improve-
ments.

Steve Zakrzowsky, Paket skmath für
mathematische Formeln [The skmath package
for mathematical formulas]; pp. 14–18

The skmath package was developed by Simon Sig-
urdhsson, who has also created a few special document
classes. Writing mathematical expressions and equa-
tions can easily make documents confusing. The skmath
package offers some extensions for the simple and intu-
itive entry of mathematical expressions.

Idris Samawi Hamid, DANTE summary report:
Introducing Arabic-Latin Modern Fixed; pp. 19–46

The Oriental TEX project was initiated in 2006 to
facilitate the development of high quality typography
and typesetting of academic and scholarly texts that
require the Arabic script, such as critical editions and
monographs. Although support for the Arabic script in
modern typesetting software has been slowly improving
over the past decade or so, the situation is still very far
behind the Latin script in terms of features, available
high-quality typefaces, and layout-processing software.
For academic and scholarly work, it’s still very much a
wilderness out there. A full solution to the problems of
advanced Arabic-script typography and typesetting, par-
ticularly one based on OpenType and Unicode standards,
is still some ways off.

Christine Römer, Mit etoc Inhaltsverzeichnisse
anpassen [Adjusting tables of contents with etoc];
pp. 47–54

The new etoc package extends LATEX’s capabilities
to create individual tables of contents. It is especially
useful to create local tables of contents.

[Received from Herbert Voß.]

TUGboat, Volume 35 (2014), No. 3 323

TEX Development Fund 2013–2014 report

TEX Development Fund committee

MetaPost 2: Numerical engines

Applicant: Taco Hoekwater, The Netherlands,
http://tug.org/metapost.

Amount: US$2000; acceptance date: 2 Dec 2009
(completed 24 May 2011).

Implement better numerical handling in MetaPost,
among other enhancements. An article about the initial
MetaPost 2 project goals, by Hans Hagen and Taco
Hoekwater, was published in TUGboat 30:3. Meta-
Post 1.802, included in TEX Live 2013, has support
for several numeric representations, for example via the
-numbersystem option.

Lineno and related updates

Applicant: Uwe Lueck, Germany,
http://www.ctan.org/pkg/lineno.

Amount: US$1000; acceptance date: 17 Sep 2011.
For updates to the complex lineno package, and

related efforts, such as factoring out functionality into
separate packages.

X ETEX math and other updates

Applicant: Khaled Hosny, Egypt,
http://www.ctan.org/pkg/xetex.

Amount: US$4000; acceptance date: 24 Apr 2012
(completed 25 Jul 2013).

For updates to the X ETEX engine, especially relating
to OpenType math typesetting, and including updates as
needed to LuaTEX to keep the engines in sync. Several

important external libraries had been deprecated and
needed to be replaced. Other areas of work include
finding fonts and syncing xdvipdfmx with dvipdfmx, as
well as handling general bug reports. A report on the
completed work was given in TUGboat 34:2.

Dynamic library support in LuaTEX

Applicant: Luigi Scarso, Italy,
http://www.luatex.org/swiglib.html

Amount: US$2000; acceptance date: 31 May 2013.
Support shared libraries in LuaTEX using SWIG

(http://www.swig.org). Some libraries are already sup-
ported, e.g., mysql and graphicsmagick.

Metaflop: METAFONT via the web

Applicant: Marco Müller, Switzerland,
http://www.metaflop.com.

Amount: US$1000; acceptance date: 20 Jun 2013
(completed 10 Aug 2014).

Enhance the Metaflop web application, which pro-
vides a graphical interface for adjusting Metafont param-
eters, with improvements to the underlying fonts, the
preview mechanism, and the generation.

TEX Live for Android

Applicant: Clerk Ma, China,
http://code.google.com/p/texlive-for-android.

Amount: US$2000; acceptance date: 26 Jun 2013.
Add a native editor and package manager GUI to

the TEX Live for Android project. http://tug.org/

tug2013/abstracts/ma.txt has more background.

Project Fandol: Free Chinese fonts and

Russian-style math fonts

Applicants: Clerk Ma and Jie Su, China,
http://code.google.com/p/fandol-font.

Amount: US$1000; acceptance date: 9 Aug 2013.
(Information below is from the applicants.) Most

math books in China are produced by Founder Book-
maker. This system has used a set of Russian style math
fonts for more than 30 years. These commercial fonts
are designed with a unique encoding by Founder. And,
these fonts cannot work in TEX or other programs.

We have a set of metal types which contain two
Russian style fonts (serif and sans serif). By analyzing
these metal types, we find Founder’s fonts are derived
from these fonts, and Founder only provided a serif ver-
sion (we will provide these math fonts in both serif and
sans serif). These metal types were imported from the
U.S.S.R. in 1953.

We will trace the metal fonts to outlines (initially
in EPS format). For more detailed adjusting, we will be
using FontForge. Parts of our Chinese fonts are already
processed in this workflow. For these Russian style fonts,
we will also work in this way.

⋄ TEX Development Fund committee
http://tug.org/tc/devfund

Les Cahiers GUTenberg issue 57 (2012)

Les Cahiers GUTenberg is the journal of GUTenberg,
the French-language TEX user group (www.gutenberg.
eu.org).

Thierry Bouche, Éditorial; pp. 3–4

Charles Bigelow, Histoire d’O, d’o et de 0 [Oh, oh,
zero!]; pp. 5–53

Published in TUGboat 34:2.

La liste Typographie, Microtypographie digitale
[Digital microtypography]; pp. 55–63

Since its inception, the French typographie mail-
ing list has always devoted a large part of its discus-
sions to microtypography, with special emphasis on non-
alphabetic glyphs and complex constructs. It is thus
no surprise that the design of digits has been regularly
discussed, as well as the problem of having them co-
habit with letters within typeset pages. Here, we ex-
tract from the list archives (sympa.inria.fr/sympa/arc/
typographie) three discussion threads dealing with is-
sues such as the shape or the width of digits, especially
oldstyle figures.

[Received from Thierry Bouche.]

324 TUGboat, Volume 35 (2014), No. 3

2015 TEX Users Group election

Kaja Christiansen
for the Elections Committee

The positions of TUG President and nine members of the
Board of Directors will be open as of the 2015 Annual
Meeting, which will be held in July 2015 in Darmstadt,
Germany.

The current President, Steve Peter, has stated his in-
tention to step down, and the current Vice-President, Jim
Hefferon, has stated his intention to run for President.

The directors whose terms will expire in 2015: Bar-
bara Beeton, Karl Berry, Susan DeMeritt, Michael Doob,
Taco Hoekwater, Ross Moore, Cheryl Ponchin, Philip
Taylor, and Boris Veytsman.

Continuing directors, with terms ending in 2017:
Kaja Christiansen, Steve Grathwohl, Jim Hefferon, Klaus
Höppner, Arthur Reutenauer, David Walden.

The election to choose the new President and Board
members will be held in Spring of 2015. Nominations for
these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG President/to
the Board by submitting a nomination petition in accor-
dance with the TUG Election Procedures. Election . . .
shall be by written mail ballot of the entire membership,
carried out in accordance with those same Procedures.”
The term of President is two years.

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office at least two weeks (14 days) prior
to the mailing of ballots. (A candidate’s membership
dues for 2015 will be expected to be paid by the nomina-
tion deadline.) The term of a member of the TUG Board
is four years.

A nomination form follows this announcement; forms
may also be obtained from the TUG office, or via http:

//tug.org/election.

Along with a nomination form, each candidate must
supply a passport-size photograph, a short biography,
and a statement of intent to be included with the ballot;
the biography and statement of intent together may not
exceed 400 words. The deadline for receipt of nomina-
tion forms and ballot information at the TUG office is
1 February 2015. Forms may be submitted by FAX, or
scanned and submitted by e-mail to office@tug.org.

Ballots will be mailed to all members within 30
days after the close of nominations. Marked ballots must
be returned no more than six (6) weeks following the
mailing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of
the election should be available by early June, and will
be announced in a future issue of TUGboat as well as
through various TEX-related electronic lists.

2015 TUG Election—Nomination Form

Only TUG members whose dues have been paid for 2015
will be eligible to participate in the election. The signa-
tures of two (2) members in good standing at the time
they sign the nomination form are required in addition to
that of the nominee. Type or print names clearly, using
the name by which you are known to TUG. Names that
cannot be identified from the TUG membership records
will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2015 Annual Meeting,
July 2015.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office (forms sub-
mitted by FAX or scanned and submitted by e-mail will
be accepted). Nomination forms and all required supple-
mentary material (photograph, biography and personal
statement for inclusion on the ballot) must be received
in the TUG office no later than 1 February 2015.1 It
is the responsibility of the candidate to ensure that this
deadline is met. Under no circumstances will incomplete
applications be accepted.

� nomination form

� photograph

� biography/personal statement

TEX Users Group FAX: +1 815 301-3568
Nominations for 2015 Election

P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

1 Supplementary material may be sent separately from the

form, and supporting signatures need not all appear on the

same form.

TEX Users Group
Membership Form

2015

Promoting the use

of TEX throughout

the world.

address:

P.O. Box 2311

Portland, OR 97208-2311 USA

phone: +1 503-223-9994

fax: +1 815-301-3568

email: office@tug.org

web: http://www.tug.org

President Steve Peter

Vice-President Jim Hefferon

Treasurer Karl Berry

Secretary Susan DeMeritt

Executive Director Robin Laakso

TUG membership rates are listed below. Please check the appropriate boxes and
mail the completed form with payment (in US dollars) to the mailing address at
left. If paying by credit/debit card, you may alternatively fax the form to the
number at left or join online at http://tug.org/join.html. The web page also
provides more information than we have room for here.

Status (check one) New member Renewing member

Automatic membership renewal in future years
Will use given payment information; contact office to change/cancel.

Rate Amount

Early bird membership for 2015
After March 31, dues are $105.

$85

Special membership for 2015
You may join at this special rate ($75 after March 31) if you are a
senior (62+), student, new graduate, or from a country with a
modest economy. Please circle accordingly.

If financially feasible for you, please consider checking here to donate $30

(the difference from the regular membership rate).

$55

$30

Subscription for 2015 (non-voting) $110

Institutional membership for 2015
Includes up to eight individual memberships
and site-wide electronic access.

$500

Don’t ship any physical benefits (TUGboat, software)
TUGboat and software are available electronically.

deduct $20

Purchase last year’s materials:

TUGboat volume for 2014 (3 issues) $20
TEX Collection 2014

DVD with proTEXt, MacTEX, TEX Live, CTAN.

$10

Voluntary donations (more info at https://www.tug.org/donate.html)

General TUG contribution
Bursary Fund contribution
TEX Development Fund contribution
CTAN contribution
LATEX contribution
LuaTEX contribution
MacTEX contribution
TEX Gyre fonts contribution

Total $

Tax deduction: The membership fee less $40 is generally deductible, at least in the US.

Multi-year orders: To join for more than one year at this year’s rate (up to ten years,
non-refundable), please multiply by the number of years desired.

Payment (check one) Payment enclosed Visa MasterCard AmEx

Account Number: Exp. date:

Signature:

Privacy: TUG uses your personal information only to send products, publications, notices, and (for voting members)
official ballots. TUG does not sell or otherwise provide its membership list to anyone.

Name

Department

Institution

Address

City State/Province

Postal code Country

Email address

Phone Fax

Position Affiliation

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc., Midland Park, New Jersey

Center for Computing Sciences, Bowie, Maryland

CSTUG, Praha, Czech Republic

diacriTech, Chennai, India

Fermilab, Batavia, Illinois

Google, San Francisco, California

IBM Corporation, T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses, Center for

Communications Research, Princeton, New Jersey

Marquette University, Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS, Copenhagen, Denmark

New York University, Academic Computing Facility,

New York, New York

Springer-Verlag Heidelberg, Heidelberg, Germany

StackExchange, New York City, New York

Stanford University, Computer Science Department,

Stanford, California

Stockholm University, Department of Mathematics,

Stockholm, Sweden

University College, Cork, Computer Centre,

Cork, Ireland

Université Laval, Ste-Foy, Québec, Canada

University of Ontario, Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo, Institute of Informatics,

Blindern, Oslo, Norway

University of Wisconsin, Biostatistics &

Medical Informatics, Madison, Wisconsin

VTEX UAB, Vilnius, Lithuania

326 TUGboat, Volume 35 (2014), No. 3

TEXConsultants

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html. If you’d like to
be listed, please see that web page.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page
layout and typesetting services to authors or publishers
world-wide. We have been in business since the begin-
ning of 1990. For more information visit our web site.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your typical
TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Latchman, David

4113 Planz Road Apt. C
Bakersfield, CA 93309-5935
+1 518-951-8786
Email: david.latchman (at)

texnical-designs.com

Web: http://www.texnical-designs.com

LATEX consultant specializing in: the typesetting
of books, manuscripts, articles, Word document
conversions as well as creating the customized packages
to meet your needs.

Call or email to discuss your project or visit my
website for further details.

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual,
linguistic, and technical typesetting using most
flavors of TEX, I have typeset books for Pragmatic
Programmers, Oxford University Press, Routledge,
and Kluwer, among others, and have helped numerous
authors turn rough manuscripts, some with dozens
of languages, into beautiful camera-ready copy. In
addition, I’ve helped publishers write, maintain, and
streamline TEX-based publishing systems. I have an
MA in Linguistics from Harvard University and live in
the New York metro area.

Sievers, Martin

Klaus-Kordel-Str. 8, 54296 Trier, Germany
+49 651 4936567-0
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician with ten years of typesetting
experience I offer TEX and LATEX services and
consulting for the whole academic sector (individuals,
universities, publishers) and everybody looking for a
high-quality output of his documents. From setting up
entire book projects to last-minute help, from creating
individual templates, packages and citation styles
(BibTEX, biblatex) to typesetting your math, tables or
graphics— just contact me with information on your
project.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and
programming services.

I offer over 25 years of experience in programming,
macro writing, and typesetting books, articles,

TUGboat, Volume 35 (2014), No. 3 327

Sofka, Michael (cont’d)

newsletters, and theses in TEX and LATEX: Automated
document conversion; Programming in Perl, C, C++

and other languages; Writing and customizing macro
packages in TEX or LATEX; Generating custom output
in PDF, HTML and XML; Data format conversion;
Databases.

If you have a specialized TEX or LATEX need, or if
you are looking for the solution to your typographic
problems, contact me. I will be happy to discuss
your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about eighteen years of experience
in TEX and three decades of experience in teaching
& training. I have authored several packages on
CTAN, published papers in TEX related journals, and
conducted several workshops on TEX and related subjects.

Young, Lee A.

127 Kingfisher Lane
Mills River, NC 28759
+1 828 435-0525
Email: leeayoung (at) morrisbb.net

Web: http://www.thesiseditor.net

Copyediting your .tex manuscript for readability and
mathematical style by a Harvard Ph.D. Your .tex file
won’t compile? Send it to me for repair. Experience:
edited hundreds of ESL journal articles, economics and
physics textbooks, scholarly monographs, LATEX
manuscripts for the Physical Review; career as
professional, published physicist.

TUG2015

Darmstadt,Germany

July20–22,2015

http://tug.org/tug2015

2014

Nov 8 – 9 The Twelfth International Conference
on Books, Publishing, and Libraries,
“Disruptive Technologies and the
Evolution of Book Publishing
and Library Development”,
Simmons College, Boston, Massachusetts.
booksandpublishing.com/the-conference

Nov 13 – 14 The Printing Historical Society’s

50th Anniversary, “Landmarks in
Printing: from origins to the digital age”,
St Bride Institute, London, UK.
printinghistoricalsociety.org.uk/

forthcoming_phs_events/#144

Nov 14 TYPO Day, “Business Typography
Talks”, München, Germany.
typotalks.com/day/muenchen-2014

Nov 28 – 29 5th Meeting of Typography,
“Ubiquitous”, Escola Superior
de Tecnologia – IPCA, Barcelos,
Portugal. www.atypi.org/events/

5th-meeting-of-typography

Dec 13 Phototypesetting Day, Museum of
Printing, North Andover, Massachusetts.
www.museumofprinting.org

2015

Feb 1 TUG election: nominations due.
tug.org/election

Mar 6 TUGboat 36:1, submission deadline.

Mar 7 – 9 Typography Day 2015,
“Typography, Sensitivity and Fineness”,
Industrial Design Center,
Indian Institute of Technology,
Bombay, India. www.typoday.in

Mar 9 TUGboat 36:1, submission deadline
(regular issue)

Mar 19 – 21 “Publish or Perish? Scientific
periodicals from 1665 to the present”.
The Royal Society, London, UK.
royalsociety.org/events/

328 TUGboat, Volume 35 (2014), No. 3

Calendar

Apr 16 – 19 DANTE Frühjahrstagung

and 52nd meeting, Stralsund, Germany.
www.dante.de/events.html

Apr 29 –
May 3

BachoTEX2015:

23rd BachoTEX Conference,
Bachotek, Poland.
www.gust.org.pl/bachotex

Apr 30 –
May 1

TYPO San Francisco,
Yerba Buena Center for the Arts,
San Francisco, California.
typotalks.com/sanfrancisco

May 21 – 23 TYPO Berlin 2015, “Character”,
Berlin, Germany. typotalks.com/berlin

Jun 29 –
Jul 3

Digital Humanities 2015, Alliance of
Digital Humanities Organizations,
“Global Digital Humanities”,
Sydney, Australia. dh2015.org

Jul 7 – 10 SHARP 2015, “The Generation and
Regeneration of Books”. Society for the
History of Authorship, Reading &
Publishing, Longueuil/Montreal, Canada,
www.sharpweb.org

TUG2015

Darmstadt, Germany.

Jul 20 – 22 The 36th annual meeting of the
TEX Users Group.
tug.org/tug2015

Jul 31 TUGboat 36:2, submission deadline
(proceedings issue).

Aug 9 – 13 SIGGRAPH 2015, “Xroads of Discovery”,
Los Angeles, California.
s2015.siggraph.org

Aug 24 – 28 SHARP 2015, Society for the History of
Authorship, Reading & Publishing,
Jinan, Snandong Province, China,
www.sharpweb.org

Oct 19 – 20 The Thirteenth International Conference
on Books, Publishing,
and Libraries, University of British
Columbia, Vancouver, Canada.
booksandpublishing.com/the-conference-2015

Status as of 20 October 2014

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 35 (2014), No. 3

Introductory

231 Barbara Beeton / Editorial comments
• typography and TUGboat news

244 Charles Bigelow / A letter on the persistence of (e)books
• the Kindle, Nook, Sony Reader, and Pierre-Simon Fournier

232 Donald Knuth / A footnote about ‘Oh, oh, zero’
• notes on early typesetting of computer programs by ACM and Addison-Wesley

274 Gerd Neugebauer / CTAN goes multi-lingual: Additional language support for the Web portal
• making ctan.org available in German, as an experiment

230 Steve Peter / Ab epistulis
• upcoming election, conferences, TUGboat, book reviews

276 Basil Solomykov / Obyknovennaya Novaya (Ordinary New Face) in METAFONT

• a reworking of a famous Cyrillic typeface, in several sizes and shapes

Intermediate

315 Karl Berry / The treasure chest
• new CTAN packages, March–September 2014

256 Ulrike Fischer / biblatex variations
• biblatex as a database: QR codes, PDF attachments, address lists

235 Twenty Questions for Donald Knuth
• to celebrate the publication of TAOCP as eBooks

284 Bob Tennent / Visual editing (in a specialized case): prerex
• a useful application for visual editing—charts of course prerequisites

245 Thomas Thurnherr / LATEX document class options
• options for the standard classes, and packages extending similar functionality

269 Peter Wilson / Glisterings: Lining up
• ruling off; marginal rules; preventing an awkward page break; not at a page break; line backing; linespacing

Intermediate Plus

248 Frank Mittelbach / How to influence the position of float environments like figure and table in LATEX?
• explaining and working with the LATEX float placement algorithm

287 Frank Mittelbach, Will Robertson, LATEX3 team / l3build—A modern Lua test suite for TEX programming
• regression testing for LATEX, including typeset output

309 Daniel Stender / A Citation Style Language (CSL) workshop
• introduction to this XML-based language for programming citation and bibliography styles

261 David Walden / Every LATEX document brings new programming issues
• practical approaches for ellipses, blank verso pages, and photo album layout

Advanced

255 Barbara Beeton / Placing a full-width insert at the bottom of two columns
• even on the first page of an article

277 Yannis Haralambous / A simple Arabic typesetting system for mixed Latin/Arabic documents: d. ād
• supporting both transliteration and direct Unicode input of Arabic, using ligatures

294 Taco Hoekwater / MetaPost path resolution isolated
• new interface in MPlib 1.800 for resolving paths from external programs

297 Udo Wermuth / Typeset MMIX programs with TEX
• a TEX macro package to typeset (M)MIX(AL) programs

Contents of other TEX journals

322 Die TEXnische Komödie 2–3/2014; Les Cahiers GUTenberg 56 (2012)

Reports and notices

317 William Adams / Book review: Practical LATEX, by George Grätzer
• review of this introductory text on document production with LATEX

318 Jacques André / Book review: Apprendre à programmer en TEX, by Christian Tellechea
• review of this book in French on TEX as a programming language

319 Michael Berry / Book review: The Imitation Game, by Jim Ottaviani and Leland Purvis
• review of this graphic novel about the life of Alan Turing

320 Nicola Talbot / Book review: Let’s Learn LATEX, by S. Parthasarathy
• review of this free ebook intended to assist learning LATEX by example

323 TEX Development Fund committee / TEX Development Fund 2013 report

324 TUG Election committee / TUG 2015 election

325 TUG membership form

326 Institutional members

326 TEX consulting and production services

327 TUG 2015 announcement

328 Calendar

