
automotiveHMI – Model-Based In-Vehicle Infotainment

Description as a Stepping Stone for the Integration of Car and

Web

Gerrit Meixner

German Research Center for

Artificial Intelligence (DFKI)

Trippstadter Strasse 122

 67663 Kaiserslautern

Gerrit.Meixner@dfki.de

+49 631 205 75-3415

Marius Orfgen

German Research Center for

Artificial Intelligence (DFKI)

Trippstadter Strasse 122

 67663 Kaiserslautern

Marius.Orfgen@dfki.de

+49 631 205 75-3413

Moritz Kuemmerling

German Research Center for

Artificial Intelligence (DFKI)

Trippstadter Strasse 122

 67663 Kaiserslautern

Moritz.Kuemmerling@dfki.de

+49 631 205 75-3414

Statement of interest
Different studies show (e.g., [1]) that over 80% of today’s

innovations in the automotive industry are based on car

electronics and its software. These innovations can be categorized

into hidden technologies (e.g., ASP, ESP), comfort functions (e.g.,

navigation, communication, entertainment) or driver assistance

(e.g., distance checking). Especially the last two categories have

to be configurable by the driver and therefore require a certain

amount of driver interaction. This results in a need for a modern

and consistent human-machine-interface (HMI) which on one

hand allows the configuration of these systems but which on the

other hand conforms to the specialized requirements of the

automotive industry. Some of these requirements are:

 The interaction devices have to be integrated into a

limited space.

 The HMI has to be intuitively usable and adaptable,

since drivers generally do not get an extensive

explanation.

 The HMI has to be very easy to use and should distract

the driver as little as possible from his main task of

driving.

Additionally to the growing number of configurable systems in a

modern car, there is a need for shorter release cycles and lower

costs for the development of HMIs. One main source of problems

in the development of HMIs is the communication overhead

caused by informal specifications [2]. This overhead is needed to

reduce the ambiguity and the incorrectness of the specification

document. A more formal approach to specification might reduce

this overhead dramatically, leading to shorter development times,

cost savings and fewer problems.

The publicly funded research project automotiveHMI

(http://www.automotive-hmi.org) consists of 11 partners of the

German automotive industry, two research institutes as well as

one association. The industry members are car manufacturers

(Original Equipment Manufacturer - OEM), suppliers and tool

developers which together cover the complete development chain

for automotive HMI-systems [3].

The research project is based on three pillars. The main pillar is

represented by the development of a model-based interchange

format for the specification of automotive HMI-systems. Current

HMI development processes are characterized by different,

inconsistent workflows and heterogeneous tool chains. The

exchanged requirements are often inconsistent, redundant,

incomplete and in general not machine-readable.

These circumstances lead to tremendous communication efforts

between OEMs and their suppliers until both get the same

understanding of the new HMI-system. Mistakes and bugs are

often first noticed when the supplier delivers the first software-

version back to the OEM. At that late time modifications are very

cost intensive and change-request negotiations become a common

annoyance [4].

A further problem is the wide range of actors from many different

branches that are involved in the automotive HMI development:

Computer scientists and electrical engineers work together with

designers, ergonomists and psychologists in interdisciplinary

teams. The HMI modeling language that is to be developed shall

serve as the connective link (lingua franca) between these actors.

On this account the HMI modeling language has to be domain

specific. Domain specific languages (DSL) are dedicated to a

particular problem domain and their “vocabulary” is generally

based upon common expressions that are typical for the domain.

Thus DSLs are far more expressive in their domain than general-

purpose languages would be.

The project goal of automotiveHMI is to create a modeling

language that will allow the different members of the

development chain to specify and exchange the requirements and

artifacts for HMI development. The language should be

established as an industry standard to improve communication and

the development of interoperable tools.

This modeling language forms a common data interface for the

different process members (e.g. OEMs, suppliers). It allows

bridging the “digital gap” currently found in today’s HMI

development due to the document-driven exchange of

specification data. Building on this data interface, it is possible to

exchange digital information for use in development tools without

information breaks. This results in a more efficient collaboration

of development members and allows further the digital

convergence of different HMI subsystems (e.g. navigation,

communication, car systems).

The project automotiveHMI uses concepts from the field of

model-based user interface development (MBUID)

(http://www.w3.org/2011/mbui/) to create a modeling language

http://www.automotive-hmi.org/
http://www.w3.org/2011/mbui/

 - 2 -

that meets the requirements of formality and correctness. For

further information concerning MBUID see [5], [6] and [7].

The introduction of a model-based interchange format will serve

as an interface between the process participants thus avoiding

media discontinuity and improving the communication among the

involved actors. The interchange format (usually a XML-dialect)

allows describing layout, structure and behavior of the HMI-

system independently of the final target-code and target-system.

Concrete Examples of our suggestions

In order to allow future cars to harness the benefits of internet

connections and access to remote services, it is important to

transform today’s in-vehicle infotainment (IVI) systems by

opening them up for service integration as well as an “app

concept” similar to that found in smartphones and tablets. This

transformation marks a turning point in the development of IVI

solutions, since they will no longer be closed systems with a

predefined set of functions but more of a standardized middleware

that allows third parties to implement new functions and services.

Today’s infotainment solutions are developed as a closed system.

At the beginning of the development process, the functionality is

defined and stays constant over the process and the time after SOP

(start of production). Software updates after SOP consist of bug

fixes and other data (e.g. more recent map data), with the explicit

goal to keep the user interface the same (so that the consumer

does not notice any changes after the update). Two to three years

after start of development, the infotainment system is put into new

cars. This means that a newly released car contains an

infotainment system which functionalities are based on

projections that were made years ago. In today’s fast-moving

world, where smartphone and tablet apps are updated on a

monthly basis (or faster), these systems look and feel outdated to

the modern technology-savvy user.

The development processes and tools that are currently used in

IVI development need to be adapted for the rapid development or

improvement requirements of the future. This means adding,

changing or removing functionality, switching to different

hardware platforms and supporting external platforms (e.g.

tablets).

The automotiveHMI project represents the first step into this

direction. The interchange format developed in the project aims to

provide a technology-independent, high-level description format

for IVI systems, regardless of the hardware, operating system or

middleware of the intended target(s).

This interchange format bridges the gap between completely

formal specifications and informal, human-readable descriptions

of a car infotainment system. In contrast to older approaches,

which forced the designers so specify everything completely

formal (even things where they had no knowledge of, e.g.

middleware communication), the idea is to gather all information

about an infotainment system in one model, regardless of the

formality level, and then have experts for different topics (e.g.

hardware drivers, animations, color spaces) refine the parts that

are still informal until the model has reached a sufficient level of

formality. This level depends on the requirements of the model, a

model from which code is to be generated has higher requirements

than a model where only the pixel positions of the graphical

elements should be exact.

Similar to HTML, which serves as a description independent of

platform or operating system, the interchange format can be read

and written without deeper knowledge of the middleware and

hardware specifics (except for obvious cases like screen resolution

or color depth) and is then either interpreted or compiled to create

a working user interface. For systems with lower processing

power, binary code might be generated, while systems with more

power (e.g. tablets) could process the format a runtime. Similar to

HTML in conjunction with CSS, the interchange format describes

the look and feel of the displayed contents, but also allows

describing middleware interaction in a middleware-independent

manner. A code generator for Java might therefore create code to

access a messaging middleware component, while a generator for

HTML5 would create the necessary WebSocket components on

client and server side.

A great benefit of the interchange format is that different roles

(designers, developers) and companies (OEMs, suppliers, third-

party companies) can work together to create infotainment

systems at a much higher speed. Moreover, by using code

generation, even greater changes to the system can be introduced

without having to edit a large code base.

Introduction of the interchange format into automotive

development processes will lower the barrier for integrating web

services or external user interfaces (e.g. on tablets or

smartphones) and will allow the development of automotive web

apps.

The explicit modeling of the infotainment system allows the

generation of user interfaces for different platforms and

technologies while maintaining a machine-readable, target-

independent description of the final user interface and related

functionality. Since the static and dynamic aspects of the HMI are

described in a model that can be analyzed for consistency and

completeness, it can be checked much easier compared to source

code.

A next step after the integration of the interchange format into the

development processes would be to decouple the development

process of the car from that of the infotainment system.

Infotainment concepts and trends change at a much higher speed

than those of traditional car development. By providing open

infotainment hardware, new functionality and new services could

be created and deployed to cars at a speed similar to that of

smartphones and tablets.

Users of modern consumer devices are accustomed to (and

expect) updates of their systems and applications. In conjunction

with the web-enabled, connected car, the opportunity to update

applications in a similar frequency as on smartphones and tablets

will lead to greater customer satisfaction and may also add new

revenue streams for the OEMs and third-party companies, since

car infotainment apps can be sold and distributed similar to

smartphone/tablet apps. Moreover, the integration of web-based

services like speech-to-text translation, cloud storage, live media

streaming or advanced route guidance allows selling services that

will generate revenue over the lifetime of the car.

To demonstrate these ideas, work is currently underway to

implement a tool chain that allows rapid specification of

infotainment systems with prototyping tools and image

manipulation programs. This information is then imported into the

interchange format and enriched with event information

describing the interaction between the user interface parts and the

middleware.

 - 3 -

The model created by the importer can then be used to generate

the code for different targets. The tool chain currently supports the

generation of Java code as well as the creation of HTML5 user

interface. The HTML5 interface looks and behaves exactly like

the Java one, both adhering to the description in the model. The

middleware communication is achieved by different means

depending on the target, with the Java code using simple method

calls while the HTML5 UI uses WebSockets to perform the

bidirectional communication. Therefore a tablet with a modern

browser can actually replace or extend the infotainment UI

integrated into the car.

Work is currently underway to write an exporter to Elektrobit

GUIDE, a tool used in the automotive industry to create code for

the target hardware in the car. Once this exporter is finished, it

will be possible to create a UI using designer tools and

automatically export it to smartphones, tablets and the car target

hardware. This direct export allows designers to experience their

ideas directly, leading to much faster development cycles

compared to the current practice of waiting weeks or months until

the supplier created a user interface that matches the designers’

descriptions.

Acknowledgements
The work described in this position paper is conducted within the

project automotiveHMI. automotiveHMI is funded by the German

Federal Ministry of Economics and Technology under grant

number 01MS11007.

1. REFERENCES
[1] Danneberg, J. and Burgard, J. (2007) A comprehensive study

on innovation in the automotive industry.

http://www.oliverwyman.com/pdf_files/CarInnovation2015_

engl.pdf (Retrieved October 10, 2012).

[2] Huebner, M. and Grüll, I. (2007) ICUC-XML Format.

Format Specification Revision 14. Elektrobit.

[3] Kuemmerling, M. and Meixner, G. (2010) Model-Based

User Interface Development in the Automotive Industry.

Proc. of the 3rd International Workshop on Multimodal

Interfaces for Automotive Applications (MIAA), 41-44, Palo

Alto, USA.

[4] Kuemmerling, M. and Meixner, G. (2011) automotiveHMI –

a model-based interchange format for optimized HMI-

development in the automotive industry, ATZ elektronik,

August 2011, 52-55, Springer.

[5] Cantera Fonseca, J. M., González Calleros, J. M., Meixner,

G., Paternó, F., Pullmann, J., Raggett, D., Schwabe, D., and

Vanderdonckt, J. (2010) Model-Based UI XG Final Report,

W3C Incubator Group Report.

[6] Hussmann, H., Meixner, G., and Zuehlke, D. (2011) Model-

Driven Development of Advanced User Interfaces, Studies in

Computational Intelligence, Vol. 340, Springer, Heidelberg.

[7] Meixner, G., Paternó, F., and Vanderdonckt, J. (2011) Past,

Present, and Future of Model-Based User Interface

Development. i-com, 10, 3, 2-11.

http://www.oliverwyman.com/pdf_files/CarInnovation2015_engl.pdf
http://www.oliverwyman.com/pdf_files/CarInnovation2015_engl.pdf

