
294 TUGboat, Volume 35 (2014), No. 3

MetaPost path resolution isolated

Taco Hoekwater

Abstract

A new interface in MPlib version 1.800 allows one to
resolve path choices programmatically, without the
need to go through the MetaPost input language.

1 MetaPost path solving . . .

As readers may agree, MetaPost is pretty good at
finding pleasing control points for paths. What may
be less commonly known is that besides drawing on a
picture, MetaPost can also display the found control
points in the log file.

An initial illustration at this point is useful.
Here is the MetaPost path input source of a very
simple path (as well as a visualisation of the path):

tracingchoices := 1;

path p;

p := (0,0) ..(10,10) ..(10,-5) ..cycle;

And here is what MetaPost outputs in the log file
(with some editorial line breaks):

Path at line 5, before choices:

(0,0)

..(10,10)

..(10,-5)

..cycle

Path at line 5, after choices:

(0,0)

..controls (-1.8685,6.35925) and (4.02429,12.14362)

..(10,10)

..controls (16.85191,7.54208) and (16.9642,-2.22969)

..(10,-5)

..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

A more complex path of course creates more
output, as in:

p := (0,0)..(2,20){curl1}..{curl1}(10, 5)

..controls (2,2) and (9,4.5)

..(3,10)..tension 3 and atleast 4..(1,14){2,0}

..{0,1}(5,-4);

Editor’s note: Originally published in ConTEXt Group:
Proceedings, 6th meeting, pp. 13–18. Reprinted with
permission.

which produces:

Path at line 7, before choices:

(0,0){curl 1}

..{curl 1}(2,20){curl 1}

..{curl 1}(10,5)..controls (2,2) and (9,4.5)

..(3,10)..tension 3 and atleast4.5

..{4096,0}(1,14){4096,0}

..{0,4096}(5,-4)

Path at line 7, after choices:

(0,0)

..controls (0.66667,6.66667) and (1.33333,13.33333)

..(2,20)

..controls (4.66667,15) and (7.33333,10)

..(10,5)

..controls (2,2) and (9,4.5)

..(3,10)

..controls (2.34547,10.59998) and (0.48712,14)

..(1,14)

..controls (13.40117,14) and (5,-35.58354)

..(5,-4)

2 . . . outside MetaPost?

But what if you want to use that functionality outside
of MetaPost, for instance in a C program? Before
MPlib 1.8000, you would have to . . .

compile MPlib into your program;
create a MetaPost language input string;
execute it;
and parse the log result.

All of that is not very appealing. It would be much
better if you could . . .

compile MPlib into your program;
create a path programmatically;
run the MetaPost path solver directly,
automatically updating the original path.

And that is what the current version of MPlib allows
you to do.

3 How it works

Once again, it is easiest to show how it works by
using a source code example:

#include "mplib.h"

int main (int argc, char ** argv) {

MP mp;

MP_options * opt = mp_options ();

opt -> command_line = NULL;

opt -> noninteractive = 1;

mp = mp_initialize (opt);

my_try_path (mp); /* the crux */

mp_finish (mp);

free (opt);

return 0;

}

Most of the example code above is just what
one would need, to do anything with MPlib program-
matically. The new line for our purpose here calls
my_try_path(mp):

Taco Hoekwater

TUGboat, Volume 35 (2014), No. 3 295

void my_try_path(MP mp) {

mp_knot first, p, q;

first = p = mp_append_knot (mp, NULL, 0, 0);

q = mp_append_knot (mp, p, 10, 10);

p = mp_append_knot (mp, q, 10, -5);

mp_close_path_cycle (mp, p, first);

if (mp_solve_path (mp, first)) {

mp_dump_solved_path (mp, first);

}

mp_free_path (mp, first);

}

This function uses a new type, mp_knot, as well
as several new library functions in MPlib available
as of version 1.800.

• mp_append_knot creates a new knot, appends it
to the path that is being built, and returns it as
the new tail of the path.

• mp_close_path_cycle is like cycle in the Meta-
Post language.

• mp_solve_path() finds the control points of the
path. solve_path does not alter the state of the
given MPlib instance in any way, it only modifies
its argument path.

• mp_dump_solved_path() user defined function,
see below for its definition.

• mp_free_path() releases the used memory.

Our user-defined mp_dump_solved_path routine uses
even more new functions. First let us look at its
definition:

#define SHOW(a,b) mp_number_as_double \

(mp,mp_knot_##b(mp,a))

void mp_dump_solved_path (MP mp, mp_knot h) {

mp_knot p, q;

p = h;

do {

q = mp_knot_next(mp, p);

printf("(%g,%g)\n "

"..controls (%g,%g) and (%g,%g)",

SHOW(p,x_coord), SHOW(p,y_coord),

SHOW(p,right_x), SHOW(p,right_y),

SHOW(q,left_x), SHOW(q,left_y));

p = q;

if (p != h

|| mp_knot_left_type(mp, h) != mp_endpoint)

printf ("\n ..");

} while (p != h);

if (mp_knot_left_type(mp, h) != mp_endpoint)

printf ("cycle");

printf ("\n");

}

Somewhat hidden in the source above is the
existence of another new type, mp_number, which is
the data structure representing a numerical value
inside MPlib.

The MPlib library functions used in our routine
mp_dump_solved_path are as follows:

• mp_knot_next() moves to the next knot in
the path.

• mp_knot_x_coord(), mp_knot_y_coord(),
mp_knot_right_x(), mp_knot_right_y(),
mp_knot_left_x(), mp_knot_left_y()
all return the value of a knot field, as an
mp_number object (the calls to these functions
are hidden inside the definition of the SHOW

macro).

• mp_knot_left_type() returns the type
of a knot, normally either mp_endpoint

or mp_open.

• mp_number_as_double() converts an
mp_number to double.

To satisfy our curiosity, here is the actual output
of the example program listed above:

(0,0)

..controls (-1.8685,6.35925) and (4.02429,12.1436)

..(10,10)

..controls (16.8519,7.54208) and (16.9642,-2.22969)

..(10,-5)

..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

which is almost exactly the same as in the log file
(except we’ve altered the line breaks for this article):

(0,0)

..controls (-1.8685,6.35925) and (4.02429,12.14362)

..(10,10)

..controls (16.85191,7.54208) and (16.9642,-2.22969)

..(10,-5)

..controls (5.87875,-6.6394) and (1.26079,-4.29094)

..cycle

The numerical output is not exactly the same because
MetaPost itself does not use mp_number_as_double

and printf’s %g for printing the scaled values that
are (by default) used to represent numerical values.

This difference is not really relevant, since any
programmatic use of the path solver should not have
to be 100% compatible with the MetaPost program-
ming language.

4 More complex paths

Of course there are also new functions to create the
more complex paths that make use of curl, tension
and/or direction specifiers.

Here is how to encode the second MetaPost path
in the earlier example:

first = p = mp_append_knot (mp, NULL, 0, 0);

q = mp_append_knot (mp, p, 2, 20);

p = mp_append_knot (mp, q, 10, 5);

if (!mp_set_knotpair_curls (mp, q, p, 1.0, 1.0))

exit (EXIT_FAILURE);

q = mp_append_knot(mp, p, 3, 10);

if (!mp_set_knotpair_controls (mp, p, q,

2.0, 2.0, 9.0, 4.5))

exit (EXIT_FAILURE);

MetaPost path resolution isolated

296 TUGboat, Volume 35 (2014), No. 3

p = mp_append_knot (mp, q, 1, 14);

if (!mp_set_knotpair_tensions (mp, q, p, 3.0, -4.0))

exit (EXIT_FAILURE);

q = mp_append_knot (mp, p, 5, -4);

if (!mp_set_knotpair_directions (mp, p, q,

2.0, 0.0, 0.0, 1.0))

exit (EXIT_FAILURE);

mp_close_path (mp, q, first);

Elaborate documentation for these extra func-
tions (and a few more) is in the file mplibapi.tex,
included in the MetaPost distribution.

5 Lua interface

There is also a Lua interface for use in LuaTEX,
which is a bit higher-level:

<boolean> success

= mp.solve_path(<table> knots,

<boolean> cyclic)

This modifies the knots table, which should con-
tain an array of points in a path, with the substruc-
ture explained below, by filling in the control points.
The boolean cyclic is used to determine whether
the path should be the equivalent of --cycle. If
the return value is false, there is an extra return
argument containing the error string.

On entry, the individual knot tables can con-
tain the six knot field values mentioned above (but
typically the left_x,y and right_x,y will be miss-
ing). x,y_coord are both required. Also, some extra

values are allowed, all numbers:

left_tension A tension specifier
right_tension Like left_tension

left_curl A curl specifier
right_curl Like left_curl

direction_x x displacement of a
direction specifier

direction_y Like direction_x

6 Issues to watch out for

All the ‘normal’ requirements for MetaPost paths
still apply using this new interface. In particular:

• A knot has either a direction specifier, or a curl
specifier, or a tension specification, or explicit
control points, with the additional note that
tensions, curls and control points are split in a
left and a right side (directions apply to both
sides equally).

• The absolute value of a tension specifier should
be more than 0.75 and less than 4096.0, with
negative values indicating ‘atleast’.

• The absolute value of a direction or curl should
be less than 4096.0.

• If a tension, curl, or direction is specified, any
existing control points will be replaced by the
newly computed value.

� Taco Hoekwater
Docwolves B.V.
http://metapost.org

http://luatex.org

Taco Hoekwater

