
“Web and Automotive: Shift into High Gear on the Web” - October 2012
W3C Workshop Diana Cheng – Vodafone Group R&D

 1

HTML5 and Device APIs for Automotive: Is it time to power

Infotainment and Car Portal Applications with Web
Technologies?

Diana Cheng - diana.cheng@vodafone.com

Introduction

A key advantage of HTML5 and Device APIs
is their potential to produce rich cross-
platform applications with a single core
codebase. Although customization will be
needed to make web applications run
similarly enough on different devices, the
development process is simplified in that
only one project is managed, only one skill
set is required (HTML, JavaScript and CSS)
and developers with web expertise are one
of the biggest groups available. Web
applications are also attractive in that it is
easy and immediate to push updates to
them, be it new features or bug fixes. All
that it takes is to update the application in
the hosting server and the changes are
immediately available to all users without
any need for over-the-air upgrades.

We are starting to see the emergence of
complete standalone full-web OSes for both
desktop (e.g. Chrome OS) and mobile
(WebOS, Firefox OS [1], Tizen [2], etc.).
These platforms are pushing the existing
standards implementations as well as
implementing deeper integration with the
device by eliminating the overhead of the
native layer and thus potentially making
web applications highly performant without
the need for high-end devices. Automotive
is a space that has seen a very fragmented
technology ecosystem; there are currently a
number of line-fit systems based on
proprietary platforms as well as others
based on Android, Windows, QNX, etc.
These platforms could be enriched and
extended with new applications and
services but they often currently restrict any
extension capabilities. This makes
automotive a niche where opportunities are
still available to create a convergent
platform where all parties can benefit from
a standardized and open approach to
application development.

Automotive services go beyond devices and
applications that are used inside the car.
Each of the devices that a user owns, e.g.
mobile phones, tablets, TVs and PCs can
enhance the experience and each of them
provide a particular ease of use for a
specific piece of functionality of the entire
automotive experience. For example, the
user might be more comfortable searching

for directions on his PC at home before a
trip and sending them to his in-car device
so they are automatically loaded before he
starts his trip. Conversely, the user can
continue with his in-car session (music he
was listening to, walking directions) on his
mobile phone upon leaving the vehicle.

Given this diversity of devices, which might
encompass a number of different platforms,
web applications present a unique
opportunity to accelerate advancement in
this sector and bring automotive
applications and platforms to the masses;
web applications can, for example, be
adapted in their user interfaces to the
device using a number of existing
techniques in order to present the best
experience for every form factor.
Moreover, there seems to be a preference
amongst makers of IVI (in-vehicle
infotainment) systems to put non-critical
applications at a higher level in the
application stack, in a secure sandbox [3]
[4] (e.g. running within the browser’s
sandbox) in order to restrict them of access
to the rest of the system so they cannot
interfere with critical car applications that
run directly on top of the native OS.

As of today, it is often believed that web
technologies including HTML5 and browser
implementations of Device APIs cannot
provide the same level of user experience
and performance that native applications
do, but that is highly dependant on the
application. Therefore, in this paper, we
present a few use cases for In-vehicle
Infotainment and Car Portal applications.
We comment on the state of web
technologies, to which extent they can help
fulfil these use cases, and for which of them
more development and work is needed to
provide a great user experience.

In-vehicle Infotainment Applications

This section refers to applications used
while the car is being driven, whether used
by the driver himself or other passengers.
IVI systems typically include components
such as turn-by-turn navigation, (Internet)
radio, Bluetooth synchronization for phones
and music devices, social media integration,
navigation via voice commands, etc.

“Web and Automotive: Shift into High Gear on the Web” - October 2012
W3C Workshop Diana Cheng – Vodafone Group R&D

 2

Applications for IVI systems are nonetheless
not restricted to the driver. Targeting
passengers presents other opportunities for
monetization such as purchase of paid
content like games, movies, music, etc.

1. Session handover: an important aspect
of the user experience in automotive
applications is for the user to be able to
continue his in-car session when leaving
the vehicle, e.g., the user might want to
continue listening to his music or radio on
his mobile device or he might need walking
directions to his final destination after
having parked the car at an available
location which might be far from the site he
really wants to reach.

This automatic session-handover can be
realised both with native and mobile web
technologies. On Android for example, a
push notification server can send a “wake-
up” message to the mobile device which will
start the music or map application for it to
pull the necessary information to carry on
with the session, such as minute and
second of the track being listened to, or the
car’s actual and final destination locations
in order to plot and present to the user the
relevant walking directions.

Server-Sent Events [6] provide a mechanism
for the browser to receive standard DOM
events from the server even when the
application is in the background so they
provide a way to similarly synchronize web
applications for the session handover
described above.

WebSockets [6] provide a full duplex
communication channel between a web
server and the browser, and this can be
used as well when a bidirectional
communication is required, such as, besides
from receiving events from the server, also
pushing the device location, for example.
The downside of WebSockets is that the
“web page” needs to be active in order for
the bidirectional channel to remain open,
i.e. it needs to be in the foreground and if
it’s run within a multi-tab browser, the tab
needs to be active, otherwise when the
timeout is reached the connection will be
lost and no further updates will be
delivered. In a session-handover scenario
this means that upon leaving his vehicle,
the user needs to actively start the music or
map web application and only then the
session synchronization will take place via
WebSockets.

Although libraries and polifylls exist, both
Server-Sent Events and WebSockets still lack
support amongst mobile browsers [6].

2. Speech recognition: Voice is the main
interface for a driver to interact with an in-
vehicle infotainment system, as it provides
minimal distraction. Off-the-shelf products
with different levels of accuracy are widely
available. These are typically embedded
applications running on selected platforms
and hardware [8].
For Web applications to make use of speech
recognition the W3C Speech Input API spec
[9] was developed. Even though the spec is
agnostic of the underlying speech
recognition implementation (server-based
or embedded) currently the only available
implementation is in the Chrome browser
which accesses a Google backend server,
i.e. the captured audio is uploaded and a
usable transcribed string is returned.
This server-based mechanism is applicable
for in-vehicle applications as long as
Internet connectivity (and a reasonable
bandwidth) can be guaranteed. Given that
connectivity in the car is provided by
cellular networks of variable coverage
according to the location (possible bad
signal in the countryside, going through
tunnels, etc.) and the high speed at which
cars move, relying 100% on backend
Internet services becomes unpractical,
especially as a speech interface should be
available at all times. At the minimum, basic
speech recognition capabilities should be
available offline, while the
majority and the most advanced features
could still rely on a backend server. We are
starting to the emergence of such offline
support in mobile OSes, such as in the
latest version of Android, 4.1 or Jelly Bean
[10].

Text-to-speech (TTS) is also a requirement
for tasks such as reading of incoming SMS,
providing real-time updates and for giving
driving directions (as discussed in the next
item), and it encounters the same
limitations described above for speech
recognition. For example, the Google
Translate API provides TTS capabilities and
it can be used to send the text via HTTP and
receive back an mp3 file to be played in the
browser, both of which require Internet
connectivity in order to work. There is yet
no currently implementable spec in the W3C
for TTS; Google previously proposed one
(see: [11]), but after the W3C HTML Speech
Incubator Group issued its final report [12],
there is a new proposal which encompasses
both speech recognition and synthesis for
web applications [13] and the possibility of
a Community Group being formed. So we
might see this becoming standardized and
supported in browsers in the future.

3. Navigation Systems: Even though
sophisticated dedicated navigation systems

“Web and Automotive: Shift into High Gear on the Web” - October 2012
W3C Workshop Diana Cheng – Vodafone Group R&D

 3

are becoming accessible to most drivers in
mature markets, HTML5 provides today
sufficient capabilities for several of the
features of a purely-web navigation system.
The W3C Geolocation API [14], widely
implemented in most desktop and mobile
browsers, provides access to the device
coordinates, and allows keeping continuous
track of its location.
Web workers [15] could be used to calculate
routes and to keep track in the background
of whether a recalculation is needed.
AppCache (Offline Web Applications) [16] of
the HTML5 spec and Local Storage [17]
could allow car applications to locally store
map assets, page assets and navigation and
application data to reduce as much as
possible unnecessary traffic, page loading
time or to offer functionality when no
connection is available. That said, in terms
of performance, it’s yet to be seen if the
browsers’ offline capabilities can cope with
and provide good performance when
dealing with advanced web applications
such as a web navigation system. There
have been a number of reported
performance issues with Local Storage [18]
(particularly when storing large amounts of
data) including its synchronous I/O nature
(which can block websites) and the limited
default storage space in the available
implementations (which is not discoverable
in a programmatic way). Moreover, Local
Storage is aimed at saving text data. This
can prove beneficial for text assets such as
JavaScript and CSS files, but storing
encoded binary assets is discouraged.
Although alternatives like IndexedDB [19]
and WebSQL [20] exist and do add support
for binary data, their implementation in
desktop and mobile browsers is not yet
universal and they might not adapt to the
use case in terms of user experience
(IndexedDB requires prompting the user for
permission and that might be undesirable
for some applications). Moreover,
IndexedDB is hard for developers to use and
it’s not implemented in most mobile
browsers, which in turn implement the now
deprecated WebSQL standard.

4. Installable applications: Another desired
feature of an in-vehicle infotainment
system is extensibility: the ability of the
driver and passengers to add functionality
by downloading and installing apps in order
to access them from the home screen of
their in-car device.
Applications built using standard HTML(5),
JavaScript, CSS, etc. can be packaged using
open standards like the W3C Widgets
specification [22], can be installed on the
user’s device and will run using the
browser’s rendering engine, but without
displaying the browser’s chrome. However,

widgets as self-contained packages do not
benefit from the immediate distribution and
update facilities of hosted web apps which
we have mentioned at the beginning of the
paper.

Another way to build installable applications
with standard web technologies is to use an
open-source framework such as PhoneGap
[23] now moved to the Apache foundation
under the name of Cordova. PhoneGap acts
as a native wrapper for the web application
thus making it a ‘hybrid‘ one. Since
applications are wrapped as native they
become discoverable via native mobile
application stores and installable in a native
mobile platform such as Android. Like this,
an automotive platform built on top of
Android could be extended using hybrid
apps.

Car Portals

This section refers to the applications used
outside the car that allow the user to
visualize aggregated information about his
vehicle usage. This typically includes: trip
logs, current car location, diagnostics
information obtained via OBD2 devices such
as gas and oil levels, mileage, car error
messages, etc.

1. Map Visualization and touch
interaction in mobile web applications:
Visualization of completed trips, location of
the vehicle or visual real-time vehicle
tracking, all of them on a map view are
some of the basic use cases of a car portal
both on desktop and mobile. As mentioned,
browsers already provide the capabilities for
rich UIs that can include map visualizations
(this can be achieved by use of several
existing JavaScript APIs such as Google
Maps, OpenLayers, etc.). A car portal
application requires, therefore, that for
mobile browsers, support for interacting
with maps via touch is be available. As off
today, some “modern” mobile browsers
such as the Android Browser in Gingerbread
(Android 2.3) do not support multitouch
events. This results in very poor UX when
interacting with maps for the use cases
mentioned above: it is not possible to
pinch-to-zoom, and double tap feels slow
and awkward. Without support for touch
events and other standards in mobile
browsers, there is little point in working on
and refining web specifications like it’s
been done with the W3C Touch Events
Specification [24].

2. Real-time Status Notifications to
mobile devices: Automotive applications
may want to notify the user directly of

“Web and Automotive: Shift into High Gear on the Web” - October 2012
W3C Workshop Diana Cheng – Vodafone Group R&D

 4

specific events related to his vehicle, for
example, when a second driver starts the
car, or to send notifications to an
emergency contact in case of a potential
crash detected.
Automotive systems should push this kind
of notifications to mobile devices running a
Car Portal application in a way that captures
the user’s attention (for emergency
warnings for example), preferably displayed
as status bar notifications in his mobile
device. This kind of notifications is at the
moment only available in native mobile
stacks. There is currently no way for web
servers to send updates to a mobile web
application and alert the user outside of the
“web page” or browser context, such as
notifications displayed in the status bar of
the device or on its home screen. A W3C
specification that is being worked on in
order to enable this, is Web Notifications
[25]. The spec has recently received
attention from relevant implementers such
as Apple but it is currently only in Working
Draft status so we might need to wait a
while before we start seeing interoperable
implementations amongst mobile browsers.
Chrome browser for Desktop is currently
the only implementation of the spec
available.
Also, a device API which would be useful
when sending real-time notifications to
users of mobile devices is the Vibration API
(currently being worked on at the W3C DAP
Working Group and in First Public Working
Draft status).

Conclusions

As detailed above, web technologies such
as Geolocation, AppCache, Local Storage,
Server-Sent Events and WebSockets help us
build rich web applications with open
standards. In spite of that, several of the
use cases for automotive described here are
currently still not covered.

From our point of view, the following
technologies require more work in order to
fulfil the presented requirements:

• An agreement as to which spec and

mechanism should be used for storing
binary data in web applications (either
IndexedDB or WebSQL). Implementers
should then support the same standard
across desktop and mobile browsers.

• Advance and finalize the Web
Notifications spec and support it on
mobile browsers (currently there is no
implementation [21]) which coupled with
Server-Sent Events or WebSockets would
provide analogous functionality to Native

Push notifications that can be displayed
on the status bar of a device.

• Broader support for Web Sockets and
Server-Sent events amongst mobile
browsers.

• A mechanism for automatic update of
Widgets so they can benefit from the
immediate deployment that hosted web
apps enjoy.

• Agreement on and standardization of a
spec for in-browser text-to-speech.

• We require browser implementations to
support advanced touch interactions,
specifically the full W3C Touch Events
spec.

• Advanced support for offline speech
recognition, and not just provided by
backend services as in current
implementations. This remains a strong
requirement throughout a number use
cases in IVI platforms, and it is here
where web technologies don’t fully meet
the needs yet.

Even when a full web automotive platform is
not feasible today, we believe that
improving the items mentioned above
would make the web a stronger contender
for an automotive platform and related
applications.

References

[1] Firefox OS/Boot2Gecko:

https://wiki.mozilla.org/B2G
[2] Tizen Platform: https://www.tizen.org/about
[3] Sandboxing for Automotive:

http://lwn.net/Articles/465316/
[4] In-vehicle infotainment software

architecture: http://goo.gl/Qwsau
[5] Server-Sent Events:

http://dev.w3.org/html5/eventsource/
[6] Web Sockets:

http://www.w3.org/TR/websockets/
[7] Server-Sent Events support:

http://caniuse.com/#feat=eventsource
[8] Nuance Homepage:

http://www.nuance.com/for-business/by-
product/automotive-products-services/nvc-
auto/index.htm

[9] Speech Input API:
http://lists.w3.org/Archives/Public/public-xg-
htmlspeech/2011Feb/att-0020/api-draft.html

[10] Offline Speech in Android Jelly Bean:
http://www.readwriteweb.com/archives/google-
i-o-android-41-aka-jelly-bean-will-have-
responsive-widgets-offline-voice-typing.php

[11] Text to Speech API proposal:
http://lists.w3.org/Archives/Public/public-xg-
htmlspeech/2011Feb/att-0022/htmltts-draft.html

[12] W3C HTML Speech Incubator Group
Final Report:
http://www.w3.org/2005/Incubator/htmlspeech/
XGR-htmlspeech-20111206/

“Web and Automotive: Shift into High Gear on the Web” - October 2012
W3C Workshop Diana Cheng – Vodafone Group R&D

 5

[13] Speech JavaScript API proposal:
http://lists.w3.org/Archives/Public/public-
webapps/2011OctDec/att-1696/speechapi.html

[14] W3C Geolocation API:
http://dev.w3.org/geo/api/spec-source.html

[15] W3C Web Workers:
http://dev.w3.org/html5/workers/

[16] Offline Web Applications:
http://www.w3.org/TR/html5/offline.html

[17] Web Storage:
http://dev.w3.org/html5/webstorage/

[18] Performance issues of Local Storage:
http://hacks.mozilla.org/2012/03/there-is-no-
simple-solution-for-local-storage/

[19] Indexed Database API:
http://www.w3.org/TR/IndexedDB/

[20] Web SQL Database API:
http://www.w3.org/TR/webdatabase/

[21] Suport for Web Notifications:
http://caniuse.com/#feat=notifications

[22] W3C Widgets:
http://www.w3.org/TR/widgets/

[23] PhoneGap: http://phonegap.com/
[24] Touch Events Specification:

http://www.w3.org/TR/touch-events/
[25] Web Notifications:

http://dev.w3.org/2006/webapi/WebNotification
s/publish/WebNotifications.html

[26] What is a Polyfill:
http://remysharp.com/2010/10/08/what-is-a-
polyfill/

