
Enabling Rich Web Applications for In-Vehicle Infotainment

Simon Isenberg∗, Wolfgang Haberl∗, Matthias Goebl∗, Maximilian Michel† and Uwe Baumgarten‡
∗BMW Forschung und Technik GmbH, Munich, Germany

Email: [simon.isenberg, wolfgang.wh.haberl, matthias.goebl]@bmw.de
†BMW AG, Munich, Germany

Email: maximilian.michel@bmw.de
‡Technische Universität München, Munich, Germany

Email: baumgaru@in.tum.de

Abstract—Web applications have been widely used on PCs,
smartphones and tablets. They are now on the verge to be
used for in-vehicle infotainment (IVI)-systems, as well. In
order to enable a new breed of Web applications, access
to vehicle data in a standardized way is required. In this
paper we present application programming interfaces (APIs)
for accessing vehicle bus data from a standard Web browser.
The APIs have been developed as part of the webinos project.
We evaluate the feasibility of our approach with a prototype
implementation of a browser-based Point-of-Interest manager
and a trip computer using these APIs.

Keywords-Web applications; in-vehicle infotainment; API;
browser; vehicle data

I. INTRODUCTION

Web browsers have made the transition from pure docu-
ment viewers to runtime environments for applications [1].
Standardization activities around HTML 5 and commercial
products such as Chrome OS and Firefox OS highlight
this paradigm shift. The Web is going to connect not only
desktop and laptop PCs, but also mobile devices, home en-
tertainment systems, and potentially in-vehicle infotainment
(IVI)-systems. Research activities [2] and announcements by
QNX [3] to feature Web technology in their upcoming QNX
Car 2 platform or by Intel and Samsung about TIZEN IVI
[4] emphasize the effort towards a browser based runtime
environment on IVI-systems.

The use of Web technology for application development
has advantages compared to native solutions [5] [6] [7]. In
respect to IVI-systems the ease of development, deployment,
and portability of Web applications makes the Web browser
the preferred candidate for a runtime environment. The
current landscape of IVI-systems is highly fragmented with
different OEM specific solutions. The fragmentation hinders
attraction of third-party developers for native apps and
increases development costs for IVI-systems. Another result
of the fragmentation is the unavailability of applications and
services on IVI-systems to customize the user experience.

Contrariwise, the highly standardized and less fragmented
Web technology provides the desired range of applications,
which is backed by a large developer base. Using the
browser as a runtime environment on IVI-systems can help

to lower development costs, while providing a wide range
of applications at the same time.

However, standardized APIs for Web applications to in-
teract with the vehicle systems are missing. Such APIs must
take the automotive constraints including limited hardware
resources and sandboxing of infotainment applications from
the general vehicle system into account.

In summary, this paper makes the following contributions:
• We present two JavaScript APIs for interacting with the

vehicle, the Vehicle API for retrieving vehicle specific
data from bus systems and the Navigation API for
interacting with the on-board navigation system.

• We have implemented the APIs on top of the webinos
platform1 and evaluated the feasibility of our APIs with
two prototype applications.

In the following Section II we discuss the design of
the Vehicle API and Navigation API as part of browser
based application runtime webinos. Section III outlines our
prototype implementation. We emphasize the feasibility of
our approach by showing a browser based trip computer and
Point-of-Interest (POI) manager in Section IV. The paper
concludes with a summary of our findings and an outlook
on future work.

II. API DESIGN

While designing both APIs, we obeyed the following
principles:

1) Avoid exposing data duplicates which are already
available from other standardized APIs such as the
Geolocation API2.

2) Follow general design principles for Web APIs which
are encouraged by W3C and use an asynchronous
model to retrieve dynamic vehicle data.

3) Group vehicle properties to be easily used in Web
applications.

As the Geolocation API provides information about the
position including latitude, longitude, altitude, speed and
heading of a device, we do not incorporate these data

1http://www.webinos.org
2http://www.w3.org/TR/geolocation-API/

Webinos Vehicle API

Tripcomputer
 Data

Parking Sensor
Data

P
os

iti
on

 [s
tri

ng
]

ou
tL

ef
t [

S
ho

rt]

av
er

ag
eS

pe
ed

 [S
ho

rt]

av
er

ag
eC

on
su

m
pt

io
n

[S
ho

rt]

M
ile

ag
e

[S
ho

rt]

tri
pD

is
ta

nc
e

[S
ho

rt]

R
an

ge
 [S

ho
rt]

Vehicle Data Objects

Le
ft

[S
ho

rt]

M
id

le
ft

[S
ho

rt]

M
id

rig
ht

 [S
ho

rt]

R
ig

ht
 [S

ho
rt]

O
ut

te
rR

ig
ht

 [S
ho

rt]
Gear
Data

G
ea

r [
S

ho
rt]

Light
Data

Engine
Oil Data

Le
ve

l [
st

rin
g] ge

t

ad
dE

ve
nt

Li
st

en
er

re
m

ov
eE

ve
nt

Li
st

en
er

lig
ht

Id
 [s

tri
ng

]

A
ct

iv
e

[b
oo

le
an

]

Wiper
Data

P
os

iti
on

 [s
tri

ng
]

Window
 Data

dr
iv

er
 [S

ho
rt]

be
hi

nd
D

riv
er

 [S
ho

rt]

pa
ss

en
ge

r [
S

ho
rt]

be
hi

nd
P

as
se

ng
er

 [S
ho

rt]

Door
 Data

dr
iv

er
 [S

ho
rt]

be
hi

nd
D

riv
er

 [S
ho

rt]

pa
ss

en
ge

r [
S

ho
rt]

be
hi

nd
P

as
se

ng
er

 [S
ho

rt]

Tire
Pressure

fro
nt

R
ig

ht
 [S

ho
rt]

fro
nt

Le
ft

[S
ho

rt]

re
ar

R
ig

ht
 [S

ho
rt]

re
ar

Le
ft

[S
ho

rt]

Climate
Data

zo
ne

 [S
tri

ng
]

de
si

re
dT

em
pe

ra
tu

re
 [S

ho
rt]

ac
S

ta
tu

s
[b

oo
le

an
]

ve
nt

Le
ve

l [
S

ho
rt]

ve
nt

M
od

e
[b

oo
le

an
]

Seat
Data

po
si

tio
n

[S
tri

ng
]

se
tti

ng
s

[S
ea

tS
et

tin
g[

]]

Figure 1. Dynamic Vehicle Data Provided by the webinos Vehicle API

properties into our Vehicle API. The same applies for lateral
and longitudinal acceleration, which is provided by Device
Motion Events of the Device Orientation API3. Instead an
implementation of the existing API specifications for the
automotive platform is used.

A. API for retrieving vehicle data

Because of the frequent use of an event-based design in
JavaScript APIs as seen in the Device Orientation API our
Vehicle API is influenced by W3C’s DOM Level 3 Events
model4. We provide vehicle data which change frequently
in an event-based manner. An app developer can register
listeners on specific vehicle properties or can request vehicle
data in a non-recurring way. Static information about the
vehicle such as brand, model, etc. is provided as separate
attributes of the vehicle object. Figure 1 illustrates, which
data properties are exposed by our Vehicle API and can
be retrieved using the addEventListener() or get() functions.
The vehicle data is passed back to the defined callback han-
dler. We defined eleven different data objects for retrieving
vehicle data. Web app developers gain access to (1) park
sensors at the front and the rear of the vehicle, (2) trip
computer data such as average fuel consumption, (3) the
current gear, the state of (4) lights, (5) windows, (6) doors,
(7) wipers and (8) tires. Additionally, information about (9)
air conditioning settings, (10) seat settings and (11) engine
oil level are exposed, as well.

Listing 1 illustrates how to add a callback listener on trip
computer data. Whenever one of the five trip computer data
properties (average speed, average consumption, mileage,
trip distance or range) changes, the registered callback is
being triggered with the updated trip computer data.

The vehicle data properties are grouped based on two
reasons: On the one hand, they are grouped in a way that
they can be easily used by applications. On the other hand,

3http://www.w3.org/TR/screen-orientation/
4http://www.w3.org/TR/DOM-Level-3-Events/

groups are designed to minimize the access frequency to
the different bus systems and to reduce the overhead for
pushing the vehicle data from the different buses into the
browser engine.

webinos.vehicle.addEventListener("tripcomputer", tcHandler
);

function tcHandler(e){
alert(tc.averageSpeed);
}

Listing 1. Adding an Event Listener on Trip Computer Data

The full specification of the Vehicle API is available at
http://dev.webinos.org/specifications/new/vehicle.html.

B. API for interacting with the on-board navigation system

Besides the ability to read vehicle data from the bus
system, we provide mechanisms to interact with the on-
board navigation system using the Navigation API. The
separation between navigation features and vehicle data
access is motivated by the fact that the navigation features
are not exclusively provided by vehicles, but could also be
available on smartphones.

The Navigation API exposes four different functions for
interacting with the satellite navigation system and supports

• to query the navigation system for POIs in customizable
area,

• to hand over a POI or address to the navigation system
and request guidance to it,

• to cancel guidance to a given POI,
• and to retrieve the state of the navigation system (active,

inactive).
When an application passes a POI to the navigation system,
a callback handler can be registered. The handler supports
mechanism to notify the application, if the destination has
been successfully passed to the navigation system (onRe-
quest()), the guidance to the destination has been can-
celled (onCancel()) or the destination has been reached

((onCancel()). Listing 2 illustrates how to pass a POI to
the navigation system and make use of the callback handler.
The full specification of the Navigation API is available at
http://dev.webinos.org/specifications/new/navigation.html.

var navigationHandler = {
onRequest: function(id, poi){
console.log(’Guidance set to’ + poi.name);

},
onReach: function(id, poi){
console.log(poi.name + ’ reached.’);

},
onCancel: function(id, poi)

console.log(’Guidance to ’ + poi.name + ’
is cancelled.’);

}
var destination = {name:"BMW Group Research and Technology

", address:{street: "Hanauer Strasse", streetNumber:
"46", postalCode: "80992", city: "Muenchen", country:
"DE"};

webinos.navigation.requestGuidance(destination, false,
navigationHandler);

Listing 2. Handing over a POI to the navigation system

III. PROTOTYPE IMPLEMENTATION

In order to provide vehicle bus data and interact with the
on-board navigation system we are accessing two different
vehicle buses. First we have a module for accessing the
Media Oriented Systems Transport (MOST)-Bus and second
for accessing the Controller Area Network (CAN)-Bus.

The architecture to access the vehicle data from the Web
browser is depicted in Figure 2. The module to access the car
data is decoupled from the browser engine. This approach
is the integral part of the webinos middleware as described
in detail in [8]. It allows us to provide access to vehicle
data from Web applications which are executed on different
devices, such as a connected smartphone.

Vehicle
Data
Provider
(Node.js)

Application
Runtime
(Web Browser)

Kernel

Hardware

MOST Driver

webinos.js (API Proxy)

Message Handler

MOST

Vehicle Access Manager

API Manager

CAN Driver

CAN

Web App Web App …

In-car head unit

Vehicle Navigation Device
Orientation Geolocation

…

…

WebSocket Connection

Figure 2. Architecture for accessing bus data

When a Web application is launched, the browser in-
jects a JavaScript library to provide access to the Vehicle,
Navigation, Geolocation and Device Orientation API. The
library establishes a connection to the Vehicle Data Provider
using a WebSocket connection. The Vehicle Data Provider is
implemented as a Node.js5 application. Node.js is a platform
for building network applications on top of Google Chrome’s
JavaScript script runtime. Our Vehicle Data Provider con-
tains a native Node.js add-on called Vehicle Access Manager
for accessing the MOST- and CAN-Bus.

From a developer perspective the injected library acts as
a regular JavaScript API. The library handles requests to
the supported APIs. It wraps the requests into JSON-RPC
request and passes it to the Vehicle Data Provider running
on Node.js. The Vehicle Data Provider extracts the request
and passes the request to the internal API manager, which is
wrapped around the Node.js add-on for accessing the vehicle
buses.

Our Vehicle Access Manager parses the different bus
messages converts the relevant messages into the various
vehicle data or position and device motion event objects. The
same applies to the Navigation API. The created JavaScript
objects are than passed back to the browser inside a JSON-
RPC response. The injected JavaScript library extracts the
response message and triggers the registered callback func-
tions of the Web application with the provided data object.
Our prototype system runs on top of an optimized version of
Ubuntu 11.10 and supports ARM and Intel x86 architectures.

IV. DEMO APPLICATIONS

In order to evaluate the feasibility of our concept we
created two browser applications, which make use of the
newly introduced APIs. Both apps have an optimized user
interface for in-car usage and can be controlled using the
BMW iDrive controller6. Due to webinos’ cross-platform
approach, the applications can be executed on multiple
devices as displayed in figures 3 and 4.

Figure 3 depicts a browser based trip-computer. The
application visualizes the data which can be retrieved form
Vehicle, Geolocation and Device Orientation API as a gen-
eral trip computer. The user can customize different views
and specify which vehicle properties, shall be displayed. As
shown in the figure, the app maybe executed on in-car head
units, tablets or smartphones.

Figure 4 shows the POI manager called webinos travel.
The application enables the user to create POIs on any
webinos enabled device, such as a smartphone, pc or tablet.
The information about the different POIs is synced between
the different CE-devices using the webinos middleware. On
the IVI-system, the user can browse the created POIs and

5http://nodejs.org
6http://www.bmw.com/com/en/insights/technology/technology guide/

articles/controller.html

Figure 3. webinos trip computer (Courtesy of BMW AG)

Figure 4. webinos travel (Courtesy of BMW AG)

passes the POI to the on-board navigation system using the
Navigation API.

V. SUMMARY & FUTURE WORK

The paper at hand puts a strong focus on accessing
different vehicle busses and exposing the vehicle specific
data in a generic way for Web applications. The Vehicle
API and Navigation API provide the basis for richer Web
based IVI-applications. The API provides unique device
data, which is usually not available to Web applications. In
order to commercially use these APIs, fine-grained access
control mechanisms have to be integrated into the solution.

Such a fine-grained access control is also necessary before
allowing Web apps to set certain vehicle properties.

Additional items for future work in respect to Web and
Automotive would cover ways to automatically adapt the
content of the Web applications to the available input con-
trols inside the vehicle and adjust the graphical user interface
to minimize driver distraction.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Unions Seventh Framework Program
(FP7-ICT-2009-5, Objective 1.2) under grant agreement
number 257103 (webinos project).

REFERENCES

[1] A. Taivalsaari and T. Mikkonen, “Objects in the Cloud May Be
Closer Than They Appear,” in 2011 13th IEEE International
Symposium on Web Systems Evolution (WSE). IEEE, Sep.
2011, pp. 59–64.

[2] S. Isenberg, M. Goebl, and U. Baumgarten, “Is theWeb Ready
for In-Car Infotainment? A Framework for Browser Perfor-
mance Tests Suited for Embedded Vehicle Hardware,” in 2012
14th IEEE International Symposium on Web Systems Evolution
(WSE). IEEE, 2012.

[3] A. Gryc, “Why Automakers (Should) Care
about HTML5,” 2011. [Online]. Available:
http://support7.qnx.com/download/download/22989/qnx auto
html5.pdf/download/download/22989/qnx auto html5.pdf

[4] M. Ylinen, “Tizen IVI Architecture,” 2012. [Online]. Available:
http://download.tizen.org/misc/media/conference2012/
wednesday/bayview/2012-05-09-0945-1025-tizen ivi
architecture.pdf

[5] S. Adler, “WebOS,” netWorker, vol. 9, no. 4, pp. 18–26, Dec.
2005.

[6] G. Lawton, “Moving the OS to the Web,” Computer, vol. 41,
no. 3, pp. 16–19, Mar. 2008.

[7] A. Taivalsaari and T. Mikkonen, “The Web as an Application
Platform: The Saga Continues,” in 2011 37th EUROMICRO
Conference on Software Engineering and Advanced Applica-
tions. IEEE, Aug. 2011, pp. 170–174.

[8] C. Fuhrhop, J. Lyle, and S. Faily, “The webinos project,” in
Proceedings of the 21st international conference companion
on World Wide Web - WWW ’12 Companion. New York,
New York, USA: ACM Press, Apr. 2012, p. 259. [Online].
Available: http://dl.acm.org/citation.cfm?id=2187980.2188024

