
TUGboat, Volume 35 (2014), No. 3 261

Every LATEX document brings new
programming issues

David Walden

Background: For several years I wrote a column,
called Travels in TEXland, for The PracTEX Journal
about the way I used LATEX. Although I am not a
LATEX expert, I was once a full-tine computer pro-
grammer and am not afraid to bash around trying to
find some (perhaps ad hoc) way to accomplish some
typesetting goal. After I stopped writing the column,
I still sometimes wrote up something I had figured out
for the purpose of reflecting on what was done. The
present article pulls together three such reflections.

1 Introduction

There is seldom a time I am not composing a doc-
ument drafted in LATEX. Each document brings its
own style and efficiency issues and, thus, each time
I seem to have to solve some new little LATEX pro-
gramming problem.

A natural question might be, “Why not find an
existing package that does what you need rather than
coding your own thing?” Of course, sometimes what
I need may well be provided by an existing package.
However, mostly I am too lazy to search out an
existing package if I can’t immediately find one that
meets my needs; or I find one but it doesn’t install
and work without difficulty and without much study.
I’d rather code my own little thing than struggle with
package installation issues or inter-package interface
issues. I’d rather do my own little thing (even if it
is less efficient than what exists) to avoid having to
understand complex documentation.1

LATEX is swell because it is programmable, such
that I can create little “tools” that help me do what I
want to do. Also, like any experienced programmer,
I collect these little solutions for reuse in future
documents by copying rather than new thinking.

In this note I give three examples of such little
programming problems and the (perhaps quick-and-
dirty) solutions at which I arrived:

• Issues and ways for typesetting ellipses
• Blank verso sides without using the book class’s
twoside option

• Flexible layout of a photo album

All three examples here derive from my work
on which I have written before — self- or private
publishing.2

2 Typesetting ellipses with LATEX

There are many situations and approaches for using
ellipses in LATEX. After sketching some of the myriad

situations and a few of the approaches, I describe
what I do.

2.1 Diversity of situations

I am mainly concerned with the use of ellipses in
American English, non-mathematical writing. In
this context, ellipses seem to have two purposes:
(1) indicating where something has been left out of
quoted text; (2) to indicate a pause or something
never stated — an unfinished thought or an implicit
thought (“and so on”).

Here are three examples (in which I have not
tried to perfect the typesetting of the ellipses):

1. “Four score and seven years ago our fathers
brought forth . . . a new nation, conceived in
Liberty, and dedicated to the proposition that
all men are created equal.”
The words “on this continent” have been left out.

2. My wife may think that I am fussy about little
things . . .
The ellipsis here might indicate that I have a
lot more to say about this subject that will go
unspoken.

3. “Leave me alone . . . I’m too tired to talk about
it,” he said.
If the quoted words are in dialog, the ellipsis
might indicate a pause in the speech.

Ellipses are complicated for at least three rea-
sons:3 (1) they can have many different uses; (2) there
are different sets of conventions for how to indicate
the elision, for example, always using three dots or
sometimes using three and sometimes using four dots
depending on context within sentences; (3) there are
different approaches for typesetting ellipses.

Here are some of the possible contexts for use
of ellipses:

• at the end of a sentence
• within a sentence
• at the beginning of a line
• at the end of a line
• within a line
• with, or without, other punctuation before, or

after, the ellipsis

Lots of combinations of these and other situations
also can happen.

2.2 Different conventions

On pages 82–83 of his The Elements of Typographic
Style,4 Robert Bringhurst gives a sketch covering
some of the conventions for using ellipses. In the
following quotation, the instances of ellipses in the
first paragraph and the very last instance are part of
Bringhurst’s text (and are typeset as specified). The

Every LATEX document brings new programming issues

262 TUGboat, Volume 35 (2014), No. 3

rest of the ellipses are by me to indicate my elisions
from the Bringhurst quote.

Most digital fonts now include, among other
things, a prefabricated ellipsis (row of three
baseline dots). Many typographers neverthe-
less prefer to make their own. Some prefer
to see the three dots flush ... with a nor-
mal word space before and after. Others
prefer . . . to add thin spaces between the
dots. Thick spaces (M/3) are prescribed by
the Chicago Manual of Style, . . . In most
cases the Chicago ellipsis is much too wide.

Flush set ellipses work well with some fonts
and faces but not with all. . . . At small text
sizes . . . it is generally best to add space . . .
between the dots. Extra space may also look
best in the midst of light, open letterforms,
. . . , and less space in the company of a dark
font, . . . , or when setting in bold face. . . .

In English . . . , when the ellipsis occurs at
the end of a sentence, a fourth dot, the period,
is added and the space beginning the ellipsis
disappears. . . . When the ellipsis combines
with a comma, exclamation mark or ques-
tion mark, the same typographic principle
applies. Otherwise a word space is required
fore and aft.

However, the Bringhurst summary leaves out other
common conventions. For instance, pages 292–296
of my copy of Chicago Manual of Style5 starts by
giving two main conventions for the form of ellipses:
(1) always only three dots, or (2) four dots at the
end of sentences (or three dots and another punctu-
ation mark, as described by Bringhurst) and three
dots elsewhere. The latter is the manual’s preferred
convention. Ellipses in block quotes also provide
additional circumstances beyond those mentioned in
Bringhurst’s sketch.

The are a number of useful on-line discussions
of the use of ellipses, for example, in the Wikipedia6

and in Doc Scribe’s Guide to research styles, where
you can look up the approaches recommended in five
well-known style guides (AMA, APA, ASA, Chicago,
and MLA).7

2.3 Standard tools versus hand crafting

It seems to me that merely using \dots or \ldots

in LATEX is often not enough to address some of the
potential needs mentioned in the previous sections.
(See also section 2.5.)

Also, naive use of \dots apparently has a prob-
lem that Peter Heslin’s ellipsis style8 works on fixing.
As Heslin says,

There is a problem in the way LATEX handles
ellipses: it always puts a tiny bit more space
after \dots in text mode than before it, which
often results in the ellipsis being off-center
when set between two other things.

It is worth reading the documentation of Heslin’s
package, which also describes some of the issues
relating to using ellipses. The package also allows
one to specify the Chicago or MLA style and to
specify the spacing between dots (e.g., in terms of
an em) in an ellipsis.

Another package is lips.sty,9 which Heslin
suggests using if one wants the full Chicago style.

With so many possibilities and needs, it is not
surprising that, as Bringhurst says, “Many typog-
raphers nevertheless prefer to make their own.” It
is hard for me to imagine a package with sufficient
capabilities and options for everyone. (But maybe
I’m wrong.)

2.4 My approach

My approach has been to define a few macros to
handle common situations for using ellipses in the
writing I do. These also implement my own pref-
erences, such as for inter-dot spacing and spacing
before and after an ellipsis. I have used a couple of
versions of these macros.

Version 1 of ellipses

The following definitions were sufficient for the Break-
through Management book (walden-family.com/
breakthrough) which I co-authored and typeset. I
used the Minion typeface for this book. The com-
ments in the following code provide the relevant
explanations.

% dots for main text

\def\bigdotsspace{3pt}

% three dots

% I like the same size space on each side

% of the ellipsis as between its dots.

\def\mydots{\hbox{\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}}}

% period and three dots = four altogether

% and the same size space after a period

% and before 3 dots

\def\fmydots{\hskip0pt{}%

\hbox{.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}}}

David Walden

TUGboat, Volume 35 (2014), No. 3 263

% dots with only beginning space,

% no following space.

% I use this with an ellipsis and

% following comma, etc.

\def\mydotsnfs{\hbox{\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.\hspace{\bigdotsspace}%

.}}

% dots for block quote text,

% which is smaller than main text

\def\smalldotsspace{2pt}

% small dots without end spaces

\def\minsmalldots{\hbox{%

.\hspace{\smalldotsspace}%

.\hspace{\smalldotsspace}%

.}}

% small dots with end spaces

\def\smydots{\hbox{\hspace{\smalldotsspace}%

\minsmalldots\hspace{\smalldotsspace}}}

% period + three small dots = four altogether

\def\fsmydots{\hskip0pt{}%

\hbox{\hspace{.3pt}.\hspace{\smalldotsspace}%

\minsmalldots\hspace{\smalldotsspace}}}

Version 2 of ellipses

I used the following set of definitions with the book
I compiled and typeset about the technology his-
tory of the company Bolt Beranek and Newman.10

This book uses the Lucida Bright typeface. For this
second book, I had learned about doing things in
terms which varied with font size, e.g., among main,
footnote, and block quote text. My decisions in the
following definitions are only about what looks good
to me, not about the conventions of a particular
style manual. (The comments in the following code
provide the relevant explanations.)

% with an end-of-sentence ellipsis I use

% a following thin, not word, space

\def\fourdots{\hbox{.\hspace{.33em}%

.\hspace{.33em}.\hspace{.33em}.\,}}

% sometimes I don’t even want the

% trailing thin space, e.g., at end of line

\def\fourdotstightright{\hbox{.\hspace{.33em}%

.\hspace{.33em}.\hspace{.33em}.}}

% for a non-end-of-sentence ellipsis

\def\threedots{\hbox{\,.\hspace{.33em}%

.\hspace{.33em}.\,}}

% for beginning of line, e.g., block quote

\def\threedotstightleft{\hbox{.\hspace{.33em}%

.\hspace{.33em}.\,}}

% for end of line, e.g., in a block quote

\def\threedotstightright{\hbox{\,.\hspace{.33em}%

.\hspace{.33em}.}}

% tried this but didn’t use it

%\def\sentencespace{\unkern\spacefactor=3000

% \space\ignorespaces}

% also tried this but didn’t use it

%\def\fourdots{\unskip\kern\fontdimen3\font

% .\kern.1667em\ldots\sentencespace{}}

% also tried this but didn’t use it

%\def\threedots{\unskip\ \ldots\unkern{}}

% for use in a footnote; I originally thought

% I might need a different definition, but

% then I was happy with the main text ratios

\def\fnfourdots{\fourdots{}}

% ditto

\def\fnthreedots{\threedots{}}

Ellipses summary

It is easy to see how my set of definitions could be
adapted to using word or sentence spaces before and
after an ellipsis while using some other appropriate
inter-dot spacing, or to adapt the definitions to other
traditional or personal conventions. For instance,

% sentence space after four dots:

\def\fourdots{\hbox{.\hspace{.33em}%

.\hspace{.33em}.\hspace{.33em}}. }

I am also sure that there are better approaches
than mine for handling a variety of ellipsis situations
in LATEX, or at least better ways to do what I am
doing (perhaps automatically detecting whether an
ellipsis is at the beginning or end of a line and thus
eliminating the need for those definitions).

2.5 Ellipses: appendix

By the way, in the file latex.ltx, I found the fol-
lowing definitions, presented without comment.

\DeclareTextCommandDefault{\textellipsis}{%

.\kern\fontdimen3\font

.\kern\fontdimen3\font

.\kern\fontdimen3\font}

\DeclareRobustCommand{\dots}{%

\ifmmode\mathellipsis\else\textellipsis\fi}

\let\ldots\dots

Every LATEX document brings new programming issues

264 TUGboat, Volume 35 (2014), No. 3

3 Blank verso sides without using the book

class twoside option

Several years ago I was involved in creating a small
book (approximately 100 pages11), and a year later I
did the LATEXing of a small pamphlet (approximately
60 pages12). In both cases, the document needed to
look like a book, but using all the built-in capabilities
of the book class wasn’t necessary. Therefore, I
drafted my own class file (which, in the first case,
Karl Berry significantly improved) and loaded that
on top of the standard book class, e.g.,

\documentclass{book}

\usepackage{ctssbook}

Naturally, the added style file included a macro,
\beginnewchapter, which reset the various counters
(such as footnote and figure numbers), formatted the
chapter title, changed the running headings, and put
the chapter title in the table of contents using the
command

\addcontentsline{toc}{chapter}

{\protect\fmttocnumber{\thechapter}#1}

where #1 is the chapter title passed to the macro
via the macro call (and \fmttocnumber is a macro
that formats a right-justified chapter number in a
properly sized field).

Because the command \chapter is never given
in the LATEX for these two books, the two-side and
one-side capabilities of the book style aren’t available.
This is not a problem. For a document that will
be printed and needs to start a new chapter on a
recto side, it is easy enough (in the last stages of
typesetting) to, first, perfect the page breaks: for
this I typically use calls to macros such as

\newcommand{\Lpushlines}[1]

{\enlargethispage{-#1\baselineskip}}

\newcommand{\Lpulllines}[1]

{\enlargethispage{#1\baselineskip}}

And then, second, to go through the root file of
the document and add a macro call (after the com-
mands to input the content of chapter, frontmatter
and backmatter files) to create the necessary blank
verso sides where needed. This end-of-chapter macro
definition is something like

\def\EOC{%

\newpage\null\thispagestyle{empty}\newpage

}

and the resulting root file looked like this:

\documentclass{book}

\usepackage{ctssbook}

\begin{document}

\frontmatter

\include{title-pages}

\include{preface}

\mainmatter

\include{history}

\EOC

\include{toms-webpage-r1}

\EOC

\include{uses-r}

\include{views}

\EOC

\include{other}

\backmatter

\include{biblio}

\EOC

\input{colophon}

\EOC

\end{document}

In the pamphlet shown in this example, some chap-
ters already end on verso sides and calls to \EOC are
not needed. Also, the command \tableofcontents

is included in the title-pages.tex file; and, since
the table of contents in this case is only one page
long, it also includes a call of \EOC.

As I was finishing this pamphlet, I needed PDFs
both for sending to the printer and for posting on
the web. For the printer, there needed to be two
PDFs: one for the color cover (i.e., a single file of
the back cover, spine, and front cover), and one
for the grayscale interior of the pamphlet including
blank pages at the end of chapters as needed to
start chapters on recto sides. For the web, I needed
a single PDF with the front and back covers at the
beginning and end of the interior pages, and I decided
I wanted to leave out the blank verso sides from the
interior, but keep the same page numbers as in the
print version.

Thus, I created a macro to conditionally add
the covers to the interior and augmented the \EOC

macro to add blank verso sides only when needed for
the print version.

\def\Forweb{0} %0 = print

%\def\Forweb{1} %1 = web

\RequirePackage[final]{pdfpages}

\def\Covers#1{%

\ifodd\Forweb

% #1 is cover filenames

\includepdf[pages=1-1]{#1.pdf}%

\fi}

\RequirePackage{ifthen,changepage}

% if for web, increment page counter

% if for print, output blank page

\def\EOC{\newpage\checkoddpage

\ifthenelse{\boolean{oddpage}}%

{} {\ifodd\Forweb\stepcounter{page}%

David Walden

TUGboat, Volume 35 (2014), No. 3 265

\else\null\thispagestyle{empty}%

\newpage\fi}}

Thus, I added \Covers macro calls bracketing the
rest of the document as follows:

\begin{document}

\Covers{front-cover}

...

\Covers{back-cover}

\end{document}

I also then include a call to the revised \EOC macro
after including each chapter, frontmatter, and back-
matter file (title-pages.tex already contained a
call to \EOC).

4 Flexible layout of a photo album

This past year I decided to print a dozen or so copies
of an album of old photos to distribute to family
members. The photos had been pulled from sev-
eral photo albums of a deceased parent that were
broken up and various photos of individuals sent to
the individual or a family member of the individual.
However, some photos needed to go to more than
one person; hence, I wanted to create an album of
these remaining photos which could be distributed
to multiple family members.

The photos came in a variety of sizes ranging
from 8×10 inches to smaller than 3.5×5 inches, many
of the sizes being non-standard for today’s typical
digital printing businesses that serve amateur pho-
tographers (these businesses tend to assume 8×10,
5×7, 4×6, and 3.5×5). The photos also came in a
variety of conditions from quite good to quite bad
(faded or otherwise discolored, or never high quality
in the first place). I scanned all of these photos at
either 600 pixels per inch or 300 ppi, cropped off
the borders on the digital version, and then did lots
of Photoshopping to bring as much quality back to
the images as I could manage. Because I thought it
might be useful, I put the images into six separate
directories for 8×10 (the few instances of this only
had a vertical orientation), 5×7 (the instances were
also all vertically oriented), 4×6 tall orientation, 4×6
wide orientation, 3.5×5 tall orientation, and 3.5×5
wide orientation.

I decided that I wanted the photos in the album
I was creating to be the exact size of the originals in
inches on the printed page. Consequently, I decided
the album’s trim size when perfect bound would be
10×11.5 inches. The next step was to figure out how
to lay out the photos on printed pages.13

4.1 Photo album: First effort

The first macro I wrote, \image, took two arguments:
an image directory/filename and a draft caption

(the file name without its directory), and displayed
the image with the caption beneath it at the current
location. Then I wrote three other macros:

1. \oneperpage, which called \image once and
centered the specified image and its caption on
a page;

2. \sidebyside, which called \image twice and
placed the two images side by side, centered on
a page;

3. \overunder, which called \image twice and
placed the two images (and their captions) on
the page centered horizontally and spaced out
equally in the vertical direction.

I wrote a Perl program to generate calls (in alpha-
betical order by file name) to the three page-layout
macros for all the image files in each of the six direc-
tories, with the 8×10 and 5×7 images being placed
alone on pages, the 4×6 and 3.5×5 tall images placed
side by side on a page, and the 4×6 and 3.5×5 wide
images placed in an over-under position on the page.
With a little manual text editing, the macro defini-
tions and the Perl-generated calls to the page-layout
macros became the LATEX program to generate a first
draft album of all of the images.

However, there was a problem. My intention was
to print the images at the actual size of the scanned
photographs, counting on \includegraphics to read
the metadata in the image file to specify the print
size. This worked well for most of the images. But
for some of images in the 3.5×5 (tall) directory, the
images printed at much too big a size. Rather than
sort out the reason, I chose the brute force course
of temporarily changing the definition of \image so
\includegraphics used a width of 3.5 inches in calls
by the \sidebyside macro.

With the printout of this first draft in hand,
I could begin to improve the captions and think
seriously about layout issues. With actual captions
written, many were wider than their image which
didn’t look good on horizontal images and which
were completely broken on side-by-side images. So I
redefined \image, as follows, to measure the width
of the image and make the caption be that width:

\def\image#1#2{

\centerline{\includegraphics{#1}}

\smallskip

\settowidth\imagewidth{\includegraphics{#1}}

\begin{minipage}[b]{\imagewidth}

\centering

\large#2

\end{minipage}

}

Every LATEX document brings new programming issues

266 TUGboat, Volume 35 (2014), No. 3

4.2 Photo album: Next approach

With the new (to me) concept of measuring the image
width and adjusting the caption width accordingly,
I redid the page layout macros.

The \overunder macro could use the new defi-
nition of \image directly as shown in the following
definition and example call:

\def\overunder#1#2{

\clearpage \vspace*{\fill}

#1\vfill

#2\vfill

\clearpage

}

called like:

\overunder

{\image{〈filename1 〉}{〈caption1 〉}}
{\image{〈filename2 〉}{〈caption2 〉}}

I redid the \oneperpage and \sidebyside macros
to use the \imagewidth approach without calling
the image macro, i.e.,

\def\oneperpage#1#2{

\clearpage \vspace*{\fill}

\centering

\includegraphics{#1}

\medskip

\settowidth\imagewidth{\includegraphics{#1}}%

\begin{minipage}[b]{\imagewidth}

\centering

\large#2

\end{minipage}

\vfill

\clearpage

}

\def\sidebyside#1#2#3#4{

\clearpage \vspace*{\fill}

\centerline{\includegraphics{#1}%

\quad\includegraphics{#3}}

\settowidth\imagewidth{\includegraphics{#1}%

\quad\includegraphics{#3}}

\smallskip

\begin{minipage}[b]{\imagewidth}

\centering

Left: #2\\Right: #4

\end{minipage}

%\centerline{Left: #2; right: #4}

\vfill

\clearpage

}

Notice that by this time I had created inconsis-
tency in how I included images: sometimes

\macrocall

{filename1}{caption1}

{filename2}{caption2}

and sometimes

\macrocall

{\macrocall{filename1}{caption1}}

{\macrocall{filename2}{caption2}}

4.3 Photo album: Final approach

At this point, I concluded I needed to do several
things differently:

1. try top justifying side-by-side images rather than
bottom justifying them, which is what happened
without doing anything special;

2. fix the page layout macros so they called images
in a consistent way;

3. make it easy to move around the calls of image-
caption pairs in the LATEX source file.

Regarding the first point above, top justifica-
tion of side-by-side images, I looked at or tried four
different methods, three from a question and answer
on tex.stackexchange.com14 and one I made up
myself. One of the tex.stackexchange.com sug-
gestions didn’t seem quite relevant and I couldn’t
manage to install and use the suggested packages in
the other two suggestions there.

The method I tried to develop myself was to
measure the height of the images, find the difference
in heights as a positive number, and insert verti-
cal space of that difference under the shorter of the
images; unfortunately, I couldn’t get the units of
the various parts of these calculations to match well
enough to make the method work. After several
hours of trying things spread over a couple of days,
the bottom-justified approach began to look better
and better, and I gave up trying for top justification.

It came to me that dealing with the third point
above (moving around image-caption pairs), would
naturally address the second point (consistent calling
sequences).

Regarding the third point above, it seemed to
me that the best approach was to separate specify-
ing images and their captions from the page layout
macros, that is, to not have the page layout macros
call the image-caption specification macros. My idea
was to allow something like the following:

\specifyimage

\specifyimage

\layoutpagewithsidebysideimages

\specifyimage

\layoutpagewithsingleimage

David Walden

TUGboat, Volume 35 (2014), No. 3 267

\specifyimage

\specifyimage

\layoutpagewithoverunderimages

Then I could simply drag the \specifyimage macro
calls around to the places I wanted them to be in my
LATEX source file for the album, although I would
still have to be aware of what size images could fit
within the bounds of a page.

For the \specifyimage macro I developed the
following macro (Karl Berry pointed out the \ifcase
TEX language construct to me):

\newcounter{savedphotocount} % define counter

\setcounter{savedphotocount}{0}% clear counter

\def\savephoto#1#2{%

\stepcounter{savedphotocount}%

\ifcase\value{savedphotocount}

\errmessage{case zero should never happen}%

\or \gdef\photoa{#1}\gdef\captiona{#2}% case 1

\or \gdef\photob{#1}\gdef\captionb{#2}% case 2

\or \gdef\photoc{#1}\gdef\captionc{#2}% case 3

\or \gdef\photod{#1}\gdef\captiond{#2}% case 4

\else \errmessage{more photos than expected!}

\fi}

This macro saves up to four images in well-known
places from which the page layout macros can use
them; obviously, this macro could have been ex-
tended to save more images between instances of
zeroing \savedphotocount, which was done at the
end of each page layout macro.

Below is an example definition of one of the page
layout macros that used \savephoto.

\def\oneperpage{

\clearpage \vspace*{\fill}

\centering

\includegraphics{\photoa}

\medskip

\settowidth\imagewidth

{\includegraphics{\photoa}}%

\begin{minipage}[b]{\imagewidth}

\centering

\large\captiona

\end{minipage}

\vfill

\clearpage

\setcounter{savedphotocount}{0}

}

Other page layout macros I needed to define for
the album were:

\overunder two images centered horizontally, with
equal top, between, and below spacing (see the
top right example in Fig. 1).

Right Caption
Left Caption

Caption

Caption

Right Caption
Left Caption

Caption

Right Caption
Left Caption

Right Caption
Left Caption

Figure 1: Some examples of page layouts; example
images from the actual album are available at
walden-family.com/texland/photo-album.pdf

\sidebyside two images side by side, with the pair
centered horizontally, bottom justified, with
equal top and bottom spacing (top left exam-
ple).

\oneovertwo three images with the top one over the
bottom pair, with equal top, between, and bot-
tom spacing among the two rows of images, and
the image and image-pair centered horizontally
(bottom left example).

\twooverone reverse of the above.

\twoovertwo a side-by-side pair over another side-
by-side pair with equal top, between, and bot-
tom spacing among the rows, and the rows cen-
tered horizontally (bottom right example).

This may have not been the optimal approach
in terms of requiring the writing a bunch of different
page layout macros, but it was very useful in terms
of flexibly moving images around within the LATEX
file and experimenting with image ordering and page
layouts until a satisfactory overall album layout was
determined. If I was going to do lots of such albums,
I might have wanted to include more calculations in
the macros and let LATEX figure out how to lay out
pages, but I didn’t need that for this one case (but I
do have a good starting point if I ever want to create
something more automatic).

Every LATEX document brings new programming issues

268 TUGboat, Volume 35 (2014), No. 3

4.4 Incorrectly sized JPGs

Through all of the above, I had to maintain some spe-
cial versions of the macro for the 3.5×5 inch images
with the tall orientation that \includegraphics was
not displaying at the correct size in the PDF. This
mostly resulting in these images being bigger than
real size and thus with less pixels per inch than the
desirable 300 pixel minimum.

Thus, I embarked on trying to figure out why
\includegraphics wasn’t correctly reading (or pro-
cessing) the image size metadata from the image
files. I could see no reason why not, and I asked
on tex.stackexchange.com15 if someone knew how
includegraphics read and processed JPG image
metadata. The list tried to help but had no defini-
tive and workable answers.

Eventually, I converted the problem JPGs to be
PNGs, and then \includegraphics correctly sized
the images. I don’t know why this worked for PNGs
and not for JPGs (the problem JPGs may have been
originally scanned at 600 pixels per inch rather than
300 pixels per inch as was done for most of the
images); however, now I have a work-around that
I will try immediately if I see this problem again
sometime.

4.5 Finishing the album

With the work-around found for the problem noted
in the prior subsection, I could now do a final com-
pilation of the PDF for delivery to the print shop.
There, although almost all the images were grayscale
originally (with only a few color images), I had the
print shop print them all in color which made the
old brownish grayscale images look better than they
would have using a black-and-white based grayscale.

I made the cover (front, spine, and back) of
the photo album with Adobe Illustrator rather than
LATEX. It might have been easier to do the whole lay-
out with a graphical-user-interface (GUI) document
layout tool. Then again it might have been more
work with a GUI to match the caption widths to the
images and to drag whole photo-caption pairs around
(rather than dragging calls to \savephoto around in
my text editor). Who knows? I have LATEX, and I
don’t have the alternative tool.

5 Reflection

In this paper I have discussed three examples of little
programming problems that I was led to by my work,
and by the fact I was using TEX and had been a
programmer by trade. TEX suits me particularly
well as I dislike learning the ins-and-outs of user
interfaces (especially user interfaces that change with
product updates); and I often want something a little

different than is built into the user interface of a less
programmable tool (or maybe what I want is built
into a part of the tool I have not bothered to learn
about). With (LA)TEX I can get a surprising amount
done with the relatively modest amount of (LA)TEX
programming I know (and packages that “just work”
without much study), and over time I have built
quite a library of ad hoc (LA)TEX tools. The library
is not very organized. I am careful to keep the
sources for all my LATEX-based documents, and when
I need a tool I try to remember for which document
I developed that tool, and then I go and copy it.

Notes
1 Perhaps I am a bad guy, but I lack motivation for
developing my little tools into packages that might
help others (although I certainly appreciate that others
develop packages that help me).
2 Self-publishing: Experiences and opinions,
tug.org/TUGboat/tb30-2/tb95walden.pdf
3 While in this note I only discuss non-math use
in American English, it provides enough variety of
situations and problems to perhaps suggest things to
think about when using and typesetting ellipses in
another language.
4 Version 3.1, Hartley & Marks, Publishers,
Vancouver, BC, 2005
5 I’m looking at the 13th edition and not a later edition.
6 en.wikipedia.org/wiki/Ellipsis
7 www.docstyles.com
8 ctan.org/pkg/ellipsis
9 ctan.org/pkg/lips

10 A Culture of Innovation: Insider Accounts of
Computing and Life at BBN, David Walden and
Raymond Nickerson, editors, Waterside Publishing, 2011,
walden-family.com/bbn/bbn-print2.pdf
11 Karl Berry and David Walden, editors, TEX’s
25 Anniversary: A Commemorative Collection,
TEX Users Group, Portland, OR, 2010, tug.org/store/
tug10
12 David Walden and Tom Van Vleck, editors,
Compatible Time-Sharing System (1961–1973):
Fiftieth Anniversary Commemorative Overview,
IEEE Computer Society, Washington, DC, 2011,
walden-family.com/ieee/ctss.pdf
13 The reader may be interested in Boris Veytsman’s
approach for a somewhat similar project: “An output
routine for an illustrated book”, TUGboat 35:2, pp. 202–
204, tug.org/TUGboat/tb35-2/tb110veytsman.pdf.
14 tex.stackexchange.com/questions/101858/

make-two-figures-aligned-at-top
15 tex.stackexchange.com/questions/171906/

how-does-includegraphics-from-the-graphicx-

get-the-size-of-a-jpg-image

� David Walden
walden-family.com

David Walden

