280

Typesetting external program code and its
output: hvextern

Herbert Vois

Abstract

When writing a book with a mathematical, scientific
or technical background, the output of programs is
often inserted as text or an illustration; in many
cases, also with complete or partial indication of the
respective source code. As an author, you have the
problem of keeping such external sample programs
in sync with the current manuscript. If you keep
the source code in the book manuscript itself, and
create the external examples at the same time as
typesetting the main document, you can be sure the
code and output stay consistent.

1 Introduction

If you use IATEX to write a book about IATEX, you
can easily insert the output of the examples directly
in the main document. [2] This does not necessarily
mean that the examples will also work as small indi-
vidual documents. All examples in a larger book use
the main document’s preamble, which is not available
to a reader of the book.

It usually makes more sense to create examples
as separate documents or programs that are indepen-
dent of the main document. To do this, the complete
source code is written from the main document into
an external file, which is then processed using a spec-
ified program and the result is integrated back into
the main document as a PDF, PNG, text, or what-
ever form is appropriate. From the entire source code
of the example, you can use markers to place the
essential lines of code in the main document before
or next to the example output.

The output of the following examples was
generated “on-the-fly” when compiling this
TUGDboat article. Any change in the example
code therefore automatically led to updated
output during the next compilation process.

To begin, first we’ll show a short example: TUG-
boat is normally compiled with pdfIATEX, so there
are problems with an example that absolutely re-
quires the use of XHIATEX. The example must be
created externally and the output integrated as a
PDF. It makes more sense to do this from the main

document and include the output directly, as shown
here: EEH—K.

First published in Die TEXnische Komédie 2/2022, pp. 30-60.
Translation by the author.

Herbert Vofs

doi.org/10.47397/tb/43-3/tb135voss-extern

TUGboat, Volume 43 (2022), No. 3

This is made possible by the hvextern package, which
defines only one environment and one command. [5]
The corresponding code for the above inline

example is:

Inline example

[...] as shown here:

\begin{externalDocument}[
compiler=xelatex, inline, runs=2, force,
grfOptions={height=8pt}, crop, cropmargin=0,
cleanup, docType=latex]{voss}

\documentclass{ctexart}% needs xelatex

\pagestyle{empty}

\begin{document}

FIFH—K.

\end{document}

\end{externalDocument}

This is made [...]

Any change in this example will automatically
be kept in sync — during the next translation process,
the output of the main document will be updated,
and with it the new code of the example will be run,
and thus also the new output will be inserted.

In the example above, only the output was in-
cluded without showing the source code. Depending
on the application, it may be desirable to display
portions or all of the source code; this is described
on the following pages.

Currently the hvextern package supports ex-
ternal documents for METAPOST, TEX, ConTgXt,

IATEX, LuaTgX, LualATEX, XaTEX, XalATEX, Lua,
Perl, Java, Python, and shell scripts.

2 Syntax

The package, which has no special options, is loaded
as usual: \usepackage{hvextern}. The package de-
fines only one environment, {externalDocument}, and
one command, \runExtCmd:

Syntax

\begin{externalDocument}[(options)]
{{output filename without extension)}
. source code ...
\end{externalDocument}

\runExtCmd [(options)]
{{command)}
{{output filename without extension)}

The main document must be compiled with the
-shell-escape option (or with two dashes, as usual),
otherwise no external commands will be run and
thus the correct output will not be shown.

lualatex invocation
lualatex --shell-escape (latezfile)

https://doi.org/10.47397/tb/43-3/tb135voss-extern

TUGboat, Volume 43 (2022), No. 3

Let’s show another example: The following code
for character manipulation must be compiled us-
ing the program sequence latex—dvips—ps2pdf,
because it does not work with other TEX engines.
With the environment externalDocument, however,
you can write the complete code in an external file,
specify the necessary process, and embed the result
as a PDF. The only important thing is that when
creating the graphic, the standard output of the page
number is suppressed and any white space is cut off
using the crop option. Of course, this does not apply
if a complete page is to be included (see page 284).

3 M3

The code of the above example looks like:

dvips example

\begin{externalDocument}[compiler=1latex,crop,
force=false, cleanup={log,aux,ps,dvi},
grfOptions={width=\1inewidth}]{voss}

\documentclass{article}

\usepackage[american]{babel}

\pagestyle{empty}

\usepackage{pst-text,blindtext}

\begin{document}

\DeclareFixedFont{\SF}{T1}{phv}{b}{n}{2cm}

\pstextpath(0, -1lex){\pscharpathx*[
linestyle=none]l {\SF Herbert Voss}}{%

\tiny \blindtext}

\end{document}

\end{externalDocument}

The meaning of each option:
compiler=latex Use IATEX to compile. The rest of the

invocation, including other programs, is determined

by the internal definition of \hv@extern@runLATEX.

crop Crop the whitespace with pdfcrop.

force Recreate the output even if it already exists.

cleanup={log,aux,ps,dvi} Delete the specified auxiliary
files at the end.

grfoptions={width=\linewidth} Scale output to the cur-
rent linewidth.

voss Filename that is extended internally by a consecu-
tive number.

The external filename, extended by a consec-
utive number, can be printed into the margin by
setting the keyword showFilename. In general it is
printed in the outer margin, or in twocolumn mode in
the outer column. If the example is set in twocolumn
mode but inside a starred floating environment over
both columns, then use the keyword outerFN (see
Figure 1). Then hvextern doesn’t test for twocolumn
mode.

A vertical shift of the filename is possible by
specifying a length for shiftFN, e.g., shiftFN=5ex.

281

Essentially, it doesn’t matter which program-
ming language is used, as long as minimum communi-
cation between the main document and the external
program is guaranteed: this consists only of the re-
quirement that the external document must provide
its output with the same file name with which it was
called. However, even this can be a problem in some
programming languages, as shown below with some
examples.

By default, source code and output are displayed
one above the other, so that a page break in the
source code is not a problem. The following example
creates and runs a Python program, and then in-
cludes the output as a PNG format file. The header
of the externalDocument environment is:

Options for Python —
\begin{externalDocument}[compiler=python3,
code, ext=py, docType=py, usefancyvrb,
grfOptions={width=\1linewidth}]{voss}
. Python code ...
\end{externalDocument}

It is only in rare cases that you will want to
output the complete source code. Therefore, areas
can be defined using so-called markers, which then
delimit the output. The markers are written to the
external file as normal comments, the only reason
why they are programming language dependent; the
comment character is not uniform. For Python the
markers are:

Python marker lines —
\hv@extern@ExampleType{py}
{\NumChar StartVisibleMain}
{\NumChar StopVisibleMain}
{\NumChar StartVisiblePreamble}
{\NumChar StopVisiblePreamble}

and for plain TEX:

TeX marker lines

\hv@extern@ExampleType{tex}
{\perCent StartBody}
{\string\bye}
{\perCent StartVisiblePreamble}
{\perCent StopVisiblePreamble}

\perCent and \NumChar are the TEX and Python
comment characters % and #, which must be escaped
for INTEX. Internally, the category of the character is
changed so that it is available as a normal character
using the \perCent or \NumChar command.

After calling the Python program, it must be
ensured that the file name is determined in order to
provide the output with the same main file name and
a different file extension. In Python this is possible
with the following code:

Typesetting external program code and its output: hvextern

v0Ss-3.py

282

TUGDboat, Volume 43 (2022), No. 3

Complete example code

Python: get filename
fileName = os.path.basename(
os.path.splitext(__file__)[0])

Depending on the output format, this file name is
extended by .pdf, .png, or .txt, so that the output
can be easily inserted into the INTEX main document.
In addition, the markers are now used so that the
output of parts of the Python source code can be
done, requested with the code keyword. (Output
grayscaled for printed TUGboat.)

from PIL import Image
import subprocess
drawing area (xa < xb and ya < yb)

xa = -0.1716
xb = -0.1433
ya = 1.022
yb = 1.044

maxIt = 1024 # iterations

imgx = 1000 # image size

imgy = 750

image = Image.new("RGB", (imgx, imgy))

for y in range(imgy):
cy =y x (yb - ya) / (imgy - 1)
for x in range(imgx):
cX = X * (xb - xa) / (imgx - 1) + xa
c = complex(cx, cy)
z=0
for i in range(maxIt):
if abs(z) > 2.0: break

+ ya

b=1i2%16 x 16
.putpixel((x, y), b*65536 + g*256 + r)

In a purely formal way, the output of the source
code can be defined by analogy to IATEX as a pream-
ble (general definitions) and program body (appli-
cation), whereby two slightly different background
colors are used for differentiation. The markers can
be used anywhere in the document. The above ex-
ample was created with the following IATEX code:

Herbert Vofs

\begin{externalDocument}[compiler=python3, force=false,
%showFilename,
runs=1, code, ext=py, docType=py,
usefancyvrb, grfOptions={width=\linewidth}]{python}
import os
#StartVisiblePreamble
from PIL import Image
import subprocess
drawing area (xa < xb and ya < yb)
Xa = -0.1716; xb = -0.1433
ya = 1.022; yb = 1.044
maxIt = 1024 # iterations
imgx = 1000 # image size
imgy = 750
image = Image.new("RGB",
#StopVisiblePreamble

(imgx, imgy))

#StartVisibleMain
for y in range(imgy):
cy =y *x (yb - ya) / (imgy - 1)
for x in range(imgx):
cx = X * (xb - xa) / (imgx - 1) + xa
complex(cx, cy)
z=0
for i in range(maxIt):
if abs(z) > 2.0: break
Z=272%2Z+C
i%4 %6
i 8 x 32
b=12%16 * 16
image.putpixel((x, y), bx65536 + g*256 + r)
#StopVisibleMain
now get the filename created by the latex
imageName = os.path.basename(
os.path.splitext(__file__)[0])
image.save(imageName+".png", "PNG")
\end{externalDocument}

+ ya

o0

By specifying a width for the output of the
source code, code and result can be arranged side by
side, as shown in Figure 1.

3 Using markers in the source code

The markers identify the areas of the source code
that are to be output in the (I#TEX) main document.
For an external document with TEX or IATEX code,
the use of the markers are shown in the following
examples:

IATEX marker lines

[...]

%StartVisiblePreamble

[... listed preamble code ...]
%StopVisiblePreamble

[...1]

\begin{document}

[... listed body code ...]
\end{document}

Everything between the %StartVisiblePreamble
and %StopVisiblePreamble lines is printed with the
background color BGpreamble (default black!12).
All of the lines between \begin{document} and
\end{document}, on the other hand, are considered
as the text body and printed with the background
color BGbody (default black!8).

TUGboat, Volume 43 (2022), No. 3

\usepackage{tikz}
\usepackage[hks,pantone,xcolor]{xespotcolor}

\SetPageColorSpace{HKS}
\definecolor{HYellow}{spotcolor}{HKSO5N,0.5}
\definecolor{HRed}{spotcolor}{HKS14N,0.5}
\definecolor{HBlue}{spotcolor}{HKS38N,0.5}
\begin{tikzpicture}[fill opacity=0.7]
\fill[HYellow] (90:1.2) circle (2);
\fill[HRed] (210:1.2) circle (2);
\fill[HBlue] (330:1.2) circle (2);
\node at (90:2) {Typography};
\node at (210:2) {Design};
\node at (330:2) {Coding};
\node {\LaTeX};
\end{tikzpicture}

283

Typography

BTEX

Design Coding

Figure 1: Example for side-by-side code and output inside a figurex environment in twocolumn mode.

For TEX we use:

TeX marker lines

[...]
%StartVisiblePreamble
... listed preamble code ...]
StopVisiblePreamble
Lol
StartBody

.

[
[
[
\

bye

Now everything between %StartBody and \bye
is the printed text body.

The markers are defined by the internal macro
\hv@extern@ExampleType. This macro expects five
parameters, for example for Java:
- Java marker lines
\hv@extern@ExampleType{java}

{//StartVisibleMain}
{//StopVisibleMain}
{//StartVisiblePreamble}
{//StopVisiblePreamble}

context java latex lua lualatex luatex
mpost pdflatex perl python3 sh tex texlua
xelatex xetex

The configurations for Lua, Perl, Java, shell,
and Python all have the same structure; they only
differ in the comment character to be used. For Lua,
we have

Lua marker lines

\hv@extern@ExampleType{lua}
{--StartVisibleMain}
{--StopVisibleMain}
{--StartVisiblePreamble}
{--StopVisiblePreamble}

Sometimes, both docType and compiler are the
same, for example when using Lua: docType=lua and
compiler=lua. Indeed, for Lua files that also have
the .1lua extension, the value lua must be assigned
three times:

Options for Lua code
ext=lua, compiler=lua, docType=lua,

The comment starter for Java is //, for Lua --,
and for Perl #. The latter must be escaped by using
\NumChar, as already shown in an example above. In
general, the option docType defines the type of the
source code (the comment starter), and it must have
one of these values:

context java latex lua mp pl py tex sh

As you can see, only tex is allowed for docType,
not latex, pdflatex, etc. This is because the com-
ment starter is uniformly % for all TEX variants.

The compiler option defines the base program
to be run, and the entire invocation, which may
involve additional programs. The following compiler
values are currently supported:

Typesetting external program code and its output: hvextern

The following Lua example writes plain text to
standard output, so we pass the redirect option
to the externalDocument environment; the output is
then redirected into a file of the same main name but
with the extension .txt. This is read verbatim from
within the main IATEX document and can therefore
contain any characters.

io.write("1. "..type("Hello world").." ")
print("2. "..type(10.4%3))

io.write("3. "..type(print).." ")
io.write("4. "..type(type).." ")
print("5. "..type(true))

io.write("6. "..type(nil).." ")

print("7. "..type(type(X)))

voss-4.tex

voss-5.lua

voss-6.java

284

io.write("8. "..type(a).." ")
a =10

io.write("9. "..type(a).." ")
a = "a string!!"

io.write("10. "..type(a).." ")
a = print

print("11. "..type(a))

string
number
function
function
boolean
nil
string
nil

. number
10. string
11. function

O 0O ~NOUAs WN

The same applies to the following example with
Java code:
Options for Java code
ext=java, compiler=java, docType=java,

public static int iterZahl(
final double cx,
final double cy,
int maxIt,
final double radius){
// count the number of iterations
int zaehler = 0;
double zx = 0.0, zy = 0.0, tmp;
do {
tmp = zx*xzx - zyxzy + CX;
zZy = 2*zX*zy + Cy;
zx = tmp;
zaehler++;
// run as long as the kength of the vector
// is smaller than the radius
} while (zxxzx+zyxzy<=radius && zaehler<maxIt);

return zaehler;

}
double xa = -2.5, xe = 0.7, ya = -1.2, ye = 1.2;
double dx = (xe-xa)/(imageWidth-1),

dy = (ye-ya)/(imageHeight-1);
double cx, cy; int R, G, B;
double radius = 10.0; int maxIt = 1024;
cX = Xa;
for (int sp = 0; sp < imageWidth; sp++) {
// from top to bottom:
cy = ye;
for (int ze = 0; ze < imageHeight; ze++) {
int zIter = iterZahl(cx,cy,maxIt,radius);
if (zIter == maxIt) {
g.setColor(Color.WHITE);
g.drawLine(sp, ze, sp, ze);

} else {
R = zIter % 4 * 6 ;
G = zIter % 8 x 32;
B = zIter % 16 * 16;
g.setColor(new Color(R,G,B));
g.drawLine(sp, ze, sp, ze);

}

cy = cy - dy;

Herbert Vofs

TUGDboat, Volume 43 (2022), No. 3

} // for ze
cX = cx + dx;
} // for sp

4 Options
4.1 Program(s) and number of runs

In general, any selected compiler program should be
found in your search path, with pdflatex being the
default. However, in rare cases it may be necessary
to specify a path for the program, which is done by
assigning to progpath. A / must appear at the end,
for example ‘progpath=./bin/’.

Here is the code defining the options progpath,
compiler, runs, and runsequence. The full list of
compiler values was given on previous page. (The
definitions are omitted.)

Compiler options

\define@key{hv}{progpath}[]{...}

\define@choicekeyx+{hv}{compiler}[\val\nr]{%
context, ..., xetex}

[pdflatex]{...}
\define@key{hv}{runs}[1]1{...}
\define@key{hv}{runsequence}[1{...}

Instead of using compiler, biber and xindex,
an explicit run sequence can also be specified via
the runsequence parameter. A comma-separated list
is expected. The input filename is added to each
program being run. For example, this sequence gen-
erates the bibliography and (with additional options)
index, besides the main document:

Invocation (runsequence) example
runsequence={lualatex,biber,xindex -1 de -c DIN2,
makeglossaries, lualatex, lualatex},
cleanup={log, aux, toc, bbl, blg,
run.xml, bcf, idx, ilg},
pages={1,2,3,4,5,6,7,8,9},

The example also prints pages 1-9 of the created
external document, which also has a glossary and a
list of symbols and acronyms.

voss-7.tex

TUGboat, Volume 43 (2022), No. 3

\documentclass[paper=a5,parskip=half-,DIV=12,
bibliography=totoc,
listof=totoc, fontsize=12pt]{scrreprt}
\usepackage[ngerman] {babel}
\usepackage{libertinus-otf,hvindex}
\usepackage{biblatex,makeidx}\makeindex
\addbibresource{biblatex-examples.bib}
\usepackage[abbreviations, symbols,postdot,
stylemods, style=index]{glossaries-extra}
\makeglossaries
\title{Umlaute} \author{Friedrich Schiller}

\maketitle \tableofcontents
\chapter{Introduction} \section{Words}
\Index{0Osterreich} \Index{Oresund}
\Index{Ober} \Index{Ostern} \Index{Oberin}
\Index{0Osterreich} \Index{Oresund}
\Index{Odem} \Index{Oligarch} \Index{Oder}
\Index{Goldmann} \Blindtext[3]
\section{Glossary}

First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.
\printindex \printglossaries
\nocite{*}\raggedright\printbibliography

1 Introduction

Inhaltsverzeichnis
Umlaute

Friedrich Schiller

7.Juni 2022

Index

Glossar

Symbole Akronyme Literatur

4.2 Graphics options

Graphics options
\define@key{hv}{grfOptions}[1{...}

The value for grfOptions is passed to the
well-known \includegraphics macro, for example
{angle=90, width=\linewidth}, as shown in the fol-
lowing example.

285

\usepackage{tikz}

% needs xelatex:

\usepackage[hks,pantone,
xcolor]{xespotcolor}

Coding

\SetPageColorSpace{HKS}
\definecolor{HYellow}{spotcolor}

{HKSO5N, 0.8}
\definecolor{HRed}{spotcolor}

{HKS14N, 0.8}
\definecolor{HBlue}{spotcolor}

{HKS38N, 0.8}
\begin{tikzpicture}

[fill opacity=0.5]
\fill[HYellow] (0,0)circle(2);
\fill[HRed] (3,0)circle(2);
\fill[HBlue] (6,0)circle(2);

\node at (0,0){Typography};
\node at (3,0){Design};
\node at (6,0){Coding};
\node at (3,2.2){\LaTeX};
\end{tikzpicture}

IXTEX

Design

Typography

Since source code and output are arranged next
to each other here, the specification \linewidth refers
to the current width of the minipage. Thus the
output has the maximum possible size.

4.3 Listing options

Listings options
\define@key{hv}{lstOptions}[]1{...}

The value assigned is passed to either the macro
\lstinputlisting or, if usefancyvrb is specified, to
the macro \VerbatimInput from the fancyvrb pack-
age. It should be noted that the options for the re-
spective packages have different meanings and names,
S0 it is not so easy to switch between listings and
fancyvrb.

The following example uses the listings pack-
age, which is the default and therefore does not
require any parameter setting. A slightly exotic list
of options is given, and we omit the graphical output
(which is seen in the next example), purely for the
demonstration:

— Listings options example
lstOptions={basicstyle=\sffamily\slshape\scriptsize,
columns=fullflexible, showoutput=false},

\documentclass[landscape]{article}
\usepackage[margin=1cm]{geometry}
\usepackage{pst—calendar}

\psscalebox{0.5}{%
\psCalDodecaeder|
Year=2022,style=june]%

\hspace{4cm}
\psscalebox{0.5}{%
\psCalDodecaeder|
Year=2022,style=july]%

Typesetting external program code and its output: hvextern

voss-8.tex

voss-9.tex

voss-10.tex

286

4.4 Background color for the code

Different colors for the background and the frame
can be selected. They can be modified via the follow-
ing parameters, which show the defaults in brackets.
(The actual definitions are omitted.) BG is the abbre-
viation for “background” and BO for “border”:

TUGboat, Volume 43 (2022), No. 3

\ShellEscape{#1ldvips\space #3.dvi}%

\ShellEscape{#1lps2pdf\space
-dAutoRotatePages=/None\space
-dALLOWPSTRANSPARENCY\space#3.ps}%

The macro must have the following structure:

Color options
\define@key{hv}{BGpreamble}[black1l2]{...}
\define@key{hv}{BGbody}[black81{...}
\define@key{hv}{BOpreamble}[black1l2]{...}
\define@key{hv}{BObody}[black8]{...}

The parameter values are passed to a tcolorbox
environment (of the package with the same name),
and evaluated there. [3] Because the background
and frame have the same color, the frame remains
“invisible” by default. This changes with different
values, for example:

Differing frame and background colors
BGpreamble=red!10, BOpreamble=red,
BGbody=blue!8, BObody=blue,

Typically, you should use subtle colors so that
the output does not fade into the background com-
pared to the code.

[\usepackage{pst-calendar}]

\psscalebox{0.3}{%
\psCalDodecaeder]|
Year=2022,style=julyl%

We'll return to the default gray colors now.

4.5 Type of source code

The current version of hvextern supports source code
in METAPOST, plain TEX, IATEX, ConTEXt, Python,
Lua, shell, and Perl. Each language’s definition con-
tains the source code markers already mentioned, and
the program invocation sequence if special treatment
is necessary. For example, source code in IATEX re-
quires special treatment if the program used is latex;
the corresponding definition contains the following:
Marker and run setting for dvips

\hv@extern@ExampleType{latex}

% for _all_ LaTeX engines

{\string\begin\string{document\string}}

{\string\end\string{document\string}}

{\perCent StartVisiblePreamble}

{\perCent StopVisiblePreamble}

% only for the sequence latex->dvips->ps2pdf

\def\hv@extern@runLATEX#1#2#3#4{%
%path/compiler/file/extension
\ShellEscape{#1#2\space #3#4}%

Herbert Vofs

Macro implementing the run sequence
\def\hv@extern@run<NAME>#1#2#3#4{%
%path/compiler/file/extension

.

The definition for TEX is similar. The type of
source code and the program used can be different for

TEX, IATEX and ConTEXt, for example type latex
but program lualatex.

4.6 Output of one or more full pages

In the event that only a subset of pages are to be
output, this can be controlled via the pages param-
eter, as we saw in a previous example. It expects
a comma-separated list of the pages to be printed.
The individual pages can be framed with the frame
parameter in order to achieve a clearer presentation.
— Output page selection
\define@key{hv}{pages}[1]1{...}
\define@key{hv}{pagesep}[lem]{%
\hv@extern@pagesep=#1}
\define@boolkey{hv}[hv@extern@]{frame}[truel{}

It is up to the user to use the grfOptions pa-
rameter to ensure that the pages for the output are
scaled as needed. This example outputs the first
three pages of a document:

Page selection example
pages={1,2,3}, grfOptions={width=0.3\linewidth},
pagesep=1pt,
frame, compiler=lualatex, runs=2, % for the TOC

\usepackage[american]{babel}
\usepackage{libertinus}
\usepackage{blindtext}

\title{A multipage example}
\author{Erasmus von Rotterdam}
\maketitle

\tableofcontents
\blinddocument

voss-11.tex

voss-12.tex

TUGboat, Volume 43 (2022), No. 3

4.7 Output as a float

As arule, the output is in the running text, which can
be undesirable if the text width is relatively small.
Larger free spaces can then arise on one side, which is
always unfavorable. In such cases you should use the
float option, in which case, as usual, a caption can
be specified using the caption parameter and a cross-
reference label can be specified using label. The
floating type is by default figure and the placement
can be set by the optional argument floatsetting.
It is preset to !'htb.

\usepackage{pst-coxeterp}

\begin{pspicture}(-1,-1)(1,1)
\Simplex[dimension=2]\end{pspicture}
\begin{pspicture}(-1,-1)(1,1)
\Simplex[dimension=3]\end{pspicture}
\begin{pspicture}(-1,-1)(1,1)
\Simplex[dimension=5]\end{pspicture}
\begin{pspicture}(-1,-1)(1,1)
\Simplex[dimension=7]\end{pspicture}

Figure 2: An example for Coxeter images.

Float options
\define@boolkey{hv}[hv@extern@]{float}[truel{}
\define@key{hv}{caption}[1{...}
\define@key{hv}{label}[1{...}

287

and we want to remove any surrounding white space.
For documents that consist of only one page, the
document class standalone can generally be used,
which automatically removes all white space. If you
have more than one page or want to use another
special document class, hvextern provides the crop
option:

Crop options
\define@boolkey{hv}[hv@extern@]{crop}[true]{}
\define@key{hv}{cropmargin}[2]{...}% in pt

crop can also be applied to documents with
multiple pages. In this case, however, you should
make sure that the pages have headers and footers
so that the white space that is cut off always has
the same size. Otherwise the pages end up with
different heights, as shown in the example below,
which is usually undesirable. Among other things,
the following parameters were set:
Crop example
pages={1,2,3}, grfOptions={width=0.3\1linewidth},
frames, pagesep=1lpt, crop, cropmargin=5,%is 5pt
compiler=lualatex, runs=2, % for the TOC

\usepackage[american]{babel}
\usepackage{libertinus}
\usepackage{blindtext}
\pagestyle{headings}

\title{A multipage example}
\author{Erasmus von Rotterdam}
\maketitle

\tableofcontents
\Blinddocument

Figure 2 shows an example as a floating object.
It was created with the following parameters:
Float example

[...]

float,

caption={An example for Coxeter images.},
label=img:cox,

[...]

The specification float refers only to the output;
otherwise, a previous listing could not have a page
break and the typesetting of the text would be more
difficult. On the other hand, it may well be that other
text appears between the code and the output of an
example. Then manual intervention is necessary, for
example by using the command \captionof from
the package caption, which allows a caption without
floating space.

5 Cropping white space

When displaying the output of examples, usually only
the area that contains a graphic or text is of interest,

5.1

Normally the source code is printed first and then
the output. This order cannot be changed with the
current version of hvextern. For side-by-side output,
the mpwidth parameter determines the width of a left
minipage and is always evaluated if it is greater than
0Opt. A second minipage is then reserved for output
for the remainder of the line, except for the value of
mpsep. Both minipages are aligned to the value of
mpvalign, the top edge by default.

Source code and output side by side

Typesetting external program code and its output: hvextern

voss-13.tex

- Side-by-side options
\define@key{hv}{mpwidth}[Opt]{...}
\define@key{hv}{mpsep}[lem]{...}

The default distance between the two minipages
is 1em, as shown.

5.2 Horizontal alignment of the output

The code is always left-aligned, whereas the output
can use various known alignments via the align op-
tion. The use of the ragged2e package does not have
any advantages here.

— Horizontal alignment
\define@key{hv}{align}[\centering]{...}

The default with align=\centering:

\rule{0.5\linewidth}{3mm}

Left-justified with align=\raggedright:

\rule{0.5\linewidth}{3mm}

Right-justified with align=\raggedleft:

\rule{0.5\linewidth}{3mm}

Side by side, default with align=\centering:

Side by side, with align=\raggedright:

Side by side, with align=\raggedleft:

5.3 Inline output, rather than displayed

\rule{0.2\linewidth}{3mm}

\rule{0.2\linewidth}{3mm}

\rule{0.2\linewidth}{3mm}

The output can be printed within a line in the so-
called inline mode. This can make sense if you don’t
have certain characters available in your document’s
font, but they can be generated externally and then
input as PDF. Here, the corresponding source code
should not be shown, so code=false is automatically
set with inline.

Inline option
\define@boolkey{hv}[hv@extern@]{inline}[truel{...}

An example has already been shown on page 280.

Herbert Vofs

TUGboat, Volume 43 (2022), No. 3

5.4 Handling plain text output

For IATEX documents, the output is generally PDF,
but when using a programming language such as Perl,
the output would more typically be plain text. This
must be redirected or written to a file so that it can be
inserted verbatim into the main document. This can
be controlled with the parameters includegraphic
and redirect. The output is typeset with listings
or fancyvrb, and options for the typesetting environ-
ment set with textoptions.

With includegraphic=false it is up to the user
to ensure that every output within the external doc-
ument is written to a text file; hvextern looks for a
file with the right name. This is done automatically
with redirect, but then all program output ends up
in the external text file.

Plain text output options —
\define@boolkey{hv}[hv@extern@]{redirect}[true]{}
\define@boolkey{hv}{includegraphic}[truel{}
\define@key{hv}{textOptions}[]{...}

The text file must have the same main file name
as the external file, but with the extension .txt. As
we’ve seen, each program can determine by itself
what name it was called with, so it is easily possible
to determine the correct name for the text output
file. For a Perl program, this could be achieved with
the following code, for example:

Perl: get filename —
my $filename = $0; # the current filename
$filename =~ s/\.pl//; # without extension .pl
$filename = "${filename}.txt"; # for the output

open(my $fh, ’'>', $filename);

However, in the next example, the optional key-
word redirect is given, so determining the filename
in the code is not needed. The example is set with:

Example output redirect —
compiler=perl, includegraphic=false, docType=pl,
ext=pl, usefancyvrb, runs=1, code, redirect,
tcbox=false, force, lstOptions={fontsize=\small,

fontfamily=tt, frame=lines}

my $number = 1;
my $start = 1;
my $end =0;
my $found = 0;

print "Searching for Kaprekar constants\n";
while ($number < 8) {

print "${number}-digits: ";

foreach ($start...$end){

@chars = split(//,$%$-);

$Min = join("",sort(@chars));

$Max = reverse($Min);

$Dif=$Max-$Min;

if($- eq $Dif) {

v0ss-20.pl

TUGboat, Volume 43 (2022), No. 3

$found = 1;
print $_,", ";
}
}
if (!$found) { print "---\n"; }
else { print "\n"; }
$found = 0;
$number++;
$start = $startx10;
$end = $endx10;
}
Searching for Kaprekar constants
1-digits: ---
2-digits: ---
3-digits: 495,
4-digits: 6174,
5-digits: ---
6-digits: 549945, 631764,
7-digits: ---

(Just for the sake of completeness: A Kaprekar
constant is a number A with max(A) — min(A) = A,
where max and min are the sorted/reverse-sorted
digits of the number, e.g., A = 495 = 954 — 459.)

Our next example is in Lua, and also produces
text output; but instead of using redirect, the code
outputs to the appropriate file. This filename can be
determined as follows:
- lua:
-- get full filename
local filename = arg[0]

-- delete extension

local shortFN = str:match("(.+)%..+")
-- open external file

outFile = io.open(shortFN..".txt","w+")

get filename

289

end

outFile:write("\n")

t = nextrow(t)

end
end
triangle(10)

1
1 1
1 2 1

1 5 10 106 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84126 126 84 36 9 1

5.5 Generating the bibliography and index

The current version of hvextern has predefined sup-
port for constructing the bibliography with Biber and
an index with xindex, via the following parameters:
Index and bibliography options
\define@boolkey{hv}[hv@extern@]{biber}[true]{}
\define@boolkey{hv}{xindex}[truel{}
\define@key{hv}{xindexOptions}[1{...}

In principle, the external run of Biber does not
require any further parameters, whereas the xindex
program requires information about the language,
the style file, etc., for example. The next example is
generated with the following parameters:
xindex example

function nextrow(t)
-- fill table
local ret = {}
t[0], t[#t+l] =0, 0
for i = 1, #t do

ret[i]=t[i-1]+t[i]

end
return ret

end

function triangle(n)
t = {1}
for i =1, n do
m=(n - 1)
for j = 1,m do
outFile:write(" ")
end
for k = 1,i do
outFile:write(
string.format("%4s",t[k]))

\begin{externalDocument}[

compiler=lualatex, runs=2,pages=2,crop,
xindex,xindexOptions={-1 DE --config DIN2},
docType=latex, cleanup={log,aux,ilg,idx},...]

To use other bibliography or index programs,
you can use the runsequence option; see the example
on p.284.

\usepackage{makeidx}
\makeindex
\usepackage{hvindex}

\Index{Osterreich} \Index{Oresund}
\Index{Odipus} \Index{Ochsle}
\Index{Ostern} \Index{Ober} \Index{Oberin}
\Index{0Osterreich} \Index{Oresund}
\Index{0Odem} \Index{Oligarch} \Index{Oder}
\Index{Ostern} \Index{Ober} \Index{Oberin}
\Index{Obstler} \Index{01} \Index{&élen}
\Index{0der|seealso{Fluss}} \Index{Gobel}
\Index{oder} \index{Fluss!Oder}
\Index{Goethe} \Index{Gothe} \Index{Gotz}
\Index{Goldmann}

\printindex

Typesetting external program code and its output: hvextern

voss-21.lua

V0ss-22.tex

290
Index
F Ol 1
Fluss Olen, 1
-Oder, 1 Oresund, 1
o Osterreich, 1
) Ober, 1
Gobel, 1 i
0 Oberin, 1
Gothe, 1
Obstler, 1
Goethe, 1
0 Oder, 1
Gotz, 1 oder, 1
1 1 :
Goldmann, Oder, siehe auch Fluss
0 Oligarch, 1
Odem, 1 Ostern, 1

6 Verbatim modes: listings and fancyvrb
6.1 Using listings

By default the command \lstinputlisting from the
package listings is used for printing the source code.
We saw an example of setting hvextern’s 1stOptions
option for it earlier.

6.2 Package fancyvrb

There are no fundamental objections to the listings
package, but sometimes it makes more sense to use
\VerbatimInput from the fancyvrb package, espe-
cially when displaying non-ASCII Unicode characters.
Most of the examples in this article use fancyvrb, by
passing the usefancyvrb option.

6.3 Vertical space

Vertical space can be controlled by four keywords for
the stretchable vertical space:

aboveskip The vertical space before the environment
externalDocument or the command \ runExtCmd
(default \medskipamount).

belowpreambleskip The vertical space between the
preamble and body (default \smallskipamount).
If the preamble is missing, then there will be
only aboveskip.

belowbodyskip The vertical space between body and
output (default \smallskipamount).

belowskip The vertical space after the environment
externalDocument or the command \ runExtCmd
(default \medskipamount).

Herbert Vofs

TUGboat, Volume 43 (2022), No. 3

7 Supported METAPOST and TEX engines

Here we show a few examples using the common
TEX-world programs. (IATEX is omitted here since
most of the examples throughout this article use

IATEX.)
7.1 METAPOST example

MetaPost example
\begin{externalDocument}[
compiler=mpost,docType=mp, ...]

defaultfont:="ptmr8r";
warningcheck:=0;

draw fullcircle shifted (0.5,0.6) xscaled 8cm
yscaled 3.5cm withpen pencircle scaled 5bp
withcolor 0.33; % gray bands

special("/Times-Roman findfont 150 "

& " scalefont setfont "

& " 0 10 moveto (MPost) false charpath 2 "

& " clip stroke gsave 150 70 translate "

& " 2 4 600 {dup O moveto @ exch O exch"

& " 0 360 arc stroke} for grestore ");

Here is the definition of the command sequence
for running METAPOST, just in case you want to
modify something:

_— MetaPost run sequence
\def\hv@extern@runMP#1#2#3#4{%
% path / compiler / file / extension
\ShellEscape{#1#2\space -tex=tex\space #3#4}%
\ShellEscape{#1ltex\space "\string\input\space
epsf\string\relax\string\nopagenumbers

\string\epsfbox{#3.1}\string\bye"}%

\ShellEscape{#ldvips\space -j\space -E\space

-o\space #3.eps\space epsf.dvi}%

\ShellEscape{#lepstopdf\space #3.eps}%
}

7.2 Plain TEX example
Plain TgX example

\begin{externalDocument}[
compiler=tex,docType=tex,...]

V0Ss-23.mp

voss-24.tex

TUGboat, Volume 43 (2022), No. 3

\footline={\footsc the electronic journal
of combinatorics {\footbf 16} (2009),
\#ROO\hfil\footrm\folio}

\font\bigrm=cmrl2 at 14pt
\centerline{\bigrm An elementary proof
of the reconstruction conjecture}

\bigskip\bigskip

\centerline{D. Remifa\footnotex{Thanks to the
editors of this journal!}}

\smallskip

\centerline{Department of Inconsequential Studies}

\centerline{Solatido College, North Kentucky, USA}

\centerline{\tt remifa@dis.solatido.edu}

\bigskip

\centerline{\footrm

Submitted: Jan 1, 2009; Accepted: Jan 2, 2009;
Published: Jan 3, 2009}

\centerline{\footrm Mathematics Subject
Classifications: 05C88, 05C89}

\bigskip\bigskip

\centerline{\bf Abstract}

\smallskip

{\narrower\noindent

The reconstruction conjecture states that the

multiset of unlabeled vertex-deleted subgraphs

of a graph determines the graph, provided it

has at least 3 vertices. A version of the problem

was first stated by Stanis\l aw Ulam. In this

paper, we show that the conjecture can be proved

by elementary methods. It is only necessary to

integrate the Lenkle potential of the Broglington

manifold over the quantum supervacillatory measure

in order to reduce the set of possible

counterexamples to a small number (less than a

trillion). A simple computer program that

implements Pipletti’s classification theorem for

torsion-free Aramaic groups with symplectic socles

can then finish the remaining cases.}

\bigskip
\beginsection 1. Introduction.

This is the start of the introduction.

* Thaks to the editorsof

291

7.3 ConTgXt example (mklIV)

This example is run with ConTEXt from TEX Live
2022, but it should also work with the new LMTX.
ConTgXt example
\begin{externalDocument}[pages={3,4},
compiler=context,docType=context,runs=2,...]

\definehead
[myhead]
[section]

\setuphead

[myhead]

[numberstyle=bold,
textstyle=bold,
before=\hairline\blank,
after=\nowhitespace\hairline]

\startstandardmakeup

\midaligned{From Hasselt to America}
\midaligned{by}

\midaligned{J. Jonker and C. van Marle}
\stopstandardmakeup
\placecombinedlist[content]
\chapter{Introduction}

\input knuth \input knuth
\chapter[rensselaer]{The Rensselaer family}
\section{The first born}

\input knuth

\section{The early years}

. in those days Hasselt was ...
\section{Living and workin in America}
\input knuth
\chapter[lansing]{The Lansing family}
\input knuth

. the Lansing family was also ...
\chapter[cuyler]{The Cuyler family}
\input knuth

. much later Tydeman Cuyler ...
\myhead[headlines]{And the end}
foo

Typesetting external program code and its output: hvextern

v0ss-25.tex

292

8 Running arbitrary external commands

To typeset listing of the current directory of this
document we can use the macro \runExtCmd with the
optional argument redirect. We filter the output
with additional commands.
\runExtCmd[redirect]

{ls -1aB | awk ’'{print $6,%$7,$8,$9}" }

{voss}
to produce the directory listing:

Nov 18:49 tb135voss-extern.blg
Nov 3 18:49 tb135voss-extern.log
Oct 31 16:12 tb1l35voss-extern.ltx
Nov 3 18:49 tb135voss-extern.out
Nov 3 18:49 tb135voss-extern.pdf

Nov 3 18:49 .
Nov 1 23:39 ..
Jun 3 17:36 .dict.pws
Nov 3 18:49 Exa-extern
Jun 3 18:04 Makefile
Nov 3 18:49 firstpage.tex
Nov 3 18:49 lastpage.tex
Nov 3 18:49 tbl35voss-extern.aux
Nov 3 18:49 tb135voss-extern.bbl
Jun 3 17:36 tb135voss-extern.bib
3
3

The general behaviour is similar to the environ-
ment, externalDocument: the output is saved in an
intermediate file, in this case voss-{num).txt and
then read by \VerbatimInput. The options code and
showFilename are off by default.

9 Other options

Most, of the options which hvextern provides for
externalDocument and \runExtCommand have been
discussed. Here is a brief summary of some that
have not been seen, or mentioned only in passing.

force With force=false an existing output file is
used, thus reducing compilation time. This op-
tion should only be used in exceptional cases,
because with it, a change in the main document
in the source code of the example does not lead
to updated example output.

moveToExampleDir Move all generated example files,
both source and output, to the directory spec-
ified by ExamplesDir. This can ease document
development and maintenance when there are
many examples. The directory itself must be
created by the user.

ExampleDir The directory to which example files are
moved if requested.

Herbert Vofs

TUGboat, Volume 43 (2022), No. 3

cleanup Auxiliary files from an (I#)TEX or other run
can be deleted to improve the overview in a
directory. By default, these are the .aux and
.log files: cleanup={aux,log}.

framesep Value for \fbox if keyword frame is used.

mpsep Distance between code and output (default
lem).

pagesep Distance between pages for multipage out-
put (default 1em).

shiftFN Length to shift marginal filename; positive
values shift up.

inline False by default; if true, include the gener-
ated output in the paragraph, not as a display.

showoutput True by default; if false, omit the gener-
ated output.

code True by default (unless inline=true); if false,
omit the source code listing.

tcbox If false, do not use any box commands from
the tcolorbox package (for debugging and in
case of bugs).

eps Convert the generated PDF file to EPS (historical
reasons).

10 Caveats

Due to issues with tcolorbox, you can expect prob-
lems if a page break appears in the code part imme-
diately before the first code line is printed. In such
a case put a \newpage or \pagebreak just before the
externalDocument environment. If you do not need
tcolorbox features, you can disable its use with the
option tcbox=false.

References

[1] C. Heinz, J. Hoffmann, B. Moses. The listings
package, version 1.8d, 2020-03-24.
ctan.org/pkg/listings

[2] R. Niepraschk. The showexpl package, version
0.3s. ctan.org/pkg/showexpl

[3] T.F. Sturm. The tcolorbox package, version
5.0.2, 2022-01-07. ctan.org/pkg/tcolorbox

[4] T. Van Zandt, H. Vo&, et al. The fancyvrb
package, version 4.2. ctan.org/pkg/fancyvrb

[5] H. Vof. The hvextern package, version 0.28.
ctan.org/pkg/hvextern

¢ Herbert Vofs
Wasgenstrafe 21
14129 Berlin, Germany
herbert (at) dante dot de
https://hvoss.org/

https://ctan.org/pkg/listings
https://ctan.org/pkg/showexpl
https://ctan.org/pkg/tcolorbox
https://ctan.org/pkg/fancyvrb
https://ctan.org/pkg/hvextern

	Introduction
	Syntax
	Using markers in the source code
	Options
	Program(s) and number of runs
	Graphics options
	Listing options
	Background color for the code
	Type of source code
	Output of one or more full pages
	Output as a float

	Cropping white space
	Source code and output side by side
	Horizontal alignment of the output
	Inline output, rather than displayed
	Handling plain text output
	Generating the bibliography and index

	Verbatim modes: listings and fancyvrb
	Using listings
	Package fancyvrb
	Vertical space

	Supported Metapost and TeX engines
	Metapost example
	Plain TeX example
	ConTeXt example (mkIV)

	Running arbitrary external commands
	Other options
	Caveats

