
Typeset MMIX programs with TEX

Udo Wermuth

Abstract

A TEX macro package is presented as a literate pro-
gram. It can be included in programs written in the
languages MMIX or MMIXAL without affecting the
assembler. Such an instrumented file can be pro-
cessed by TEX to get nicely formatted output. Only
a new first line and a new last line must be entered.
And for each end-of-line comment a flag is set to
indicate that the comment is written in TEX.

How to read the following program

The text that starts in the next chapter is a literate
program [2, 1] written in a style similar to noweb [7].
Readers who are not familiar with literate program-
ming might find the following remarks useful.

The program is divided into sections. Each sec-
tion has a number that is written in bold at the be-
ginning of the section. A section contains two parts
and at least one of them must be present: (1) a doc-
umentation part with one or more paragraphs, and
(2) a code part starting with a headline that is fol-
lowed either by ≡ or +≡ and the replacement code.
The headline has the format “〈Name Number 〉”.

Example: Sections 9 and 10 of the program have
the respective headlines “〈List symbols that are spe-

cial in TEX 9 〉 ≡” and “〈List symbols that are special

in TEX 9 〉 +≡”. Section 9 has five lines of replace-
ment code and section 10 three.

The Name is the name under which the replace-
ment code can be called by other sections. The
Number is either the number of the section (the
case with ≡) or a smaller number when a previously
defined replacement code is extended with the new
code lines (case +≡). In the second case the code
part of the previous section that owns the smaller
section number is followed by a line “See also sec-
tions . . . ” and the current section number is some-
where listed in the “. . . ”. Also, in the first case
the code part is also often followed by a line “This
code is used in sections . . . ”. Then the headline
of this section is used inside the replacement code
of other sections (listed in the “. . . ”), in which the
final output of the complete replacement code with
all extensions must be inserted. The number in the
headline states the first section that contains code
for it. So a reader sees in a call of a section where
it starts and under this section he finds the other
sections that add replacement code.

TUGboat, Volume 35 (2014), No. 3 297

Example: In section 9 the lines “See also sec-

tion 10.” and “This code is used in section 24.” are given.
No such line appears in section 10 as it only ex-
tends the replacement code of section 9. (Note that
section 10 has in its headline the number 9.) In
section 24 the reference to section 9 stands for all of
the eight code lines stated in sections 9 and 10.

If a section is not used in any other section then
it is a root and during the extraction of the code a
file is created that has the name of the root. This file
collects all the code in the sequence of the referenced
sections from the code part. The collection process
for all root sections is called tangle. A second pro-
cess is called weave. It outputs the documentation
and the code parts as a TEX document.

Example: The following program has only one
root that is defined in section 4 with the headline
“〈mmix.tex 4 〉 ≡”. The file that is created by the
tangle process is therefore called “mmix.tex”.

The tangled output in the original WEB system
for literate programming is intended to be read only
by computers (see [2], p. 116). In the present system
output is created that is readable by humans. But
changes to the program should only be made in the
original source of the literate program.

The following text is the output that TEX has
produced from the woven document. (A few edits
have been made to follow the style of this journal.)

Contents

Introduction § 1
Format of the output § 6
Preparation § 8
Line numbers § 15
Times column § 22
Setting the output format § 25
Input format § 29
Activation § 33
Last line § 40
Shortcuts § 44
More shortcuts § 50
Final remarks § 52
Index and List of sections § 55

Introduction

1. Algorithms in The Art of Computer Program-
ming (TAOCP) [3] by Donald E. Knuth are stated
in plain English. But every time an implementation
is needed a machine language or assembler language
is used. In the first three volumes the language is
MIX; in Volume 4a the algorithms are implemented
in the language of a new computer called MMIX [4].
For the next editions of the TAOCP volumes all the

Typeset MMIX programs with TEX

MIX programs of the first three volumes must be
rewritten either in MMIX or in the new assembler
language MMIXAL. On his web page http://www-

cs-staff.stanford.edu/~uno/mmix.html, Knuth
asks volunteers to start the conversion of the MIX

programs before he has finished Volume 5 and new
editions of Vols. 1–3 are created.

2. I decided to be one of the volunteers to do the
conversion (although I’m not an MMIXmaster; see
[6]). I asked myself the question: How to present the
result? The MMIX programs are stored in mms files,
which allow a very flexible input format. For exam-
ple, a line that starts with a backslash will be treated
as a comment and is ignored during the assembly.

So my idea is to write the mms files in a way that
they can be processed not only by the assembler but
also by TEX. The output of TEX shall reflect the
style that is used in the TAOCP volumes to present
the MIX and MMIX programs. And TEX can be
used to implement a second idea: Not only shall
the conversion be done but an analysis of the new
implementation shall be added.

A macro package for TEX is developed that is
included in the mms files. Then TEX is able to process
and pretty-print such mms files.

3. Other volunteers for the conversion from MIX to
MMIX have obviously felt the same need for TEX
output. The solution on the MMIX home page [6] is
a lex script mmixtotex.l to create a program that
reads the mms file and outputs a TEX file that can
be typeset with a macro package mmstotex.sty.

4. Here is the plan for the macro package.

〈mmix.tex 4 〉 ≡
〈 Initialization 5 〉
〈Definitions 24 〉
〈Useful commands and shortcuts 44 〉
〈Add an analysis of the algorithm 40 〉
〈Format the mms file 19 〉
〈Take off 33 〉

This is a root.

5. The file mmix.tex might be shipped with an mms

file without this description. Therefore I will be
adding plenty of comments to the TEX code to help
others to read and understand the macro package.

〈 Initialization 5 〉 ≡
% Package to format MMIX programs with TeX
% (and some useful commands to document them)
% Author: Udo Wermuth
% %%%
〈Description 14 〉
% %%%

See also sections 11, 12, and 13.
This code is used in section 4.

298 TUGboat, Volume 35 (2014), No. 3

Format of the output

6. Most of the time programs are not written in
MMIX but in the MMIX Assembly Language, called
MMIXAL. MMIXAL allows labels, alphabetic names,
etc. and introduces new operations that are called
pseudo-ops. As we are only interested in formatting
the source lines of a program the details of the exten-
sions provided by MMIXAL are not discussed here.
The reference [4] defines not only MMIX but gives all
the information about MMIXAL too. A source line of
a MMIXAL program has up to five elements. Three
elements are of principal interest for the program
behavior: (1) an optional label, (2) the operation (or
short: the op-code), and (3) an expression field. The
other two elements are not needed for the execution
of the program but for the analysis and the compre-
hension: (4) optional timing information, i.e., the
number of times the statement is executed in a run,
and (5) an optional comment.

For the presentation of the program one more
element is printed: an optional line number. The
line number is printed in italics, the elements 1–3 are
output verbatim in a monospaced font, element 4 is
written in math mode, and element 5 is formatted
by TEX as normal text. Therefore the output shall
look like this:
line label op-code expression time comment

07 Maximum SL kk,$0,3 1 M1. Initialize.

7. Following this example, let us state the complete
requirements for the output format:
R1 The line number is either empty or has two or

three digits; leading zeros are printed. It is writ-
ten left-aligned in 9 pt italics.

R2 The label is optional. If it is present it is written
verbatim in a 10 pt monospaced font.

R3 The op-code is written verbatim in the mono-
spaced font.

R4 The expression field may contain one or more
items but it does not contain a blank (except
in a string). Like the label and the op-code it
is printed verbatim in the monospaced font.

R5 The timing information is optional. If present,
it is printed in 9 pt as a math expression cen-
tered in its column.

R6 The optional comment is written in a 9 pt ro-
man font. It is written in TEX.

R7 Lines that contain only a comment written in
the monospaced font are allowed. Lines with
more than one source statement are allowed.

R8 The program source ends with a thick vertical
bar in the comment area.

R9 It is possible to add a runtime analysis. The
text uses a 10 pt roman font.

Udo Wermuth

R10 The output shall show the name and the source
of the MIX program, the name of the author,
who programmed the MMIX source, and the
date of the conversion.

Preparation

8. The monospaced font is a 10 pt font (see R2), the
other fonts have size 9 pt (R1, R5, and R6). The
9 pt fonts (and the 6 pt fonts for subscripts) are not
activated in plain TEX. Let’s give them names.

〈Fonts 8 〉 ≡
% name 9pt and 6pt fonts
\font\ninerm=cmr9 \font\sixrm=cmr6
\font\ninesy=cmsy9 \font\sixsy=cmsy6
\font\ninei=cmmi9 \font\sixi=cmmi6
\font\nineit=cmti9 \font\ninesl=cmsl9
\font\ninett=cmtt9
\font\ninebf=cmbx9 \font\sixbf=cmbx6

This code is used in section 24.

9. The example in section 6 shows that MMIXAL

uses characters that have a special meaning in TEX,
for example, the dollar sign and hash mark are im-
portant symbols in MMIXAL. Therefore the output
must be filtered and the functions assigned to the
special characters in TEX have to be deactivated.

Plain TEX provides a \dospecials command,
but let us separate the MMIXAL and TEX special
characters.

〈List symbols that are special in TEX 9 〉 ≡
% special in TeX but common in MMIX
\def\mmixdospecials{\do\ \do\$\do\&\do\#%

\do\^\do_\do\%\do\~}
% remaining special characters in TeX
\def\texdospecials{\do\\\do\{\do\}}

See also section 10.

This code is used in section 24.

10. To switch off the special meaning of the above
listed characters a command from The TEXbook [5],
p. 380, is used.

〈List symbols that are special in TEX 9 〉 +≡
\def\uncatcodespecials{% redef special chars

\def\do##1{\catcode‘##1=12 }%
\mmixdospecials\texdospecials}

11. In the header the author, the name of the pro-
gram and the original source are listed. The footer
states the date and provides a page number. This
fulfills requirement R10.

〈 Initialization 5 〉 +≡
% Header and Footer
\headline={\sevenrm Author: \authorH\hfill

Program: \pgmnameH.mms (\sourceH)}%
\footline={\sevenrm Date: \dateF\hfill

\sevenbf\folio}%

TUGboat, Volume 35 (2014), No. 3 299

12. The printed document shall not only show the
program but also provide the possibility of including
an analysis of the algorithm (R9). The analysis is
placed in a second file (a plain TEX file) and it is
included with an \input statement. The name of
the file is created from the name of the program
extended by the suffix aoa and, of course, with file
extension .tex.

〈 Initialization 5 〉 +≡
% file name for the ‘‘Analysis of Algorithm’’
\def\AoAfile{\pgmnameH_aoa.tex}

13. The name of the program is by default the name
of the MMIXAL file — but the user has the ability
to override that name. The name of the author,
the source location and the date are initialized with
some text, but it is expected that the user speci-
fies them before mmix.tex is loaded. The external
control sequences are copied and made \undefined.

〈 Initialization 5 〉 +≡
\def\checkextdata{%

\ifundef pgmname \def\pgmnameH{\jobname}%
\else\let\pgmnameH=\pgmname
\let\pgmname=\undefined

\fi
\ifundef author \def\authorH{Unknown}%
\else\let\authorH=\author
\let\author=\undefined

\fi
\ifundef source \def\sourceH{TAOCP}%
\else\let\sourceH=\source
\let\source=\undefined

\fi
\ifundef date \def\dateF{\number\year}%
\else\let\dateF=\date
\let\date=\undefined

\fi}

14. The values for date, author and source must be
declared outside of the package. Let us document
this at the beginning of the package.

〈Description 14 〉 ≡
% before the macro package is loaded the
% following must be \def’ed
% required: \date, \author, \source
% the program name is taken from the mms-file
% but it can be overwritten
% optional: \pgmname

See also sections 26, 41, and 53.
This code is used in section 5.

Line numbers

15. The output format states all the information
about line numbers, as they are not part of the input
file. Of course a counter for the numbers is needed.

Typeset MMIX programs with TEX

〈Counters 15 〉 ≡
% count registers
\newcount\lnocnt % counter for line numbers

See also section 25.

This code is used in section 24.

16. Next the width of the column for the line num-
bers has to be defined. Two cases are stated in the
requirements: 2 and 3 digits (see R1).

〈Dimensions 16 〉 ≡
% dimen registers
\newdimen\lnotwodigitswidth % 2 digits col
\newdimen\lnothreedigitswidth % or 3 digits

See also section 22.

This code is used in section 24.

17. Here are the default widths of the columns.

〈 Set values of dimen-registers 17 〉 ≡
{\setbox0=\hbox{\nineit 00\tentt\quad}%
\global\lnotwodigitswidth=\wd0
\global\lnothreedigitswidth=1.25\wd0 }%

See also section 23.
This code is used in section 35.

18. Lines can only be numbered if the space is re-
served for the column of numbers: \colforlnotrue
must be set. Then a number is printed if the flag
\ifnumberlines is true. A third flag is needed to
set the number of digits for line numbers.

〈Flags 18 〉 ≡
% if flags
\newif\ifcolforlno % true: add col for lno
\newif\ifnumberlines % true: number the lines
\newif\ifthreedigitlno % true: use 001..999

See also section 43.

This code is used in section 24.

19. The output routine for line numbers prints lead-
ing zeros (R1).

〈Format the mms file 19 〉 ≡
\def\printlinenumber{% with leading 0s

\ifthreedigitlno % how many digits?
\hbox to \lnothreedigitswidth{\it

\ifnum\lnocnt<100 0\fi
\ifnum\lnocnt<10 0\fi \number\lnocnt
\hss}%

\else\hbox to \lnotwodigitswidth{\it
\ifnum\lnocnt<10 0\fi \number\lnocnt
\hss}%

\fi}

See also sections 20, 21, 27, 28, 29, 30, 31, 32, 34, 35, and 38.
This code is used in section 4.

20. But before the output routine can be called it
must be checked that line numbers shall be printed
at all. Therefore the following macro is called to
output the line number.

300 TUGboat, Volume 35 (2014), No. 3

〈Format the mms file 19 〉 +≡
\def\numbermmixline{% shall no. be printed?

\ifcolforlno
\ifnumberlines

\global\advance\lnocnt by 1
\printlinenumber % yes

\else% no
\fi\fi}

21. To have the style of line numbers available if a
comment or the text of the analysis of the algorithm
needs to reference a line number, one more control
sequence is provided. The command is used in text
printed in roman type. It gets either a single line
number or a range of line numbers and prints this
in italics. So a simple solution is implemented which
doesn’t force the user to type in the italic correction.

〈Format the mms file 19 〉 +≡
\def\pgmline#1{% print #1 as line number

\gdef\argpgmline{#1}% store #1 and look ahead
\futurelet\next\pgmlinex}

\def\pgmlinex{% check if \next is . or ,
\if.\next {\it\argpgmline}% no \/
\else\if,\next {\it\argpgmline}% no \/
\else {\it\argpgmline\/}% add \/
\fi\fi}

Times column

22. The optional column for the timing information
(R5) gets its own dimen register.

〈Dimensions 16 〉 +≡
\newdimen\timecolumnwidth % column for time

23. To allow entries like “A − 1” the column must
be wider than three symbols.

〈 Set values of dimen-registers 17 〉 +≡
{\setbox0=\hbox{$2M+M$}% 10pt gives white space
\global\timecolumnwidth=\wd0 }%

24. Of course, as the column is optional one more
flag needs to be declared.

It is time to collect all definitions in a sorted
list. Such a list might be easier to understand if the
mmix.tex file comes without this documentation, so
some sub-entries are created.

〈Definitions 24 〉 ≡
% %%% Definitions
〈Counters 15 〉
〈Dimensions 16 〉
〈Flags 18 〉
\newif\iftimeinfostated % true: add time col
〈Fonts 8 〉
〈List symbols that are special in TEX 9 〉

See also section 39.
This code is used in section 4.

Udo Wermuth

Setting the output format

25. To identify the size of the field for the line
numbers a hint must be given by the author of the
program. This hint is a counter called \mmixtype.
Three cases must be considered according to R1:
The values 0 and 1 mean no line numbers are used,
2 and 3 stand for two-digit line numbers, and 4 and 5
for three-digit numbers.

And requirement R5 is also covered: If the value
is odd the timing information is present: 0, 2, and 4
format the program without timing information, but
1, 3, and 5 have such information.

And a third bit of information is included: if
the number is positive the line numbering starts im-
mediately. Otherwise a command must be given to
start the numbering.

〈Counters 15 〉 +≡
\newcount\mmixtype % a value between -5 and 5
% -1,0,1: no line numbers, no space reserved
% absolute value 2,3: add column for 2 digits
% absolute value 4,5: add column for 3 digits
% > 1: start line numbering directly
% <-1: a user command starts numbering
% write a line (‘!’ is the commchar) with
% even value: label op expr ! comment
% odd value: label op expr ! time ! comment

26. I decided to set this counter by an “assignment”
to the macro package. Therefore, a typical first line
looks like the following lines in the comment.

〈Description 14 〉 +≡
% start a programm with all \def’s in one line
% (n is the \mmixtype explained elsewhere):
% \def\date{<date>}\def\author{<name>}
% \def\source{<volume, page>}\input mmix =n

27. The value of \mmixtype determines the values
of all flags. They are set even when \mmixtype has
a value outside the defined range from −5 to +5.
Such an error situation is tested and reported later.

〈Format the mms file 19 〉 +≡
% %%% Format
\def\setflagsformmixtype{% analyse \mmixtype

\ifnum\mmixtype<0
\mmixtype=-\mmixtype % wait with numbering

\else
\numberlinestrue % prep. to number 1st line

\fi
\ifnum\mmixtype>1 % activate numbering
\colforlnotrue
\ifnum\mmixtype>3 % use 3 digits

\threedigitlnotrue
\fi\fi
\ifodd\mmixtype % timing info is present
\timeinfostatedtrue

\fi}

TUGboat, Volume 35 (2014), No. 3 301

28. In the case that \mmixtype < −1 the numbering
of lines is activated by user commands. They are
placed in the comment of a source line.

〈Format the mms file 19 〉 +≡
% start and stop line numbering
\let\startnumbering=\numberlinestrue
\let\stopnumbering=\numberlinesfalse

Input format

29. How shall the MMIXAL program line of sec-
tion 6 be entered into the input file? Requirements
R2–R4 state that a monospaced font is used for the
above defined elements 1–3. As special symbols of
TEX might be present the best way to typeset them
is to use verbatim mode. My idea is to use a special
character that ends the verbatim mode, which is au-
tomatically started in every line, and then to format
the rest of the line in TEX. Such a flag makes it
possible to fulfill the requirements R6 and R7. I call
this special character the commchar and by default
the exclamation mark is used for it.

A single commchar is required if no timing in-
formation is present and two are used to identify the
timing information. The above stated program line
is therefore coded like this:
Maximum SL kk,$0,3 !1! \step M1. Initialize.

The label, the op-code, and the expression must al-
ways start at the same column to be properly aligned
in the output. The macros shouldn’t destroy other
input styles, for example, several MMIXAL state-
ments might be written in one line (see R7).

Note: The control sequence \step is one of the
useful macros defined later in this package.

〈Format the mms file 19 〉 +≡
\def\setcommchar#1{% boundary for verbatim

\vskip-\baselineskip% for first end of line
\gdef\commchar{#1}%
\def\par{\endgraf\verbatim#1}}

30. The verbatim mode is defined in a standard way
(see The TEXbook [5], pp. 380–382).

〈Format the mms file 19 〉 +≡
% Verbatim macros
\def\verbatim{\begingroup % ends in \doverbatim

\setupverbatim
\doverbatim}

\def\setupverbatim{%
\def\par{\leavevmode\endgraf\noindent}%
\catcode‘\‘=\active
\obeylines
\uncatcodespecials
\obeyspaces}

% now make a blank a control space
{\obeyspaces\global\let =\ }%
% and avoid ligatures of ? and ! with ‘
{\catcode‘\‘=\active \gdef‘{\relax\lq}}%

Typeset MMIX programs with TEX

31. When the verbatim mode is executed the tests
for the line numbering and the timing information
are made. The change of \everypar and \par is
reverted in the comment field to allow, for example,
a command like \smallskip.

Note that a missing second commchar with an
odd \mmixtype results in a couple of errors (runaway
argument) in \printtimeinfo, but forgetting the
second commchar seems unlikely.

〈Format the mms file 19 〉 +≡
\long\def\doverbatim#1{% #1 is the commchar

\everypar{\numbermmixline}%
\def\nextmmixline##1#1{\noindent
\tentt##1%
\endgroup % opened in \verbatim
\printtimeinfo}%

\iftimeinfostated
\gdef\printtimeinfo##1#1{% #1<time>#1

\hbox to \timecolumnwidth{%
\hss$ ##1 $\hss}\resetpar}%

\else\global\let\printtimeinfo\resetpar
\fi
\nextmmixline}

\def\resetpar{\everypar{}\let\par=\endgraf
\ignorespaces}

32. The exclamation mark seems to work fine as the
commchar, but there might be reasons to switch the
commchar in a program.

〈Format the mms file 19 〉 +≡
\def\newcommchar#1{% change the commchar

\gdef\commchar{#1}%
\def\par{\endgraf\verbatim#1}% new \par
\obeylines}% end-of-line is the new \par

Activation

33. In order to get all macros working together
they must be called in a certain sequence. First,
the macro \setflagsformmixtype has to be exe-
cuted, which makes the value of \mmixtype posi-
tive and sets the flag for immediate line numbering.
Next, the commchar must be defined. The com-
mand starts the verbatim mode after the first \par

command and reads in the first line of the MMIXAL

program. And of course the assignment statement
for the \mmixtype must be executed. All this is done
in the following way:

a) With \afterassignment a (not yet opened)
group is closed; the counter \mmixtype gets the
value that appears after the \input mmix.

b) A group is opened. It will be closed with the
construction in a).

c) With \aftergroup the following sequence is
prepared:
• \setflagsformmixtype is called;
• \setcommchar is called (in a group);

302 TUGboat, Volume 35 (2014), No. 3

• an exclamation mark is given as an argu-
ment for \setcommchar;

• \obeylines is called;
• and \par starts the verbatim mode.

d) Finally, \global\mmixtype is the left side of
the assignment statement (see a)).
And here is the place where we call the test

for the value of \mmixtype. If an error would be
reported in the macro \setflagsformmixtype the
user would see a bunch of tokens that have to be
read again. Therefore the test for an error is made
just before \par at the end of part c) is executed
and the verbatim mode starts.

〈Take off 33 〉 ≡
% %%% Start
〈Last-minute procedures 36 〉
\def\getmmixtype{% needs a ‘‘right side’’
〈Prepare the environment 37 〉
\afterassignment\egroup% an assignment ends
\bgroup % this group
\aftergroup\setflagsformmixtype
\aftergroup\begingroup% closed in last line
\aftergroup\setcommchar
\aftergroup!% this is the default commchar
\aftergroup\obeylines
\aftergroup\testvalueofmmixtype
\aftergroup\par
\global\mmixtype}% now get \mmixtype

\getmmixtype

This code is used in section 4.

34. What has to be done to prepare the environ-
ment? Answer: set the fonts, initialize the variables
(external and internal) and handle TEX comments.

The \ninepoint macro of The TEXbook [5], pp.
414–415, does more than we need, but it shows how
to switch to the 9 pt fonts.

〈Format the mms file 19 〉 +≡
% switch to 9pt fonts
\def\setupfonts{\def\rm{\fam0\ninerm}%

\textfont0=\ninerm \scriptfont0=\sixrm
\textfont1=\ninei \scriptfont1=\sixi
\textfont2=\ninesy \scriptfont2=\sixsy
% no changes for fam3
\def\it{\fam\itfam\nineit}%

\textfont\itfam=\nineit
\def\sl{\fam\slfam\ninesl}%

\textfont\slfam=\ninesl
\def\tt{\fam\ttfam\ninett}%

\textfont\ttfam=\ninett
\def\bf{\fam\bffam\ninebf}%

\textfont\bffam=\ninebf
\scriptfont\bffam=\sixbf

\def\oldstyle{\mit\ninei}%
\rm}

35. Here the variables are set to their initial values.

Udo Wermuth

〈Format the mms file 19 〉 +≡
% set the variables to their default values
\def\setvariables{\mmixtype=0 \lnocnt=0
〈Set values of dimen-registers 17 〉
\colforlnofalse \numberlinesfalse
\threedigitlnofalse \timeinfostatedfalse}

36. One problem remains: If a TEX comment is
placed at the end of the comment field the end-of-
line information is not available and the verbatim
mode isn’t restarted. So the % is made active. It
gobbles the comment and behaves like the current
definition of \par.

〈Last-minute procedures 36 〉 ≡
{\obeylines \catcode‘\%=\active
\gdef\handleTeXcomments{\catcode‘\%=\active

{\obeylines \gdef%##1
{\endgraf\expandafter\verbatim\commchar}}}}%

\def\resetTeXcomment{\catcode‘\%=14 }

This code is used in section 33.

37. Now we collect the pieces together to prepare
the environment.

〈Prepare the environment 37 〉 ≡
\checkextdata \setupfonts
\setvariables \handleTeXcomments

This code is used in section 33.

38. One task is open: To give a warning message
if \mmixtype is out of range. I prefer to issue an
error message. The following macro is called after
\mmixtype was made positive.

〈Format the mms file 19 〉 +≡
\def\testvalueofmmixtype{% value must be < 6

\ifnum\mmixtype>5
\errhelp\mmixtypeerror
\errmessage{The number \string\mmixtype

\space must be between -5 and 5}%
\fi}

39. We append the help message to the definitions.

〈Definitions 24 〉 +≡
% help messages
\newlinechar=‘\^^J
\newhelp\mmixtypeerror{%
mmixtype is the number

stated after \string\input\space mmix.^^J%
It must be between -5 and 5.
Three aspects are coded into it:^^J%
if it is odd

time information is given (use two !);^^J%
if it is -1, 0, 1

no line numbers are present;^^J%
if it is -3, -2, 2, 3

line numbers have two digits;^^J%
if it is -5, -4, 4, 5

line numbers have three digits;^^J%
if it is >1

immediate numbering of lines is started.}%

TUGboat, Volume 35 (2014), No. 3 303

Last line

40. At the end of the program source the possibility
of including a separate file with the analysis of the al-
gorithm shall be given (see R9). The name of the file
was already defined above. The text shall be printed
in a roman font of size 10 pt. Therefore we must
switch back to 10 pt before that section can start.

〈Add an analysis of the algorithm 40 〉 ≡
% %%% Macros for the last line(s)
% typeset the Analysis of the Algorithm
\def\Analysis{\medbreak

\def\rm{\fam0\tenrm}% back to 10pt
\textfont0=\tenrm \scriptfont0=\sevenrm
\textfont1=\teni \scriptfont1=\seveni
\textfont2=\tensy \scriptfont2=\sevensy
% fam3 was not changed
\def\it{\fam\itfam\tenit}%

\textfont\itfam=\tenit
\def\sl{\fam\slfam\tensl}%

\textfont\slfam=\tensl
\def\tt{\fam\ttfam\tentt}%

\textfont\ttfam=\tentt
\def\bf{\fam\bffam\tenbf}%

\textfont\bffam=\tenbf
\scriptfont\bffam=\sevenbf

\def\oldstyle{\mit\teni}%
\rm % activate \tenrm
\noindent{\tenbf Analysis}\par% the headline
\nobreak\smallskip\noindent}

See also section 42.

This code is used in section 4.

41. The section with the analysis is started with the
last line of the file. Similar to the first line it follows
a special convention.

All programs have to use the control sequence
\eop. It typesets a thick vertical rule as it is stated
in requirement R8. It also stops the line numbering.

〈Description 14 〉 +≡
% use \eop in the comment of the last
% source line
% end the input file with a line that
% contains either (! is the commchar)
% ‘‘!\endprogram\bye’’ (even \mmixtype)
% or ‘‘!!\endprogram\bye’’ (odd \mmixtype)
% or use \endwAoA instead of \endprogram
% to input a file with an analysis

42. At the end of the input file a group is still open
that must be closed. And % gets back its default
meaning. But first, up to two empty hboxes are
deleted (that might have been created on the current
horizontal line) to avoid a line break in front of this
“empty line”.

〈Add an analysis of the algorithm 40 〉 +≡
\def\eop{% end of program symbol

\qquad\vrule height 7pt depth 1pt width 3pt
\eopusedtrue\stopnumbering}

Typeset MMIX programs with TEX

\def\clearline{% remove 0--2 empty hboxes
{\setbox0=\lastbox \setbox0=\lastbox}}

\def\endprogram{\clearline
\ifeopused\eopusedfalse
\else\message{^^JWarning: end the program

with \string\eop^^J}%
\fi
\endgroup% opened in \getmmixtype
\resetTeXcomment}

\def\endwAoA{\endprogram\bigskip
\Analysis \input\AoAfile}

43. 〈Flags 18 〉 +≡
\newif\ifeopused % true: ‘‘\eop’’ was used

Shortcuts

44. When the analysis is written some commands
for often-used idioms reduce the amount of typing.

〈Useful commands and shortcuts 44 〉 ≡
% %%% Useful commands
\def\MIX{{\ninett MIX}}
\def\MMIX{{\ninett MMIX}}
\def\MMIXAL{{\ninett MMIXAL}}
\let\NULL\Lambda % the null link
\def\AVAIL{\hbox{\ninett AVAIL}}% free space
\let\Gets\Leftarrow % get space from AVAIL
\let\implies\Rightarrow % more ‘‘logical’’
% units for the analysis: oops and mems
\def\oops{\hbox{υ}}\let\oop=\oops
\def\mems{\hbox{μ}} \let\mem=\mems
% reference to equation numbers of TAOCP
\def\numeq(#1){\hbox{$({\oldstyle#1})$}}
\def\eq(#1){% outputs Eq. (...)

\hbox{Eq.\thinspace\numeq(#1)}}
\def\Eq(#1){% outputs Equation (...)

\hbox{Equation \numeq(#1)}}

See also sections 45, 46, 48, 49, 50, 51, and 52.

This code is used in section 4.

45. Some commands and shortcuts are needed in
the comments to a program. For example, the steps
of an algorithm are labeled with the identifying let-
ter of the algorithm, a number, and a phrase. This
information is often stated in the comment to a pro-
gram. (The phrase might be omitted; for example,
see [3], Vol. 1, p. 236.)

〈Useful commands and shortcuts 44 〉 +≡
% steps in algorithms
\def\algidphrase#1#2#3.#4.{% #1 #arguments;

% #2 phrase delimiter; #3 step id; #4 phrase
$\underline{\hbox{\sl

\vphantom{y}#3.%
\ifnum #1>1 \enspace #4#2\fi}}%

$\space}
\def\step#1. #2.{\algidphrase2.#1.#2.}
\def\steq#1. #2?{\algidphrase2?#1.#2.}
\def\stepid#1.{\algidphrase1-#1.-.}

46. Sometimes several lines get a single comment:
In [3], Vol. 1, p. 258 and 278 (and in [4], p. 107)

304 TUGboat, Volume 35 (2014), No. 3

a right brace is used to collect the statements for
a comment. Place the command \mlsc (multiple
lines, single comment) in the middle or just above
the middle of the lines that get one comment.

〈Useful commands and shortcuts 44 〉 +≡
% place the command in (odd number) or
% just above (even number) the middle
\def\mlsc#1:#2{% #1 #lines; #2 comment

\smash{\ifodd#1\else\lower.45\baselineskip\fi
\hbox{$% next line: see \TeX book, p.194

\openup-1\jot % cancel for \eqalign
〈Compute \dimen255 from #1 (i.e., #lines) 47 〉
\left.\kern-.5em % empty left brace
\eqalign{\vrule height\dimen255

width 0pt depth 0pt }%
\right\}% visible right brace
$\thinspace#2}}}

47. The height of the brace is of course roughly the
number of lines, which are combined by the brace,
multiplied by the \baselineskip. I use the formula:

number of lines× (\baselineskip + 3 pt)− 8 pt.

〈Compute \dimen255 from #1 (i.e., #lines) 47 〉 ≡
% compute height of brace
\dimen255=\baselineskip
\advance\dimen255 by 3pt
\multiply\dimen255 by #1\relax
\advance\dimen255 by -8pt

This code is used in section 46.

48. Next some special constructions: The dot minus
(monus operation or saturating subtraction) is a bi-
nary operation defined by a .− b = max(0, a− b). It
isn’t coded like \doteq as it is not a relation and
some care must be taken with the position of the
dot. The notation of the conditional expression is
changed in TAOCP, Vol. 4a.

〈Useful commands and shortcuts 44 〉 +≡
% special operations
\def\dm{% dot minus: saturating subtraction

\mathbin{\mathop{\kern0pt \smash{-}}%
\limits^{\raise.55ex\hbox{$\textstyle.$}}}}

\def\ite(#1?#2:#3){% if-then-else; Vol.4a, p.96
(#1\,{\rm?\ }#2{\rm:}\enspace#3)}

49. The following shortcuts make special symbols
of TEX available for comments.

The plain TEX command for \l is redefined
here. The original definition is stored in \lstroke.

〈Useful commands and shortcuts 44 〉 +≡
% symbols of \TeX
\def\vs{{\tt\char32 }}% visible space
\def\bs{{\tt\char92 }}% backslash
\def\bo{{\tt\char123 }}% open brace
\def\bc{{\tt\char125 }}% close brace
\let\lstroke\l
\def\l_{{\tt\char95 }}% long underline
\def\h\#{\hbox{${}^\#$}}% high # (hex no.)

Udo Wermuth

More shortcuts

50. Here are some shortcuts that I find useful. In
a comment short words must be processed in math
mode either as roman text or monospaced text. So
I define a couple of commands for that.

Often text must be placed in an hbox. And a
short cut for an array with a roman or monospaced
name and a math mode index is quite useful.

〈Useful commands and shortcuts 44 〉 +≡
% %%% my shortcuts
% output rm or tt in math with 1 to 3 chars
\def\r#1{{\rm #1}}
\def\rr#1#2{{\rm #1#2}}
\def\rrr#1#2#3{{\rm #1#2#3}}
\def\m#1{{\tt #1}}
\def\mm#1#2{{\tt #1#2}}
\def\mmm#1#2#3{{\tt #1#2#3}}
% output of rm or tt text in boxes or arrays
\def\rb#1{\hbox{\rm #1}}% rm box
\def\mb#1{\hbox{\tt #1}}
\def\ra#1[#2]{\hbox{\rm #1[$#2$]}}% rm array
\def\ma#1[#2]{\hbox{\tt #1[$#2$]}}

51. I add a comment in front of a subroutine or
procedure. A few lines describe the calling sequence,
the entry and exit conditions, and changed special
or global registers. This is described on page 55 of
[4]. I start such comments indented at the column
of the op-code and with a > that sticks out to the
left. To get this alignment in the case when timing
information is present some care must be taken.

〈Useful commands and shortcuts 44 〉 +≡
\def\gts{% align ‘g’ with the op-code col

\iftimeinfostated
{% omit time column if \mmixtype is odd
\ninerm\hskip-\timecolumnwidth
{\tentt\ }}% add space for 2nd commchar

\fi
{\tentt>\space }}

Final remarks

52. The following command doesn’t produce any
output. Nevertheless I find it useful in the analysis
of the algorithm. The timing information states how
often a source line is executed but for a line with a
branch instruction it is also useful to know how often
a bad branching decision was made.

Therefore I place the following command di-
rectly after the second commchar and state the num-
ber of bad decisions.

〈Useful commands and shortcuts 44 〉 +≡
% used to state number of bad decisions
\def\bad#1\bad{\ignorespaces}% no output

53. The macros have been presented for a single
mms file. But the conversion project needs to rewrite

TUGboat, Volume 35 (2014), No. 3 305

many MIX programs. So, to create a book of con-
verted programs, for example, for a complete chap-
ter of TAOCP, the individual files can be \input in a
main file which is then processed by TEX. (Of course
the main file must include a definition like, for exam-
ple, \let\goodbye=\bye and then the redefinition
of \bye: \outer\def\bye{\par\vfill\supereject
\endinput}.)

To avoid reloading this package a test is added
that determines if the package is already known.
And all the counters, fonts etc. are reset to their
initial value.

Note that \endinput and \fi must appear in
the same line (see The TEXbook [5], p. 214).

〈Description 14 〉 +≡
% %%%
% don’t load the file several times
% but reset variables, fonts etc.
\def\ifundef #1 {% see \TeX book, ex. 7.7

\expandafter\ifx\csname #1\endcsname\relax}
\ifundef mmixisloaded \def\mmixisloaded{true}%
\else\getmmixtype\endinput\fi

54. To test the scripts and to give an example of
how to use the macro package a small example is
shown in the appendix.

Index and List of sections

55. A literate program comes usually with an index
of the names of used identifiers — variables, types,
functions, procedures, or whatever the used pro-
gramming language offers. It includes also certain
aspects of the program that might be of interest to
users or developers who want to change the code.
For example, error messages are listed.

The index lists the section numbers, in which
the entry appear. The section number, in which an
identifier is defined, is written in slanted digits.

(space) : 30
% : 36

‘ : 30
\algidphrase : 45

\Analysis : 40, 42

\AoAfile : 12, 42
\argpgmline : 21

\author : 13, 14, 26

\authorH : 11, 13
\AVAIL : 44

\bad : 52

\bc : 49
\bo : 49

\bs : 49

changed plain TEX
commands : 30, 36, 49

\checkextdata : 13, 37

\clearline : 42
\colforlnofalse : 35

\colforlnotrue : 27

\commchar : 29, 32, 33, 36
conditional expression : 48

\date : 13, 14, 26
\dateF : 11, 13
default values : 12, 13, 17, 23,

29, 33

\dm : 48
\do : 9, 10

\doverbatim : 30, 31
\endprogram : 41, 42

\endwAoA : 41, 42

\eop : 41, 42
\eopusedfalse : 42

\eopusedtrue : 42

\Eq : 44
\eq : 44

\everypar : 31

\footline : 11
\getmmixtype : 33, 42, 53

\Gets : 44

Typeset MMIX programs with TEX

\gts : 51
\h : 49

\handleTeXcomments : 36, 37

\headline : 11
\ifcolforlno : 18, 20

\ifeopused : 42, 43

\ifnumberlines : 18, 20
\ifthreedigitlno : 18, 19

\iftimeinfostated : 24, 31,
51

\ifundef : 13, 53

\implies : 44
\ite : 48

Knuth, Donald Ervin : 1

\l : 49
\lnocnt : 15, 19, 20, 35

\lnothreedigitswidth :

16, 17, 19
\lnotwodigitswidth : 16,

17, 19

\lstroke : 49
\m : 50

\ma : 50
\mb : 50

\mem : 44

\mems : 44
MIX : 1

\MIX : 44

\mlsc : 46
\mm : 50

MMIX : 1

MMIX home page : 3
\MMIX : 44

mmix.tex : 4, 5, 24

MMIXAL : 6, 9, 29
\MMIXAL : 44

\mmixdospecials : 9, 10

\mmixisloaded : 53
\mmixtype : 25, 26, 27, 33,

35, 38, 41, 51
\mmixtypeerror : 38, 39

\mmm : 50

mms files : 2, 53
\newcommchar : 32
\newlinechar : 39

\next : 21
\nextmmixline : 31

\ninebf : 8, 34

\ninei : 8, 34
\nineit : 8, 17, 34

\ninerm : 8, 34, 51
\ninesl : 8, 34
\ninesy : 8, 34

\ninett : 8, 34, 44
\NULL : 44

\numberlinesfalse : 28, 35

\numberlinestrue : 27, 28
\numbermmixline : 20, 31

\numeq : 44

\oop : 44
\oops : 44

\par : 29, 30, 31, 32, 33
\pgmline : 21

\pgmlinex : 21

\pgmname : 13, 14
\pgmnameH : 11, 12, 13

\printlinenumber : 19, 20

\printtimeinfo : 31
\r : 50

\ra : 50

\rb : 50
\resetpar : 31

\resetTeXcomment : 36, 42

\rr : 50
\rrr : 50

Runaway argument : 31

saturating subtraction : 48
\setcommchar : 29, 33

\setflagsformmixtype : 27, 33
\setupfonts : 34, 37

\setupverbatim : 30

\setvariables : 35, 37
\sixbf : 8, 34

\sixi : 8, 34

\sixrm : 8, 34
\sixsy : 8, 34

\source : 13, 14, 26

\sourceH : 11, 13
\startnumbering : 28

\step : 45

\stepid : 45
\steq : 45

\stopnumbering : 28, 42
TAOCP : 1, 2, 6, 45, 46, 48

\testvalueofmmixtype : 33, 38

\texdospecials : 9, 10
The number \mmixtype ... : 38

\threedigitlnofalse : 35

\threedigitlnotrue : 27
\timecolumnwidth : 22, 23, 31,

51

\timeinfostatedfalse : 35
\timeinfostatedtrue : 27

\uncatcodespecials : 10, 30

usage, first line : 14, 26
last line : 41

program lines : 25, 29, 41
value of \mmixtype : 25, 39

user commands : 14, 21, 28,
32, 42, 44, 45, 46, 48, 49

my collection : 50, 51, 52

\verbatim : 29, 30, 31, 32, 36

\vs : 49
Warning: end the . . . : 42

Wermuth, Udo : 5

56. The second index collects all headlines of the
code parts. Here the headlines contain all section
numbers that define the replacement code for the
section name.

〈Add an analysis of the algorithm 40, 42 〉 Used in 4.

306 TUGboat, Volume 35 (2014), No. 3

〈Compute \dimen255 from #1 (i.e., #lines) 47 〉 Used in

46.

〈Counters 15, 25 〉 Used in 24.

〈Definitions 24, 39 〉 Used in 4.

〈Description 14, 26, 41, 53 〉 Used in 5.

〈Dimensions 16, 22 〉 Used in 24.

〈Flags 18, 43 〉 Used in 24.

〈Fonts 8 〉 Used in 24.

〈Format the mms file 19, 20, 21, 27, 28, 29, 30, 31, 32, 34,

35, 38 〉 Used in 4.

〈 Initialization 5, 11, 12, 13 〉 Used in 4.

〈Last-minute procedures 36 〉 Used in 33.

〈List symbols that are special in TEX 9, 10 〉 Used in 24.

〈mmix.tex 4 〉 Root.

〈Prepare the environment 37 〉 Used in 33.

〈 Set values of dimen-registers 17, 23 〉 Used in 35.

〈Take off 33 〉 Used in 4.

〈Useful commands and shortcuts 44, 45, 46, 48, 49, 50,

51, 52 〉 Used in 4.

References

[1] Bart Childs, “Thirty years of literate programming
and more?” TUGboat 31(2010), 183–188.
http://tug.org/TUGboat/tb31-2/tb98childs.

pdf (accessed: August 4, 2014)
[2] Donald E. Knuth, Literate Programming,

CSLI Lecture Note No. 27, 1992.
http://www-cs-staff.stanford.edu/~uno/

lp.html (accessed: August 4, 2014)
[3] Donald E. Knuth, The Art of Computer

Programming, Addison-Wesley, Vol. 1 (3rd ed.),
1997; Vol. 2 (3rd ed.), 1998; Vol. 3 (2nd ed.), 1998;
Vol. 4a (1st ed.), 2011.
http://www-cs-staff.stanford.edu/~uno/

taocp.html (accessed: August 4, 2014)
[4] Donald E. Knuth, The Art of Computer

Programming — MMIX: A RISC Computer
for the new Millennium, Vol. 1, Fascicle 1,
Addison-Wesley, 2005.
http://www-cs-staff.stanford.edu/~uno/

mmix.html (accessed: August 4, 2014)
[5] Donald E. Knuth, The TEXbook, Volume A of

Computers & Typesetting, Addison-Wesley, 1984.
[6] MMIX home page, hosted by: The MMIX Group

at Munich University of Applied Sciences.
http://mmix.cs.hm.edu (accessed: August 4, 2014)

[7] Norman Ramsey, “Literate programming
simplified”, IEEE Software 11 (1994), 97–105.
http://www.cs.tufts.edu/~nr/noweb/ (accessed:
August 4, 2014)

� Udo Wermuth
Babenhäuser Straße 6
63128 Dietzenbach
Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

TUGboat, Volume 35 (2014), No. 3 307

Appendix: An Example

First the input (file 1-3-3I.mms) is shown. Note that commchars are used only in lines that contain a
comment. Line numbers and timing information are given only for the lines that belong to the subroutine.

The value of \mmixtype is −3 meaning that (a) the first line is not numbered (the value is negative),
(b) line numbers need only two digits (i.e., value is −2 or −3), and (c) timing information is given (so value
must be odd).

\def\date{04 Aug 2014}\def\source{V1, p.\ 177}\def\author{Udo Wermuth}\input mmix =-3
!!\clearline{\tenbf Program I} ({\tenit Inverse in place\/})% use a lot of ‘‘features’’
!!\clearline\smallskip\timecolumnwidth=2.5em % (some are not necessary in this conversion)
n GREG 6 !! Number of elements in the permutation
j IS $0 !! Variables of the algorithm
i IS $1
mm IS $2 !! $\mm mm = 8m$

LOC Data_Segment
X GREG @

OCTA 0 !! $X[0]$ is not used
OCTA 6,2,1,5,4,3 !! The data of Table 1.3.3--3
LOC #100

!!\gts Inverse a permutation in place
!!\gts Entry condition: $X[1]\,\ldots\,X[n]$ is a permutation of $\{1,\ldots,n\}$
!!\gts Exit condition: array X contains inverted permutation \startnumbering

:Invert SL mm,n,3 !1! \step I1. Initialize. $m\gets n$.
NEG j,1 !1! $j\gets-1$.

2H LDO i,X,mm !N! \step I2. Next element. $i\gets X[m]$.
PBN i,5F !N!\bad C\bad To I5 if $i<0$.

3H STO j,X,mm !N! \step I3. Invert one. $X[m]\gets j$.
SR j,mm,3 !N! \mlsc 2:{$j\gets-m$.} % multi-line comment
NEG j,j !N!
SL mm,i,3 !N! $m\gets i$.
LDO i,X,mm !N! $i\gets X[m]$.

4H PBP i,3B !N!\bad C\bad \steq I4. End of cycle? To I3 if $i>0$.
SET i,j !C! Otherwise set $i\gets j$.

5H NEG i,i !N! \step I5. Store final value.
STO i,X,mm !N! $X[m]\gets-i$. \newcommchar. % change the commchar

6H SUB mm,mm,8 .N. \step I6. Loop on m.
PBP mm,2B .N.\bad 1\bad To I2 if $m>0$. \stopnumbering

* inspect memory locations of array X for the result
TRAP 0,Halt,0

Main IS :Invert .. \eop
..\endwAoA\bye

The last line of the input file ends the source with \endwAoA. So a second file with the analysis of the
algorithm is needed; it is the file 1-3-3I_aoa.tex:

In step~I3 each slot of the array~X once receives a negative value and in step~I5 it is
filled with a positive number. Using Kirchhoff’s law the number of times step~I6 is executed is
equal to the number of times steps~I5 and~I2 are executed; that is steps~I2 and~I6 have count
N. Step~I5 is entered from I4 C~times, so I2 goes $N-C$~times to step~I5 and C~times
to~I3. And step~I3 goes N~times to step~I4, which must return $N-C$~times to~I3.

Of course, N is the number of elements in the permutation and~C is the number of its
cycles. The \mb{PB..}~instructions in lines~\pgmline{04} and~\pgmline{10} are based on the
assumption that in most cases $C\leq N/2$. An analysis of~C shows that its average value is
the harmonic number~H_n. So the assumption is correct.

The program needs $4N\mems + (12N+5C+4)\oops$. The execution with the test data, the
permutation $(4 5)(2)(1 6 3)$, gives the statistic for \mb{Invert}: {\tt 78~instructions,
24~mems, 91~oops; 11~good guesses, 7~bad}. (The total run time is 96\oops\ as the \mb{TRAP}
instruction needs 5\oops.) As in this case $N=6$ and $C=3$ the above formula calculates
$(4\times6)\mems=24\mems$ and $(12\times6+5\times3+4)\oops=(72+15+4)\oops=91\oops$ in agreement
with the measured data.

Typeset MMIX programs with TEX

308 TUGboat, Volume 35 (2014), No. 3

And this shows the final output (with simulated headline and footline). I assume that in a TAOCP volume
only the numbered lines appear.

Author: Udo Wermuth Program: 1-3-3I.mms (V1, p. 177)

Program I (Inverse in place)

n GREG 6 Number of elements in the permutation

j IS $0 Variables of the algorithm

i IS $1

mm IS $2 mm = 8m

LOC Data_Segment

X GREG @

OCTA 0 X[0] is not used

OCTA 6,2,1,5,4,3 The data of Table 1.3.3–3

LOC #100

> Inverse a permutation in place

> Entry condition: X[1] . . . X[n] is a permutation of {1, . . . , n}
> Exit condition: array X contains inverted permutation

01 :Invert SL mm,n,3 1 I1. Initialize. m← n.

02 NEG j,1 1 j ← −1.

03 2H LDO i,X,mm N I2. Next element. i← X[m].

04 PBN i,5F N To I5 if i < 0.

05 3H STO j,X,mm N I3. Invert one. X[m]← j.

06 SR j,mm,3 N
}
j ← −m.

07 NEG j,j N

08 SL mm,i,3 N m← i.

09 LDO i,X,mm N i← X[m].

10 4H PBP i,3B N I4. End of cycle? To I3 if i > 0.

11 SET i,j C Otherwise set i← j.

12 5H NEG i,i N I5. Store final value.

13 STO i,X,mm N X[m]← −i.
14 6H SUB mm,mm,8 N I6. Loop on m.

15 PBP mm,2B N To I2 if m > 0.

* inspect memory locations of array X for the result

TRAP 0,Halt,0

Main IS :Invert

Analysis

In step I3 each slot of the array X once receives a negative value and in step I5 it is filled with a positive
number. Using Kirchhoff’s law the number of times step I6 is executed is equal to the number of times
steps I5 and I2 are executed; that is steps I2 and I6 have count N . Step I5 is entered from I4 C times, so
I2 goes N − C times to step I5 and C times to I3. And step I3 goes N times to step I4, which must return
N − C times to I3.

Of course, N is the number of elements in the permutation and C is the number of its cycles. The
PB.. instructions in lines 04 and 10 are based on the assumption that in most cases C ≤ N/2. An analysis
of C shows that its average value is the harmonic number Hn. So the assumption is correct.

The program needs 4Nµ + (12N + 5C + 4)υ. The execution with the test data, the permutation
(45)(2)(163), gives the statistic for Invert: 78 instructions, 24 mems, 91 oops; 11 good guesses,

7 bad. (The total run time is 96υ as the TRAP instruction needs 5υ.) As in this case N = 6 and C = 3 the
above formula calculates (4× 6)µ = 24µ and (12× 6 + 5× 3 + 4)υ = (72 + 15 + 4)υ = 91υ in agreement with
the measured data.

Date: 04 Aug 2014 1

Udo Wermuth

