
RIF Basic Logic Dialect
W3C Proposed Edited Recommendation 11 December 2012

This version:
http://www.w3.org/TR/2012/PER-rif-bld-20121211/

Latest version:
http://www.w3.org/TR/rif-bld/

Previous version:
http://www.w3.org/TR/2010/REC-rif-bld-20100622/

Editors:
Harold Boley, National Research Council Canada
Michael Kifer, State University of New York at Stony Brook, USA

A color-coded version of this document showing changes made since the previous version is also available.

This document is also available in these non-normative formats: PDF version.

Copyright © 2012 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

This document, developed by the Rule Interchange Format (RIF) Working Group, specifies the Basic Logic Dialect, RIF-BLD, a format that allows
logic rules to be exchanged between rule systems. The RIF-BLD presentation syntax and semantics are specified both directly and as
specializations of the RIF Framework for Logic Dialects, or RIF-FLD. The XML serialization syntax of RIF-BLD is specified via a mapping from the
presentation syntax. A normative XML schema is also provided.

Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current
W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

Set of Documents

This document is being published as one of a set of 12 documents:

1. RIF Overview
2. RIF Core Dialect
3. RIF Basic Logic Dialect (this document)
4. RIF Production Rule Dialect
5. RIF Framework for Logic Dialects
6. RIF Datatypes and Built-Ins 1.0
7. RIF RDF and OWL Compatibility
8. OWL 2 RL in RIF
9. RIF Combination with XML data

10. RIF In RDF
11. RIF Test Cases
12. RIF Primer

Summary of Changes

There have been no substantive changes since the previous version. For details on the minor changes see the change log and color-coded diff.

W3C Members Please Review By 8 January 2013

The W3C Director seeks review and feedback from W3C Advisory Committee representatives, via their review form by 8 January 2013. This will
allow the Director to assess consensus and determine whether to issue this document as a W3C Edited Recommendation.

Others are encouraged by the Rule Interchange Format (RIF) Working Group to continue to send reports of implementation experience, and other
feedback, to public-rif-comments@w3.org (public archive). Reports of any success or difficulty with the test cases are encouraged. Open
discussion among developers is welcome at public-rif-dev@w3.org (public archive).

No Endorsement

Publication as a Proposed Edited Recommendation does not imply endorsement by the W3C Membership. This is a draft document and may be
updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 1 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2012/PER-rif-bld-20121211/
http://www.w3.org/TR/rif-bld/
http://www.w3.org/TR/2010/REC-rif-bld-20100622/
http://www.w3.org/TR/2012/PER-rif-bld-20121211/diff-from-20100622
http://www.w3.org/2012/pdf/PER-rif-bld-20121211.pdf
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.eu/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.w3.org/TR/
http://www.w3.org/TR/2012/NOTE-rif-overview-20121211/
http://www.w3.org/TR/2012/PER-rif-core-20121211/
http://www.w3.org/TR/2012/PER-rif-bld-20121211/
http://www.w3.org/TR/2012/PER-rif-prd-20121211/
http://www.w3.org/TR/2012/PER-rif-fld-20121211/
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/
http://www.w3.org/TR/2012/PER-rif-rdf-owl-20121211/
http://www.w3.org/TR/2012/NOTE-rif-owl-rl-20121211/
http://www.w3.org/TR/2012/NOTE-rif-xml-data-20121211/
http://www.w3.org/TR/2012/NOTE-rif-in-rdf-20121211/
http://www.w3.org/TR/2012/NOTE-rif-test-20121211/
http://www.w3.org/TR/2012/NOTE-rif-primer-20121211/
http://www.w3.org/2005/10/Process-20051014/tr#substantive-change
http://www.w3.org/TR/2010/REC-rif-bld-20100622/
http://www.w3.org/TR/2012/PER-rif-bld-20121211/diff-from-20100622
http://www.w3.org/2012/12/rif_second_edition/
http://www.w3.org/2005/rules/wg.html
mailto:public-rif-comments@w3.org
http://lists.w3.org/Archives/Public/public-rif-comments/
http://www.w3.org/2005/rules/wiki/Category:Test_Case
mailto:public-rif-dev@w3.org
http://lists.w3.org/Archives/Public/public-rif-dev/

Patents

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent
disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who
has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with
section 6 of the W3C Patent Policy.

Table of Contents

• 1 Overview
• 2 Direct Specification of RIF-BLD Presentation Syntax

◦ 2.1 Alphabet of RIF-BLD
◦ 2.2 Terms
◦ 2.3 Formulas
◦ 2.4 RIF-BLD Annotations in the Presentation Syntax
◦ 2.5 Well-formed Formulas
◦ 2.6 EBNF Grammar for the Presentation Syntax of RIF-BLD (Informative)

▪ 2.6.1 EBNF for the Condition Language
▪ 2.6.2 EBNF for the Rule Language
▪ 2.6.3 EBNF for Annotations

• 3 Direct Specification of RIF-BLD Semantics
◦ 3.1 Truth Values
◦ 3.2 Semantic Structures
◦ 3.3 RIF-BLD Annotations in the Semantics
◦ 3.4 Interpretation of Non-document Formulas
◦ 3.5 Interpretation of Documents
◦ 3.6 Logical Entailment

• 4 XML Serialization Syntax for RIF-BLD
◦ 4.1 XML for the Condition Language
◦ 4.2 XML for the Rule Language
◦ 4.3 Mapping from the Presentation Syntax to the XML Syntax

▪ 4.3.1 Mapping of the Condition Language
▪ 4.3.2 Mapping of the Rule Language
▪ 4.3.3 Mapping of Annotations

• 5 Conformance Clauses
• 6 RIF-BLD as a Specialization of the RIF Framework for Logic Dialects [RIF-FLD]

◦ 6.1 The Presentation Syntax of RIF-BLD as a Specialization of RIF-FLD
◦ 6.2 The Semantics of RIF-BLD as a Specialization of RIF-FLD
◦ 6.3 The XML Serialization of RIF-BLD as a Specialization of RIF-FLD
◦ 6.4 RIF-BLD Conformance as a Specialization of RIF-FLD

• 7 Acknowledgements
• 8 References

◦ 8.1 Normative References
◦ 8.2 Informational References

• 9 Appendix: XML Schema for RIF-BLD
◦ 9.1 Condition Language
◦ 9.2 Rule Language

• 10 Appendix: Change Log (Informative)

1 Overview

This specification develops RIF-BLD (the Basic Logic Dialect of the Rule Interchange Format). From a theoretical perspective, RIF-BLD
corresponds to the language of definite Horn rules with equality and a standard first-order semantics [CL73]. Syntactically, RIF-BLD has a number
of extensions to support features such as objects and frames as in F-logic [KLW95], internationalized resource identifiers (or IRIs, defined by
[RFC-3987]) as identifiers for concepts, and XML Schema datatypes [XML-SCHEMA2]. In addition, RIF RDF and OWL Compatibility [RIF-RDF+OWL]
defines semantics for the integrated RIF-BLD/RDF and RIF-BLD/OWL languages. These features make RIF-BLD a Web-aware language. However, it
should be kept in mind that RIF is designed to enable interoperability among rule languages in general, and its uses are not limited to the Web.

While rule interchange (and not, e.g., execution) is the principle design goal for RIF-BLD, the design clearly indicates a decision to avoid solving
the (probably impossible) problem of rule interchange in general. Instead, the design of RIF reflects the rationale of identifying specific kinds of
rules within existing rule systems, called RIF dialects, that can be translated into other rule systems without changing their meaning. RIF-BLD is
just the first in a series of such dialects. In particular, RIF-BLD has the RIF-Core dialect [RIF-Core] as a subset. It is not expected that most rule
systems will be able to translate all their rules into RIF-BLD, rather it is expected that only certain kinds of rules will be translatable. Since there
are many existing rule languages with useful features that are not supported in RIF-BLD, it is expected that RIF-BLD translators will not translate
rules that use such features. This could drive the design of "BLD-specific" rule sets in which rules are specifically written by the implementor to
be within the BLD dialect and thus be portable between many rule system implementations.

Among its many influences, RIF shares certain characteristics with ISO Common Logic (CL) [ISO-CL], itself an evolution of KIF [KIF] and Conceptual
Graphs [CG]. Like CL, RIF employs XML as its primary normative syntax, uses IRIs as identifiers, specifies integrated RIF-BLD/RDF and RIF-BLD/
OWL languages for Semantic Web Compatibility [RIF-RDF+OWL], and provides a rich set of datatypes and built-ins that are designed to be well
aligned with Web-aware rule system implementations [RIF-DTB]. Unlike CL, RIF-BLD was designed to be a simple dialect with limited
expressiveness that lies within the intersection of first-order and logic-programming systems. This is why RIF-BLD does not support negation.
More generally, RIF-BLD is part of a coherent array of RIF rule dialects, which encompasses both logic rules -- through the RIF framework for logic
dialects [RIF-FLD] also including a variety of rule languages based on non-monotonic theories -- and production rules, as defined in [RIF-PRD]. CL,
on the other hand, is strictly first-order; it does not account for non-monotonic semantics (e.g. negation as failure, defaults, priorities, etc.). For
rule interchange between CL and RIF dialects, it is expected that partial RIF-CL mappings will be defined.

RIF-BLD also bears some similarity to SPARQL, in particular with respect to RDF Compatibility [RIF-RDF+OWL]. As with the well-known
correspondence between a fragment of SQL and Datalog, SPARQL can be partially mapped to Datalog (and thus to the RIF-Core subset of RIF-

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 2 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/38457/status
http://www.w3.org/2004/01/pp-impl/38457/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

BLD), see [AP07] and [AG08] for details. A full mapping of SPARQL would need constructs beyond RIF-BLD, such as non-monotonic negation.
Likewise, not all of SPARQL's FILTER functions are expressible in RIF-DTB built-in predicates. Not all of RIF-BLD is expressible in SPARQL either, for
instance recursive rules over RDF Data are not expressible as SPARQL CONSTRUCT statements.

RIF-BLD is defined in two different ways -- both normative:

• As a direct specification, independently of the RIF framework for logic dialects [RIF-FLD], for the benefit of those who desire a direct path
to RIF-BLD, e.g., as prospective implementers, and are not interested in extensibility issues. This version of the RIF-BLD specification is
given first.

• As a specialization of the RIF framework for logic dialects [RIF-FLD], which is part of the RIF extensibility framework. Building on RIF-FLD,
this version of the RIF-BLD specification is comparatively short and is presented in Section RIF-BLD as a Specialization of the RIF
Framework at the end of this document. This is intended for the reader who is already familiar with RIF-FLD and does not need to go
through the much longer direct specification of RIF-BLD. This section is also useful for dialect designers, as it is a concrete example of
how a non-trivial RIF dialect can be derived from the RIF framework for logic dialects.

Logic-based RIF dialects that specialize or extend RIF-BLD in accordance with the RIF framework for logic dialects [RIF-FLD] include RIF-Core as a
specialization of RIF-BLD. It is expected that other specifications will develop further logic dialects based on RIF-BLD such as a RIF-BLD extension
capturing uncertainty [URD08].

As a preview, here is a simple complete RIF-BLD example deriving a ternary relation from its inverse.

Example 1 (An introductory RIF-BLD example).

A rule can be written in English to derive the buy relationships (rather than store them) from the sell relationships that are stored as facts (e.g.,
as exemplified by the English statement below):

• A buyer buys an item from a seller if the seller sells the item to the buyer.
• John sells LeRif to Mary.

Intuitively, the fact Mary buys LeRif from John should be logically derivable from the above premises. Assuming Web IRIs for the predicates buy
and sell, as well as for the individuals John, Mary, and LeRif, the above English text can be represented in the RIF-BLD Presentation Syntax as
follows.

Document(
Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(bks <http://example.com/books#>)

Group
(

Forall ?Buyer ?Item ?Seller (
cpt:buy(?Buyer ?Item ?Seller) :- cpt:sell(?Seller ?Item ?Buyer)

)

cpt:sell(<John> bks:LeRif "Mary"^^rif:iri)
)

)

Note that IRIs are represented in several different ways in this example. First, the [CURIE] notation prefix:suffix is used to shorten IRI
representation. For instance, cpt:buy via a Prefix directive represents the rif:iri constant "http://example.com/concepts#buy"^^rif:iri.
Another way to shorten this IRI constant is to use the angle-bracketed notation <http://example.com/concepts#buy>. The Base directive
provides yet another shortcut: it applies to all relative IRIs, such as "Mary"^^rif:iri and <John>. The Base directive expands these relative IRIs
to "http://example.com/people#Mary"^^rif:iri and "http://example.com/people#John"^^rif:iri, respectively.

Whenever a RIF-BLD document falls into the Core subset or can be translated to it, the document should be produced in RIF-Core to allow its
interchange with a maximum number of RIF consumers. For instance, the Datalog-like RIF document in Example 1 is also a RIF-Core example.

For the interchange of documents containing RIF-BLD rules (and facts), a concrete RIF-BLD XML Syntax is given in this specification. To formalize
their meaning, a model-theoretic RIF-BLD Semantics is specified.

2 Direct Specification of RIF-BLD Presentation Syntax

This section specifies the presentation syntax of RIF-BLD directly, without relying on [RIF-FLD]. In the first five (normative) subsections, the
presentation syntax is defined using "mathematical English," a special form of English for communicating mathematical definitions, examples,
etc. In the non-normative subsection EBNF Grammar for the Presentation Syntax of RIF-BLD, a grammar for a superset of the presentation syntax
is given using Extended Backus–Naur Form (EBNF). Neither the mathematical English nor the EBNF is intended to be a concrete syntax for RIF-
BLD. The mathematical English deliberately leaves out details such as the delimiters of the various syntactic components, escape symbols,
parenthesizing, precedence of operators, and the like. The EBNF does not specify context-sensitive syntactic constraints. Since RIF is an
interchange format, it uses XML as the only concrete syntax, which will be defined in XML Serialization Syntax for RIF-BLD. Hence RIF-BLD
conformance is described in terms of semantics-preserving transformations.

Note to the reader: this section depends on Section Constants, Symbol Spaces, and Datatypes of [RIF-DTB].

2.1 Alphabet of RIF-BLD

Definition (Alphabet). The alphabet of the presentation language of RIF-BLD consists of

• a countably infinite set of constant symbols Const
• a countably infinite set of variable symbols Var (disjoint from Const)
• a countably infinite set of argument names, ArgNames (disjoint from Const and Var)

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 3 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-constants

• connective symbols And, Or, and :-
• quantifiers Exists and Forall
• the symbols =, #, ##, ->, External, Import, Prefix, and Base
• the symbols Group and Document
• the symbols for representing lists: List and OpenList.
• the auxiliary symbols (,), [,], <, >, and ^^

The set of connective symbols, quantifiers, =, etc., is disjoint from Const and Var. The argument names in ArgNames are written as Unicode
strings that must not start with a question mark, "?". Variables are written as Unicode strings preceded with the symbol "?".

Constants are written as "literal"^^symspace, where literal is a sequence of Unicode characters and symspace is an identifier for a symbol
space. Symbol spaces are defined in Section Constants, Symbol Spaces, and Datatypes of [RIF-DTB].

The symbols =, #, and ## are used in formulas that define equality, class membership, and subclass relationships. The symbol -> is used in terms
that have named arguments and in frame formulas. The symbol External indicates that an atomic formula or a function term is defined
externally (e.g., a built-in) and the symbols Prefix and Base enable compact representations of IRIs [RFC-3987].

The symbol Document is used to specify RIF-BLD documents, the symbol Import is an import directive, and the symbol Group is used to organize
RIF-BLD formulas into collections. ☐

The language of RIF-BLD is the set of formulas constructed using the above alphabet according to the rules given below.

2.2 Terms

RIF-BLD defines several kinds of terms: constants and variables, positional terms, terms with named arguments, plus equality, membership,
subclass, frame, and external terms. The word "term" will be used to refer to any of these constructs.

To simplify the next definition, we will use the phrase base term to refer to simple, positional, or named-argument terms, or to terms of the form
External(t), where t is a positional or a named-argument term.

Definition (Term).

1. Constants and variables. If t ∈ Const or t ∈ Var then t is a simple term.
2. Positional terms. If t ∈ Const and t1, ..., tn, n≥0, are base terms then t(t1 ... tn) is a positional term.

Positional terms correspond to the usual terms and atomic formulas of classical first-order logic [Enderton01, Mendelson97].

3. Terms with named arguments. A term with named arguments is of the form t(s1->v1 ... sn->vn), where n≥0, t ∈ Const and v1, ...,
vn are base terms and s1, ..., sn are pairwise distinct symbols from the set ArgNames.

The constant t here represents a predicate or a function; s1, ..., sn represent argument names; and v1, ..., vn represent argument values.
The argument names, s1, ..., sn, are required to be pairwise distinct. Terms with named arguments are like positional terms except that
the arguments are named and their order is immaterial. Note that a term of the form f() is, trivially, both a positional term and a term
with named arguments.

Terms with named arguments are introduced to support exchange of languages that permit argument positions of predicates and
functions to be named (in which case the order of the arguments does not matter).

4. List terms. There are two kinds of list terms: open and closed.
◦ A closed list has the form List(t1 ... tm), where m≥0 and t1, ..., tm are terms.
◦ An open list (or a list with a tail) has the form OpenList(t1 ... tm t), where m>0 and t1, ..., tm, t are terms. Open lists are

usually written using the following: List(t1 ... tm | t).

The last argument, t, represents the tail of the list and so it is normally a list as well. However, the syntax does not restrict t in
any way: it could be an integer, a variable, another list, or, in fact, any term. An example is List(1 2 | 3). This is not an
ordinary list, where the last argument, 3, would represent the tail of a list (and thus would also be a list, which 3 is not). Such
general open lists correspond to Lisp's dotted lists [Steele90]. Note that they can be the result of instantiating an open list with a
variable in the tail, hence are hard to avoid. For instance, List(1 2 | 3) is List(1 2 | ?X), where the variable ?X is replaced
with 3.

A closed list of the form List() (i.e., a list in which m=0, corresponding to Lisp's nil) is called the empty list.

5. Equality terms. t = s is an equality term, if t and s are base terms.
6. Class membership terms (or just membership terms). t#s is a membership term if t and s are base terms.
7. Subclass terms. t##s is a subclass term if t and s are base terms.
8. Frame terms. t[p1->v1 ... pn->vn] is a frame term (or simply a frame) if t, p1, ..., pn, v1, ..., vn, n ≥ 0, are base terms.

Membership, subclass, and frame terms are used to describe objects and class hierarchies.

9. Externally defined terms. If t is a positional or a named-argument term then External(t) is an externally defined term.

External terms are used for representing built-in functions and predicates as well as "procedurally attached" terms or predicates, which
might exist in various rule-based systems, but are not specified by RIF. ☐

Observe that the argument names of frame terms, p1, ..., pn, are base terms and so, as a special case, can be variables. In contrast, terms with
named arguments can use only the symbols from ArgNames to represent their argument names. They cannot be constants from Const or
variables from Var. The reason for not allowing variables for those is to control the complexity of unification, which is used by several inference
mechanisms of first-order logic.

Example 2 (Terms)

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 4 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-constants

a. Positional term: "http://example.com/ex1"^^rif:iri(1 "http://example.com/ex2"^^rif:iri(?X 5) "abc")

b. Term with named arguments: "http://example.com/Person"^^rif:iri(id->"http://example.com/John"^^rif:iri "age"^^rif:local-
>?X "spouse"^^rif:local->?Y)

c. Frame term: "http://example.com/John"^^rif:iri["age"^^rif:local->?X "spouse"^^rif:local->?Y]

d. Lists

- Empty list: List()

- Closed list with variable inside: List("a"^^xs:string ?Y "c"^^xs:string)

- Open list with variables: List("a"^^xs:string ?Y "c"^^xs:string | ?Z)

- Equality term with lists inside: List(Head | Tail) = List("a"^^xs:string ?Y "c"^^xs:string)

- Nested list: List("a"^^xs:string List(?X "b"^^xs:string) "c"^^xs:string)

e. Classification terms

- Membership: ?X # ?Y

- Subclass: ?X ## "http://example.com/ex1"^^rif:iri(?Y)

- Membership: "http://example.com/John"^^rif:iri # "http://example.com/Person"^^rif:iri

- Subclass: "http://example.com/Student"^^rif:iri ## "http://example.com/Person"^^rif:iri

f. External term: External(pred:numeric-greater-than(?diffdays 10)))

2.3 Formulas

RIF-BLD distinguishes certain subsets of the set Const of symbols, including subsets of predicate symbols and function symbols. Section Well-
formed Formulas gives more details, but we do not need those details yet.

Definition (Atomic Formula). Any term (positional or with named arguments) of the form p(...), where p is a predicate symbol, is also an
atomic formula. Equality, membership, subclass, and frame terms are also atomic formulas. An externally defined term of the form
External(φ), where φ is an atomic formula, is also an atomic formula, called an externally defined atomic formula. ☐

Note that simple terms (constants and variables) are not formulas.

More general formulas are constructed from atomic formulas with the help of logical connectives.

Definition (Formula). A formula can have several different forms and is defined as follows:

1. Atomic: If φ is an atomic formula then it is also a formula.
2. Condition formula: A condition formula is either an atomic formula or a formula that has one of the following forms:

◦ Conjunction: If φ1, ..., φn, n ≥ 0, are condition formulas then so is And(φ1 ... φn), called a conjunctive formula. As a special
case, And() is allowed and is treated as a tautology, i.e., a formula that is always true.

◦ Disjunction: If φ1, ..., φn, n ≥ 0, are condition formulas then so is Or(φ1 ... φn), called a disjunctive formula. As a special case,
Or() is permitted and is treated as a contradiction, i.e., a formula that is always false.

◦ Existentials: If φ is a condition formula and ?V1, ..., ?Vn, n>0, are distinct variables then Exists ?V1 ... ?Vn(φ) is an existential
formula.

Condition formulas are intended to be used inside the premises of rules. Next we define the notions of rule implications, universal rules,
universal facts, groups (i.e., sets of rules and facts), and documents.

3. Rule implication: φ :- ψ is a formula, called rule implication, if:
◦ φ is an atomic formula or a conjunction of atomic formulas,
◦ ψ is a condition formula, and
◦ none of the atomic formulas in φ is an externally defined term (i.e., a term of the form External(...)). Note: external terms can

occur in the arguments of atomic formulas in the rule conclusion. For instance, p(func:numeric-add(?X "2"^^xs:integer)) :-
q(?X).

4. Universal rule: If φ is a rule implication and ?V1, ..., ?Vn, n>0, are distinct variables then Forall ?V1 ... ?Vn(φ) is a formula, called a
universal rule. It is required that all the free variables in φ occur among the variables ?V1 ... ?Vn in the quantification part. An
occurrence of a variable ?v is free in φ if it is not inside a subformula of φ of the form Exists ?v (ψ) and ψ is a formula. Universal rules
will also be referred to as RIF-BLD rules.

5. Universal fact: If φ is an atomic formula and ?V1, ..., ?Vn, n>0, are distinct variables then Forall ?V1 ... ?Vn(φ) is a formula, called a
universal fact, provided that all the free variables in φ occur among the variables ?V1 ... ?Vn.

Universal facts are often considered to be rules without premises.

6. Group: If φ1, ..., φn are RIF-BLD rules, universal facts, variable-free rule implications, variable-free atomic formulas, or group formulas then
Group(φ1 ... φn) is a group formula. As a special case, the empty group formula, Group(), is allowed and is treated as a tautology, i.e.,
a formula that is always true.

Non-empty group formulas are used to represent sets of rules and facts. Note that some of the φi's can be group formulas themselves,
which means that groups can be nested.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 5 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

7. Document: An expression of the form Document(directive1 ... directiven Γ) is a RIF-BLD document formula (or simply a document
formula), if

◦ Γ is an optional group formula; it is called the group formula associated with the document.
◦ directive1, ..., directiven is an optional sequence of directives. A directive can be a base directive, a prefix directive or an

import directive.
▪ A base directive has the form Base(<iri>), where iri is a Unicode string in the form of an absolute IRI [RFC-3987].

The Base directive defines a syntactic shortcut for expanding relative IRIs into full IRIs, as described in Section Constants,
Symbol Spaces, and Datatypes of [RIF-DTB]. This applies to relative IRIs that appear anywhere, including as constants,
symbol spaces, locators, and profiles.

▪ A prefix directive has the form Prefix(p <v>), where p is an alphanumeric string that serves as the prefix name and v
is an expansion for p -- a Unicode sequence of characters that forms an IRI. (An alphanumeric string is a sequence of
ASCII characters, where each character is a letter, a digit, or an underscore "_", and the first character is a letter.)

Like the Base directive, the Prefix directives can be used to define shorthands to allow more concise representation of
constants that come from the symbol space rif:iri (we will call such constants rif:iri constants). This mechanism is
explained in [RIF-DTB], Section Constants, Symbol Spaces, and Datatypes.

▪ An import directive can have one of these two forms: Import(<loc>) or Import(<loc> <p>). Here loc is a Unicode
sequence of characters that forms an IRI and p is another Unicode sequence of characters. The constant loc represents
the location of another document to be imported; it is called the locator of the imported document. The argument p is
called the profile of import; it has the form of a Unicode character sequence in the form of an IRI -- see [RIF-RDF+OWL].

Section Direct Specification of RIF-BLD Semantics of this document defines the semantics for the directive Import(<loc>)
only. The two-argument directive, Import(<loc> <p>), is intended for importing non-RIF-BLD documents, such as rules
from other RIF dialects, RDF data, or OWL ontologies. The profile, p, indicates what kind of entity is being imported and
under what semantics (for instance, the various RDF entailment regimes have different profiles). The semantics of
Import(<loc> <p>) (for various p) are expected to be given by other specifications on a case-by-case basis. For instance,
[RIF-RDF+OWL] defines the semantics for the profiles that are recommended for importing RDF and OWL.

Note that although Base, Prefix, and Import all use symbols of the form <iri> to indicate the connection of these symbols to
IRIs, these symbols are not rif:iri constants, as semantically they are interpreted in a way that is quite different from
constants.

A document formula can contain at most one Base directive. The Base directive, if present, must be first, followed by any number
of Prefix directives, followed by any number of Import directives.

In the definition of a formula, the component formulas φ, φi, ψi, and Γ are said to be subformulas of the respective formulas (condition, rule,
group, etc.) that are built using these components. ☐

2.4 RIF-BLD Annotations in the Presentation Syntax

RIF-BLD allows every term and formula (including terms and formulas that occur inside other terms and formulas) to be optionally preceded by
one annotation of the form (* id φ *), where id is a rif:iri constant and φ is a frame formula or a conjunction of frame formulas. Both items
inside the annotation are optional. The id part represents the identifier of the term or formula to which the annotation is attached and φ is the
metadata part of the annotation. RIF-BLD does not impose any restrictions on φ apart from what is stated above. This means that it may include
variables, function symbols, constants from the symbol space rif:local (often referred to as local or rif:local constants), and so on.

Document formulas with and without annotations will be referred to as RIF-BLD documents.

The following convention is used to avoid a syntactic ambiguity with respect to annotations. The annotation scoping convention associates each
annotation to the largest term or formula it precedes. For instance, in (* id φ *) t[w -> v] the metadata annotation could be attributed to the
term t or to the entire frame t[w -> v]. The convention specifies that the above annotation is considered to be syntactically attached to the
entire frame. Yet, since φ can be a conjunction, some conjuncts can be used to provide metadata targeted to the object part, t, of the frame. For
instance, (* And(_foo[meta_for_frame->"this is an annotation for the entire frame"] _bar[meta_for_object->"this is an
annotation for t" meta_for_property->"this is an annotation for w"]) *) t[w -> v].

We suggest to use Dublin Core, RDFS, and OWL properties for metadata, along the lines of Section 7.1 of [OWL-Reference]-- specifically
owl:versionInfo, rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy, dc:creator, dc:description, dc:date, and foaf:maker.

2.5 Well-formed Formulas

Not all formulas and thus not all documents are well-formed in RIF-BLD: it is required that no constant appear in more than one context. What this
means precisely is explained below. Informally, this means that each constant symbol in RIF-BLD can be either an individual, a plain function, a
plain predicate, an externally defined function, or an externally defined predicate. However, symbols can be polyadic: the same function or
predicate symbol (normal or external) can occur with different numbers of arguments in different places. Note that polyadic symbols could be
replaced by non-polyadic symbols with the arity information encoded in the function or predicate names. For instance, the polyadic terms p(?X)
and p(?X,?Y) could be represented as p_1(?X) and p_2(?X,?Y), respectively.

The set of all constant symbols, Const, is partitioned into the following subsets:

• A subset of individuals.

The symbols in Const that belong to the symbol spaces of Datatypes are required to be individuals.

• A subset of plain (i.e., non-external) function symbols.
• A subset for external function symbols.
• A subset of plain predicate symbols.
• A subset for external predicate symbols.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 6 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#rif-iri-space
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#rif-local-space
http://www.w3.org/TR/owl-ref/#Annotations
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-data-types

The above subsets do not differentiate between positional and named argument symbols. Also, as seen from the following definitions, these
subsets are not specified explicitly but, rather, are inferred from the occurrences of the symbols.

Definition (Context of a symbol). The context of an occurrence of a symbol, s∈Const, in a formula, φ, is determined as follows:

• If s occurs as a predicate of the form s(...) (positional or named-argument) in an atomic subformula of φ then s occurs in the context of
a (plain) predicate symbol.

• If s occurs as a function symbol in a non-subformula term of the form s(...) then s occurs in the context of a (plain) function symbol.
• If s occurs as a predicate in an atomic subformula External(s(...)) then s occurs in the context of an external predicate symbol.
• If s occurs as a function in a non-subformula term External(s(...)) then s occurs in the context of an external function symbol.
• If s occurs in any other context (in a frame: s[...], ...[s->...], or ...[...->s]; or in a positional/named-argument term: p(...s...),

q(...->s...)), it is said to occur as an individual. ☐

Definition (Imported document). Let Δ be a document formula and Import(loc) be one of its import directives, where loc is a locator of
another document formula, Δ'. We say that Δ' is directly imported into Δ.

A document formula Δ' is said to be imported into Δ if it is either directly imported into Δ or it is imported (directly or not) into some other
formula that is directly imported into Δ. ☐

The above definition deals only with one-argument import directives, since only such directives can be used to import other RIF-BLD documents.
Two-argument import directives are provided to enable import of other types of documents, and their semantics are supposed to be covered by
other specifications, such as [RIF-RDF+OWL].

Definition (Well-formed formula). A formula φ is well-formed iff:

• every constant symbol (whether coming from the symbol space rif:local or not) mentioned in φ occurs in exactly one context.
• if φ is a document formula and Δ'1, ..., Δ'k are all of its imported documents, then every non-rif:local constant symbol mentioned in φ

or any of the imported Δ'is must occur in exactly one context (in all of the Δ'is).
• whenever a formula contains a term or a subformula of the form External(t), t must be an instantiation of a schema in the coherent set

of external schemas (Section Schemas for Externally Defined Terms of [RIF-DTB]) associated with the language of RIF-BLD.
• if t is an instantiation of a schema in the coherent set of external schemas associated with the language then t can occur only as

External(t), i.e., as an external term or atomic formula. ☐

Definition (Language of RIF-BLD). The language of RIF-BLD consists of the set of all well-formed formulas and is determined by:

• the alphabet of the language and
• a set of coherent external schemas, which determine the available built-ins and other externally defined predicates and functions. ☐

2.6 EBNF Grammar for the Presentation Syntax of RIF-BLD (Informative)

Until now, we have been using mathematical English to specify the syntax of RIF-BLD. Tool developers, however, may prefer EBNF notation, which
provides a more succinct view of the syntax. Several points should be kept in mind regarding this notation.

• The syntax of first-order logic is not context-free, so EBNF cannot capture the syntax of RIF-BLD precisely. For instance, it cannot capture
some well-formedness conditions, such as the requirement that external terms must be instances of external schemas. As a result, the
EBNF grammar defines a strict superset of RIF-BLD: not all formulas that are derivable using the EBNF grammar are well-formed formulas
in RIF-BLD.

• The EBNF grammar does not address all details of how constants (defined in [RIF-DTB]) and variables are represented, and it is not
sufficiently precise about the delimiters and escape symbols. White space is informally used as a delimiter, and is implied in productions
that use Kleene star. For instance, TERM* is to be understood as TERM TERM ... TERM, where each space abstracts from one or more
blanks, tabs, newlines, etc. This is so because RIF's presentation syntax is a tool for specifying the semantics and for illustration of the
main RIF concepts through examples. It is not intended as a concrete syntax for a rule language. RIF defines a concrete syntax only for
exchanging rules, and that syntax is XML-based, obtained as a refinement and serialization of the presentation syntax.

• For all the above reasons, the EBNF grammar is not normative. Recall from the opening paragraph, however, that the RIF-BLD
presentation syntax as specified in mathematical English is normative.

The EBNF for the RIF-BLD presentation syntax is given as follows, showing the entire (top-down) context of its three parts for rules, conditions,
and annotations.

Rule Language:

Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'
Base ::= 'Base' '(' ANGLEBRACKIRI ')'
Prefix ::= 'Prefix' '(' NCName ANGLEBRACKIRI ')'
Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'
RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE
CLAUSE ::= Implies | ATOMIC
Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA
LOCATOR ::= ANGLEBRACKIRI
PROFILE ::= ANGLEBRACKIRI

Condition Language:

FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |
IRIMETA? 'Or' '(' FORMULA* ')' |
IRIMETA? 'Exists' Var+ '(' FORMULA ')' |
ATOMIC |

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 7 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#rif-local-space
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#app-external-schema
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants
http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants

IRIMETA? 'External' '(' Atom ')'
ATOMIC ::= IRIMETA? (Atom | Equal | Member | Subclass | Frame)
Atom ::= UNITERM
UNITERM ::= Const '(' (TERM* | (Name '->' TERM)*) ')'
Equal ::= TERM '=' TERM
Member ::= TERM '#' TERM
Subclass ::= TERM '##' TERM
Frame ::= TERM '[' (TERM '->' TERM)* ']'
TERM ::= IRIMETA? (Const | Var | Expr | List | 'External' '(' Expr ')')
Expr ::= UNITERM
List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT
Var ::= '?' Name
Name ::= NCName | '"' UNICODESTRING '"'
SYMSPACE ::= ANGLEBRACKIRI | CURIE

Annotations:

IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'

The following subsections explain and exemplify these parts, starting with the basic language of positive conditions.

2.6.1 EBNF for the Condition Language

The Condition Language represents formulas that can be used in the premises of RIF-BLD rules (also called rule bodies). The EBNF grammar for a
superset of the RIF-BLD condition language is shown in the above conditions part.

The production rule for the non-terminal FORMULA represents RIF condition formulas (defined earlier). The connectives And and Or define
conjunctions and disjunctions of conditions, respectively. Exists introduces existentially quantified variables. Here Var+ stands for the list of
variables that are free in FORMULA. A RIF-BLD FORMULA can also be an ATOMIC term, i.e. an Atom, External Atom, Equal, Member, Subclass, or
Frame. A TERM can be a constant, variable, Expr, List, or External Expr.

The RIF-BLD presentation syntax does not commit to any particular vocabulary and permits arbitrary Unicode strings in constant symbols,
argument names, and variables. Constant symbols can have this form: "UNICODESTRING"^^SYMSPACE, where SYMSPACE is an ANGLEBRACKIRI or
CURIE that represents the identifier of the symbol space of the constant. UNICODESTRING, ANGLEBRACKIRI, and CURIE are defined in Section
Shortcuts for Constants in RIF's Presentation Syntax of [RIF-DTB]. Constant symbols can also have several shortcut forms, which are represented
by the non-terminal CONSTSHORT. These shortcuts are also defined in the same section of [RIF-DTB]. One of them is the CURIE shortcut, which is
extensively used in the examples in this document. Names are Unicode character sequences. Variables are composed of UNICODESTRING symbols
prefixed with a ?-sign.

Equality, membership, and subclass terms are self-explanatory. An Atom and Expr (expression) can either be positional or have named
arguments. A frame term is a term composed of an object identifier and a collection of attribute-value pairs. The term External(Atom) is a call to
an externally defined predicate. Likewise, External(Expr) is a call to an externally defined function.

Example 3 (RIF-BLD conditions).

This example shows conditions that are composed of atoms, expressions, equalities with lists, frames, and existentials. In frame formulas,
variables are shown in the positions of object identifiers, object properties, and property values. For brevity, we use the shortcut CURIE notation
prefix:suffix for constant symbols defined in [RIF-DTB]. This is understood as a shorthand for an IRI obtained by concatenation of the prefix
definition and suffix. Thus, if bks is a prefix that expands into http://example.com/books# then bks:LeRif is an abbreviation for
"http://example.com/books#LeRif"^^rif:iri.

Prefix(bks <http://example.com/books#>)
Prefix(auth <http://example.com/authors#>)
Prefix(cpt <http://example.com/concepts#>)

Positional terms:

cpt:book(auth:rifwg bks:LeRif)
Exists ?X (cpt:book(?X bks:LeRif))

Terms with named arguments:

cpt:book(cpt:author->auth:rifwg cpt:title->bks:LeRif)
Exists ?X (cpt:book(cpt:author->?X cpt:title->bks:LeRif))

Equalities with list terms:

?L = List(?X ?Y ?X)
List(?Head | ?Tail) = List("a"^^rif:local ?Y "c"^^rif:local)

Frames:

bks:wd1[cpt:author->auth:rifwg cpt:title->bks:LeRif]
Exists ?X (bks:wd2[cpt:author->?X cpt:title->bks:LeRif])
Exists ?X (And (bks:wd2#cpt:book bks:wd2[cpt:author->?X cpt:title->bks:LeRif]))

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 8 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants
http://www.w3.org/TR/2006/REC-xml-names11-20060816/#NT-NCName
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-shortcuts-constants

Exists ?I ?X (?I[cpt:author->?X cpt:title->bks:LeRif])
Exists ?I ?X (And (?I#cpt:book ?I[cpt:author->?X cpt:title->bks:LeRif]))
Exists ?S (bks:wd2[cpt:author->auth:rifwg ?S->bks:LeRif])
Exists ?X ?S (bks:wd2[cpt:author->?X ?S->bks:LeRif])
Exists ?I ?X ?S (And (?I#cpt:book ?I[author->?X ?S->bks:LeRif]))

2.6.2 EBNF for the Rule Language

The presentation syntax for RIF-BLD rules is based on the syntax in Section EBNF for RIF-BLD Condition Language with the productions shown in
the above rules part.

A RIF-BLD Document consists of an optional Base, followed by any number of Prefixes, followed by any number of Imports, followed by an
optional Group. Base and Prefix serve as shortcut mechanisms for IRIs. IRI has the form of an internationalized resource identifier as defined by
[RFC-3987]. An Import indicates the location of a document to be imported and an optional profile. A RIF-BLD Group is a collection of any number
of RULE elements along with any number of nested Groups.

Rules are generated using CLAUSE elements. The RULE production has two alternatives:

• In the first, a CLAUSE is in the scope of the Forall quantifier. In that case, all variables mentioned in CLAUSE are required to also appear
among the variables in the Var+ sequence.

• In the second alternative, CLAUSE appears on its own. In that case, CLAUSE cannot have variables.

Var, ATOMIC, and FORMULA were defined as part of the syntax for positive conditions in Section EBNF for RIF-BLD Condition Language. In the
CLAUSE production, an ATOMIC is what is usually called a fact. An Implies rule can have an ATOMIC or a conjunction of ATOMIC elements as its
conclusion; it has a FORMULA as its premise. Note that, by the definition of formulas, externally defined atoms (i.e., formulas of the form
External(Atom)) are not allowed in the conclusion part of a rule (ATOMIC does not expand to External).

Example 4 (RIF-BLD rules).

This example shows a business rule borrowed from the document RIF Use Cases and Requirements:

• If an item is perishable and it is delivered to John more than 10 days after the scheduled delivery date then the item will be rejected by
him.

As before, for better readability we use the compact URI notation, the angle-bracket notation, and the Base directive defined in [RIF-DTB], Section
Constants, Symbol Spaces, and Datatypes. Again, directives are assumed in the preamble to the document. Then, two versions of the main part
of the document are given.

Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)

a. Universal form:

Forall ?item ?deliverydate ?scheduledate ?diffduration ?diffdays (
cpt:reject(<John> ?item) :-

And(cpt:perishable(?item)
cpt:delivered(?item ?deliverydate <John>)
cpt:scheduled(?item ?scheduledate)
?diffduration = External(func:subtract-dateTimes(?deliverydate ?scheduledate))
?diffdays = External(func:days-from-duration(?diffduration))
External(pred:numeric-greater-than(?diffdays 10)))

)

b. Universal-existential form:

Forall ?item (
cpt:reject(<John> ?item) :-

Exists ?deliverydate ?scheduledate ?diffduration ?diffdays (
And(cpt:perishable(?item)

cpt:delivered(?item ?deliverydate <John>)
cpt:scheduled(?item ?scheduledate)
?diffduration = External(func:subtract-dateTimes(?deliverydate ?scheduledate))
?diffdays = External(func:days-from-duration(?diffduration))
External(pred:numeric-greater-than(?diffdays 10)))

)
)

2.6.3 EBNF for Annotations

The EBNF grammar production for RIF-BLD annotations is shown in the above annotations part.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 9 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2008/WD-rif-ucr-20081218/
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-constants

As explained in Section RIF-BLD Annotations in the Presentation Syntax, each RIF-BLD formula and term can be preceded by one optional
annotation, IRIMETA, for identification and metadata. IRIMETA is represented using (*...*)-brackets that contain an optional rif:iri constant,
IRICONST, as identifier followed by an optional Frame or conjunction of Frames as metadata.

An IRICONST is rif:iri constant, again permitting the shortcut forms defined in [RIF-DTB]. One such specialization is '"' IRI '"^^'
'rif:iri' from the Const production, where IRI is a sequence of Unicode characters that forms an internationalized resource identifier as
defined by [RFC-3987].

Example 5 (A RIF-BLD document containing an annotated group).

This example shows a complete document containing a group formula that consists of two RIF-BLD rules. The first of these rules is copied from
Example 4a. The group is annotated with an IRI identifier and metadata represented using Dublin Core vocabulary.

Document(
Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(dc <http://purl.org/dc/terms/>)
Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)

(* "http://sample.org"^^rif:iri _pd[dc:publisher -> "http://www.w3.org/"^^rif:iri
dc:date -> "2008-04-04"^^xs:date] *)

Group
(

Forall ?item ?deliverydate ?scheduledate ?diffduration ?diffdays (
cpt:reject(<John> ?item) :-

And(cpt:perishable(?item)
cpt:delivered(?item ?deliverydate <John>)
cpt:scheduled(?item ?scheduledate)
?diffduration = External(func:subtract-dateTimes(?deliverydate ?scheduledate))
?diffdays = External(func:days-from-duration(?diffduration))
External(pred:numeric-greater-than(?diffdays 10)))

)

Forall ?item (
cpt:reject(<Fred> ?item) :- cpt:unsolicited(?item)

)
)

)

3 Direct Specification of RIF-BLD Semantics

This normative section specifies the semantics of RIF-BLD directly, without relying on [RIF-FLD].

Recall that the presentation syntax of RIF-BLD allows shorthand notation, which is specified via the Prefix and Base directives, and various
shortcuts for integers, strings, and rif:local symbols. The semantics, below, is described using the full syntax, i.e., we assume that all shortcuts
have already been expanded as defined in [RIF-DTB], Section Constants, Symbol Spaces, and Datatypes.

3.1 Truth Values

The set TV of truth values in RIF-BLD consists of two values, t and f.

3.2 Semantic Structures

The key concept in a model-theoretic semantics for a logic language is the notion of a semantic structure [Enderton01, Mendelson97]. The
definition is slightly more general than what is strictly necessary for RIF-BLD alone. This lays the groundwork for extensions to RIF-BLD and makes
the connection with the semantics of the RIF framework for logic-based dialects [RIF-FLD] more obvious.

Definition (Semantic structure). A semantic structure, I, is a tuple of the form <TV, DTS, D, Dind, Dfunc, IC, IV, IF, INF, Ilist, Itail, Iframe, Isub,
Iisa, I=, Iexternal, Itruth>. Here D is a non-empty set of elements called the domain of I, and Dind, Dfunc are nonempty subsets of D. Dind is used to
interpret the elements of Const that occur as individuals and Dfunc is used to interpret the elements of Const that occur in the context of function
symbols. As before, Const denotes the set of all constant symbols and Var the set of all variable symbols. DTS denotes a set of identifiers for
datatypes (please refer to Section Datatypes of [RIF-DTB] for the semantics of datatypes).

The other components of I are total mappings defined as follows:

1. IC maps Const to D.

This mapping interprets constant symbols. In addition:

◦ If a constant, c ∈ Const, is an individual then it is required that IC(c) ∈ Dind.
◦ If c ∈ Const, is a function symbol (positional or with named arguments) then it is required that IC(c) ∈ Dfunc.

2. IV maps Var to Dind.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 10 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-constants
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-fld-semantic-framework
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-data-types

This mapping interprets variable symbols.

3. IF maps D to total functions D*ind → D (here D*ind is a set of all finite sequences over the domain Dind).

This mapping interprets positional terms. In addition:

◦ If d ∈ Dfunc then IF(d) must be a function D*ind → Dind.
◦ This means that when a function symbol is applied to arguments that are individual objects then the result is also an individual

object.
4. INF maps D to the set of total functions of the form SetOfFiniteSets(ArgNames × Dind) → D.

This mapping interprets function symbols with named arguments. In addition:

◦ If d ∈ Dfunc then INF(d) must be a function SetOfFiniteSets(ArgNames × Dind) → Dind.
◦ This is analogous to the interpretation of positional terms with two differences:

▪ Each pair <s,v> ∈ ArgNames × Dind represents an argument/value pair instead of just a value in the case of a positional
term.

▪ The arguments of a term with named arguments constitute a finite set of argument/value pairs rather than a finite
ordered sequence of simple elements. So, the order of the arguments does not matter.

5. Ilist and Itail are used to interpret lists. They are mappings of the following form:
◦ Ilist : Dind* → Dind
◦ Itail : Dind+× Dind → Dind

In addition, these mappings are required to satisfy the following conditions:

◦ The function Ilist is injective (one-to-one).
◦ The set Ilist(Dind*), henceforth denoted Dlist, is disjoint from the value spaces of all data types in DTS.
◦ Itail(a1, ..., ak, Ilist(ak+1, ..., ak+m)) = Ilist(a1, ..., ak, ak+1, ..., ak+m).

Note that the last condition above restricts Itail only when its last argument is in Dlist. If the last argument of Itail is not in Dlist, then the
list is a general open one and there are no restrictions on the value of Itail except that it must be in Dind.

6. Iframe maps Dind to total functions of the form SetOfFiniteBags(Dind × Dind) → D.

This mapping interprets frame terms. An argument, d ∈ Dind, to Iframe represents an object and the finite bag {<a1,v1>, ..., <ak,vk>}
represents a bag of attribute-value pairs for d. We will see shortly how Iframe is used to determine the truth valuation of frame terms.

Bags (multi-sets) are used here because the order of the attribute/value pairs in a frame is immaterial and pairs may repeat. Such
repetitions arise naturally when variables are instantiated with constants. For instance, o[?A->?B ?C->?D] becomes o[a->b a->b] if
variables ?A and ?C are instantiated with the symbol a while ?B and ?D are instantiated with b. (We shall see later that o[a->b a->b] is
equivalent to o[a->b].)

7. Isub gives meaning to the subclass relationship. It is a mapping of the form Dind × Dind → D.

Isub will be further restricted in Section Interpretation of Formulas to ensure that the operator ## is transitive, i.e., that c1 ## c2 and
c2 ## c3 imply c1 ## c3.

8. Iisa gives meaning to class membership. It is a mapping of the form Dind × Dind → D.

Iisa will be further restricted in Section Interpretation of Formulas to ensure that the relationships # and ## have the usual property that
all members of a subclass are also members of the superclass, i.e., that o # cl and cl ## scl imply o # scl.

9. I= is a mapping of the form Dind × Dind → D.

It gives meaning to the equality operator.

10. Itruth is a mapping of the form D → TV.

It is used to define truth valuation for formulas.

11. Iexternal is a mapping from the coherent set of schemas for externally defined functions to total functions D* → D. For each external
schema σ = (?X1 ... ?Xn; τ) in the coherent set of external schemas associated with the language, Iexternal(σ) is a function of the
form Dn → D.

For every external schema, σ, associated with the language, Iexternal(σ) is assumed to be specified externally in some document (hence
the name external schema). In particular, if σ is a schema of a RIF built-in predicate or function, Iexternal(σ) is specified in [RIF-DTB] so
that:

◦ If σ is a schema of a built-in function then Iexternal(σ) must be the function defined in [RIF-DTB].
◦ If σ is a schema of a built-in predicate then Itruth ο (Iexternal(σ)) (the composition of Itruth and Iexternal(σ), a truth-valued function)

must be as specified in [RIF-DTB].

We also define the following mapping from terms to D, which we denote using the same symbol I as the one used for semantic structures. This
overloading is convenient and creates no ambiguity.

• I(k) = IC(k), if k is a symbol in Const
• I(?v) = IV(?v), if ?v is a variable in Var
• I(f(t1 ... tn)) = IF(I(f))(I(t1),...,I(tn))
• I(f(s1->v1 ... sn->vn)) = INF(I(f))({<s1,I(v1)>,...,<sn,I(vn)>})

Here we use {...} to denote a set of argument/value pairs.

• For list terms, the mapping is defined as follows:

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 11 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set

◦ I(List()) = Ilist(<>).

Here <> denotes an empty list of elements of Dind. (Note that the domain of Ilist is Dind*, so Dind0 is an empty list of elements of
Dind.)

◦ I(List(t1 ... tn)) = Ilist(I(t1), ..., I(tn)), if n>0.
◦ I(List(t1 ... tn | t)) = Itail(I(t1), ..., I(tn), I(t)), if n>0.

• I(o[a1->v1 ... ak->vk]) = Iframe(I(o))({<I(a1),I(v1)>, ..., <I(an),I(vn)>})

Here {...} denotes a bag of attribute/value pairs. Jumping ahead, we note that duplicate elements in such a bag do not affect the truth
value of a frame formula. Thus, for instance, o[a->b a->b] and o[a->b] always have the same truth value.

• I(c1##c2) = Isub(I(c1), I(c2))
• I(o#c) = Iisa(I(o), I(c))
• I(x=y) = I=(I(x), I(y))
• I(External(t)) = Iexternal(σ)(I(s1), ..., I(sn)), if t is an instantiation of the external schema σ = (?X1 ... ?Xn; τ) by substitution ?X1/s1

... ?Xn/s1.

Note that, by definition, External(t) is well-formed only if t is an instantiation of an external schema. Furthermore, by the definition of
coherent sets of external schemas, t can be an instantiation of at most one such schema, so I(External(t)) is well-defined.

Note that the definitions of INF and I(x=y) imply that the terms with named arguments that differ only in the order of their arguments are mapped
by I to the same element in the domain. This implies that the equalities like t(a->1 b->2 c->3) = t(c->3 a->1 b->2) are tautologies in RIF-
BLD.

The effect of datatypes. The set DTS must include the datatypes described in Section Datatypes of [RIF-DTB].

The datatype identifiers in DTS impose the following restrictions. Given dt ∈ DTS, let LSdt denote the lexical space of dt, VSdt denote its value
space, and Ldt: LSdt → VSdt the lexical-to-value-space mapping (for the definitions of these concepts, see Section Datatypes of [RIF-DTB]). Then
the following must hold:

• VSdt ⊆ Dind; and
• For each constant "lit"^^dt such that lit ∈ LSdt, IC("lit"^^dt) = Ldt(lit).

That is, IC must map the constants of a datatype dt in accordance with Ldt.

RIF-BLD does not impose restrictions on IC for constants in symbol spaces that are not datatypes included in DTS. ☐

3.3 RIF-BLD Annotations in the Semantics

RIF-BLD annotations are stripped before the mappings that constitute RIF-BLD semantic structures are applied. Likewise, they are stripped before
applying the truth valuation, TValI, defined in the next section. Thus, identifiers and metadata have no effect on the formal semantics.

Note that although identifiers and metadata associated with RIF-BLD formulas are ignored by the semantics, they can be extracted by XML tools.
The frame terms used to represent RIF-BLD metadata can then be fed to other RIF-BLD rules, thus enabling reasoning about metadata. RIF-BLD
does not define any particular semantics for metadata, however.

3.4 Interpretation of Non-document Formulas

This section defines how a semantic structure, I, determines the truth value TValI(φ) of a RIF-BLD formula, φ, where φ is any formula other than a
document formula. Truth valuation of document formulas is defined in the next section.

We define a mapping, TValI, from the set of all non-document formulas to TV. Note that the definition implies that TValI(φ) is defined only if the
set DTS of the datatypes of I includes all the datatypes mentioned in φ and Iexternal is defined on all externally defined functions and predicates
in φ.

Definition (Truth valuation). Truth valuation for well-formed formulas in RIF-BLD is determined using the following function, denoted TValI:

1. Positional atomic formulas: TValI(r(t1 ... tn)) = Itruth(I(r(t1 ... tn)))
2. Atomic formulas with named arguments: TValI(p(s1->v1 ... sk->vk)) = Itruth(I(p(s1->v1 ... sk->vk))).
3. Equality: TValI(x = y) = Itruth(I(x = y)).

◦ To ensure that equality has precisely the expected properties, it is required that:
▪ Itruth(I(x = y)) = t if I(x) = I(y) and Itruth(I(x = y)) = f otherwise.

◦ This is tantamount to saying that TValI(x = y) = t if and only if I(x) = I(y).
4. Subclass: TValI(sc ## cl) = Itruth(I(sc ## cl)).

To ensure that the operator ## is transitive, i.e., c1 ## c2 and c2 ## c3 imply c1 ## c3, the following is required:

◦ For all well-formed terms c1, c2, c3: if TValI(c1 ## c2) = TValI(c2 ## c3) = t then TValI(c1 ## c3) = t.
5. Membership: TValI(o # cl) = Itruth(I(o # cl)).

To ensure that all members of a subclass are also members of the superclass, i.e., o # cl and cl ## scl imply o # scl, the following is
required:

◦ For all well-formed terms o, cl, scl: if TValI(o # cl) = TValI(cl ## scl) = t then TValI(o # scl) = t.
6. Frame: TValI(o[a1->v1 ... ak->vk]) = Itruth(I(o[a1->v1 ... ak->vk])).

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 12 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-data-types
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-data-types

Since the bag of attribute/value pairs associated with an object o represents the conjunction of assertions represented by these pairs, the
following is required, if k > 0:

◦ TValI(o[a1->v1 ... ak->vk]) = t if and only if TValI(o[a1->v1]) = ... = TValI(o[ak->vk]) = t.
7. Externally defined atomic formula: TValI(External(t)) = Itruth(Iexternal(σ)(I(s1), ..., I(sn))), if t is an atomic formula that is an instantiation

of the external schema σ = (?X1 ... ?Xn; τ) by substitution ?X1/s1 ... ?Xn/s1.

Note that, by definition, External(t) is well-formed only if t is an instantiation of an external schema. Furthermore, by the definition of
coherent sets of external schemas, t can be an instantiation of at most one such schema, so I(External(t)) is well-defined.

8. Conjunction: TValI(And(c1 ... cn)) = t if and only if TValI(c1) = ... = TValI(cn) = t. Otherwise, TValI(And(c1 ... cn)) = f.

The empty conjunction is treated as a tautology, so TValI(And()) = t.

9. Disjunction: TValI(Or(c1 ... cn)) = f if and only if TValI(c1) = ... = TValI(cn) = f. Otherwise, TValI(Or(c1 ... cn)) = t.

The empty disjunction is treated as a contradiction, so TValI(Or()) = f.

10. Quantification:
◦ TValI(Exists ?v1 ... ?vn (φ)) = t if and only if for some I*, described below, TValI*(φ) = t.
◦ TValI(Forall ?v1 ... ?vn (φ)) = t if and only if for every I*, described below, TValI*(φ) = t.

Here I* is a semantic structure of the form <TV, DTS, D, Dind, Dfunc, IC, I*V, IF, INF, Ilist, Itail, Iframe, Isub, Iisa, I=, Iexternal, Itruth>, which is
exactly like I, except that the mapping I*V, is used instead of IV. I*V is defined to coincide with IV on all variables except, possibly, on
?v1,...,?vn.

11. Rule implication:
◦ TValI(conclusion :- condition) = t, if either TValI(conclusion)=t or TValI(condition)=f.
◦ TValI(conclusion :- condition) = f otherwise.

12. Groups of rules:

If Γ is a group formula of the form Group(φ1 ... φn) then

◦ TValI(Γ) = t if and only if TValI(φ1) = t, ..., TValI(φn) = t.
◦ TValI(Γ) = f otherwise.

This means that a group of rules is treated as a conjunction. In particular, the empty group is treated as a tautology, so TValI(Group()) =
t. ☐

3.5 Interpretation of Documents

Document formulas are interpreted using the usual semantic structures with two caveats: rif:local must be renamed apart and imported
documents must be taken into account.

Definition (Renaming of local constants). A renaming mapping, ρ, is a function that maps document formulas to document formulas
subject to the following restriction:

• If ρ(Δ) = Δ' then Δ' is exactly like Δ except that all occurrences of some rif:local constants in Δ may be consistently renamed into
other rif:local constants.
By consistent renaming here we mean that different occurrences of the same rif:local constant in Δ are renamed identically. ☐

Definition (Semantic multi-structure). A semantic multi-structure Î is a pair (Îren,I), where

• Îren is a renaming mapping; and
• I is a semantic structure. ☐

The semantics of RIF documents is now defined as follows.

Definition (Truth valuation of document formulas). Let Δ be a document formula and let Δ1, ..., Δn be all the RIF-BLD document formulas
that are imported into Δ (directly or indirectly, according to Definition Imported document). Let Γ, Γ1, ..., Γn denote the respective group formulas
associated with these documents. If Î = (Îren,I) is a semantic multi-structure, then we define:

• TValÎ(Δ) = t if and only if TValI(Îren(Γ)) = TValI(Îren(Γ1)) = ... = TValI(Îren(Γn)) = t.

That is, Δ evaluates to t iff, after possible renaming of rif:local constants, its associated group formula as well as the group formulas of all the
imported documents evaluate to t.

For non-document formulas, we define TValÎ(φ) = TValI(Îren(φ)). ☐

Note that this definition takes into account only those imported document formulas that are reachable via the one-argument import directives.
Two argument import directives are not covered here. Their semantics is defined by the document RIF RDF and OWL Compatibility [RIF-
RDF+OWL].

Also note that some of the Γi above may be missing since all parts in a document formula are optional. In this case, we assume that Γi is a
tautology, such as And(), and every TVal function maps such a Γi to the truth value t.

The above definitions make the intent behind the rif:local constants clear: due to renaming, occurrences of such constants in different
documents can be interpreted differently even if they have the same name. Therefore, each document can choose the names for the rif:local
constants freely and without regard to the names of such constants used in the imported documents.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 13 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#rif-local-space

For the relationship between rif:local and RDF blank nodes readers are referred to Section Symbols in RIF Versus RDF/OWL (Informative) of
[RIF-RDF+OWL].

3.6 Logical Entailment

We now define what it means for a set of RIF-BLD rules (embedded in a group or a document formula) to entail another RIF-BLD formula. In RIF-
BLD we are mostly interested in entailment of RIF condition formulas, which can be viewed as queries to RIF-BLD groups or documents.
Entailment of condition formulas provides formal underpinning to RIF-BLD queries.

Definition (Models). A multi-structure Î is a model of a formula, φ, written as Î |= φ, iff TValÎ(φ) = t. Here φ can be a document or a non-
document formula. ☐

Definition (Logical entailment). Let φ and ψ be (document or non-document) formulas. We say that φ entails ψ, written as φ |= ψ, if and only
if for every multi-structure, Î, Î |= φ implies Î |= ψ. ☐

Note that one consequence of the multi-document semantics of RIF-BLD is that local constants specified in one document cannot be queried from
another document. For instance, if one document, Δ', has the fact "http://example.com/ppp"^^rif:iri("abc"^^rif:local) while another
document formula, Δ, imports Δ' and has the rule "http://example.com/qqq"^^rif:iri(?X) :- "http://example.com/ppp"^^rif:iri(?X),
then Δ |= "http://example.com/qqq"^^rif:iri("abc"^^rif:local) does not hold. This is because the symbol "abc"^^rif:local in Δ' and Δ
is treated as different constants by semantic multi-structures.

This behavior of local symbols should be contrasted with the behavior of rif:iri symbols. Suppose, in the above scenario, Δ' also has the fact
"http://example.com/ppp"^^rif:iri("http://cde.example.org"^^rif:iri). Then Δ |= "http://example.com/
qqq"^^rif:iri("http://cde.example.org"^^rif:iri) does hold.

4 XML Serialization Syntax for RIF-BLD

The RIF-BLD XML serialization defines

• a normative mapping from the RIF-BLD presentation syntax to XML (Section Mapping from the Presentation Syntax to the XML Syntax),
and

• a normative XML schema for the XML syntax (Appendix XML Schema for BLD).

Recall that the syntax of RIF-BLD is not context-free and thus cannot be fully captured by EBNF or XML Schema. Still, validity with respect to XML
Schema can be a useful test. To reflect this state of affairs, we define two notions of syntactic correctness. The weaker notion checks correctness
only with respect to XML Schema, while the stricter notion represents "true" syntactic correctness.

Definition (Valid BLD document in XML syntax). A valid BLD document in the XML syntax is an XML document that is valid with respect to
the XML schema in Appendix XML Schema for BLD. ☐

Definition (Admissible BLD document in XML syntax). An admissible BLD document in the XML syntax is a valid BLD document in XML
syntax that is the image of a well-formed RIF-BLD document in the presentation syntax (see Definition Well-formed formula in Section Formulas)
under the presentation-to-XML syntax mapping χbld defined in Section Mapping from the Presentation Syntax to the XML Syntax. ☐

The XML serialization for RIF-BLD is based on an alternating or striped syntax [ANF01]. A striped serialization views XML documents as objects
and divides all XML tags into class descriptors, called type tags, and property descriptors, called role tags [TRT03]. We follow the tradition of
using capitalized names for type tags and lowercase names for role tags.

The all-uppercase classes in the presentation syntax, such as FORMULA, become XML Schema groups in Appendix XML Schema for BLD. They are
not visible in instance markup. The other classes as well as non-terminals and symbols (such as Exists or =) become XML elements with optional
attributes, as shown below.

RIF-BLD uses [XML1.0] for its XML syntax.

4.1 XML for the Condition Language

XML serialization of RIF-BLD in Section EBNF for RIF-BLD Condition Language uses the following elements.

- And (conjunction)
- Or (disjunction)
- Exists (quantified formula for 'Exists', containing declare and formula roles)
- declare (declare role, containing a Var)
- formula (formula role, containing a FORMULA)
- Atom (atom formula, positional or with named arguments)
- External (external call, containing a content role)
- content (content role, containing an Atom, for predicates, or Expr, for functions)
- Member (member formula)
- Subclass (subclass formula)
- Frame (Frame formula)
- object (Member/Frame role, containing a TERM or an object description)
- op (Atom/Expr role for predicates/functions as operations)
- args (Atom/Expr positional arguments role, with ordered="yes" attribute, containing n TERMs)

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 14 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-rdf-owl-20121211/#sec-swc-symbols-rdf-owl

- instance (Member instance role)
- class (Member class role)
- sub (Subclass sub-class role)
- super (Subclass super-class role)
- slot (Atom/Expr or Frame slot role, with ordered="yes" attribute, containing a Name or TERM followed by a TERM)
- Equal (prefix version of term equation '=')
- left (Equal left-hand side role)
- right (Equal right-hand side role)
- Expr (expression formula, positional or with named arguments)
- List (list term, closed or open)
- items (list items role, with ordered="yes" attribute, containing n TERMs)
- rest (list rest role, corresponding to '|')
- Const (individual, function, or predicate symbol, with 'type' attribute)
- Name (name of named argument)
- Var (logic variable)

- id (identifier role, containing IRICONST)
- meta (meta role, containing metadata as a Frame or Frame conjunction)

The name of a base or prefix is not associated with a RIF/XML element, since it is handled via preprocessing as discussed in Section Mapping of
the Rule Language.

The id and meta elements, which are expansions of the IRIMETA element, can occur optionally as the initial children of any Class element.

For the XML Schema definition of the RIF-BLD condition language see Appendix XML Schema for BLD.

The XML syntax for symbol spaces uses the type attribute associated with the XML element Const. For instance, a literal in the xs:dateTime
datatype is represented as follows:

<Const type="&xs;dateTime">2007-11-23T03:55:44-02:30</Const>

The xml:lang attribute, as defined by 2.12 Language Identification of XML 1.0 or its successor specifications in the W3C recommendation track,
is optionally used to identify the language for the presentation of the Const to the user. It is allowed only in association with constants of the type
rdf:plainLiteral. A compliant implementation MUST ignore the xml:lang attribute if the type of the Const is not rdf:plainLiteral.

RIF-BLD also uses the ordered="yes" attribute to indicate that the children of args and slot elements are ordered.

Example 6 (A RIF condition and its XML serialization).

This example illustrates XML serialization for RIF conditions. As before, the compact URI notation is used for better readability. Assume that the
following prefix directives are found in the preamble to the document, whose XML form will be illustrated in Example 8:

Prefix(bks <http://example.com/books#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(curr <http://example.com/currencies#>)
Prefix(rif <http://www.w3.org/2007/rif#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)

RIF condition:

And (Exists ?Buyer (cpt:purchase(?Buyer ?Seller
cpt:book(?Author bks:LeRif)
curr:USD(49)))

?Seller=?Author)

XML serialization:

<And>
<formula>

<Exists>
<declare><Var>Buyer</Var></declare>
<formula>

<Atom>
<op><Const type="&rif;iri">&cpt;purchase</Const></op>
<args ordered="yes">

<Var>Buyer</Var>
<Var>Seller</Var>
<Expr>

<op><Const type="&rif;iri">&cpt;book</Const></op>
<args ordered="yes">

<Var>Author</Var>
<Const type="&rif;iri">&bks;LeRif</Const>

</args>
</Expr>
<Expr>

<op><Const type="&rif;iri">&curr;USD</Const></op>
<args ordered="yes"><Const type="&xs;integer">49</Const></args>

</Expr>
</args>

</Atom>
</formula>

</Exists>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 15 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/REC-xml/#sec-lang-tag
http://www.w3.org/TR/2000/REC-xml-20001006

</formula>
<formula>

<Equal>
<left><Var>Seller</Var></left>
<right><Var>Author</Var></right>

</Equal>
</formula>

</And>

Example 7 (An XML serialization of a RIF condition with a frame and a named-argument term).

This example illustrates XML serialization of RIF conditions that involve terms with named arguments. As in Example 6, we assume the following
prefix directives, whose XML form will be illustrated in Example 8:

Prefix(bks <http://example.com/books#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(curr <http://example.com/currencies#>)
Prefix(rif <http://www.w3.org/2007/rif#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)

RIF condition:

And (Exists ?Buyer ?P (
And (?P#cpt:purchase

?P[cpt:buyer->?Buyer
cpt:seller->?Seller
cpt:item->cpt:book(cpt:author->?Author cpt:title->bks:LeRif)
cpt:price->49
cpt:currency->curr:USD]))

?Seller=?Author)

XML serialization:

<And>
<formula>

<Exists>
<declare><Var>Buyer</Var></declare>
<declare><Var>P</Var></declare>
<formula>

<And>
<formula>

<Member>
<instance><Var>P</Var></instance>
<class><Const type="&rif;iri">&cpt;purchase</Const></class>

</Member>
</formula>
<formula>

<Frame>
<object>

<Var>P</Var>
</object>
<slot ordered="yes">

<Const type="&rif;iri">&cpt;buyer</Const>
<Var>Buyer</Var>

</slot>
<slot ordered="yes">

<Const type="&rif;iri">&cpt;seller</Const>
<Var>Seller</Var>

</slot>
<slot ordered="yes">

<Const type="&rif;iri">&cpt;item</Const>
<Expr>

<op><Const type="&rif;iri">&cpt;book</Const></op>
<slot ordered="yes">

<Name>&cpt;author</Name>
<Var>Author</Var>

</slot>
<slot ordered="yes">

<Name>&cpt;title</Name>
<Const type="&rif;iri">&bks;LeRif</Const>

</slot>
</Expr>

</slot>
<slot ordered="yes">

<Const type="&rif;iri">&cpt;price</Const>
<Const type="&xs;integer">49</Const>

</slot>
<slot ordered="yes">

<Const type="&rif;iri">&cpt;currency</Const>
<Const type="&rif;iri">&curr;USD</Const>

</slot>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 16 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

</Frame>
</formula>

</And>
</formula>

</Exists>
</formula>
<formula>

<Equal>
<left><Var>Seller</Var></left>
<right><Var>Author</Var></right>

</Equal>
</formula>

</And>

4.2 XML for the Rule Language

We now extend the set of RIF-BLD serialization elements from Section XML for RIF-BLD Condition Language by including rules, along with their
enclosing groups and documents, as described in Section EBNF for RIF-BLD Rule Language. The extended set includes the tags listed below.

- Document (document, containing optional directive and payload roles)
- directive (directive role, containing Import)
- payload (payload role, containing Group)
- Import (importation, containing location and optional profile)
- location (location role, containing ANYURICONST)
- profile (profile role, containing PROFILE)
- Group (nested collection of sentences)
- sentence (sentence role, containing RULE or Group)
- Forall (quantified formula for 'Forall', containing declare and formula roles)
- Implies (implication, containing if and then roles)
- if (antecedent role, containing FORMULA)
- then (consequent role, containing ATOMIC or conjunction of ATOMICs)

The XML Schema Definition of RIF-BLD is given in Appendix XML Schema for BLD.

While there is a RIF-BLD element tag for the Import directive, the Base and Prefix directives are not represented by RIF/XML tags: they are
handled as follows (see also Section Mapping of the Rule Language). A Base directive in the presentation syntax becomes an xml:base attribute
[XML-Base] in the XML Document tag. The base IRI specified as the value of that attribute applies to content of the RIF/XML element that deals
with rif:iri constants, namely to relative-IRI content of the <Const type="&rif;iri"> element as well as symbol spaces, loation, and profile.
A collection of Prefix directives in the presentation syntax becomes a DOCTYPE DTD [XML1.0] preceding the RIF-BLD Document and containing a
declaration of an ENTITY for each Prefix directive.

Example 8 (Serializing a RIF-BLD document containing an annotated group).

This example shows a serialization for the document from Example 5. For convenience, the presentation syntax is reproduced at the top, and is
followed by its serialization. The base IRI http://example.com/people# applies to the relative rif:iri constants with content John (twice) and
Fred (once).

Presentation syntax:

Document(
Base(<http://example.com/people#>)
Prefix(cpt <http://example.com/concepts#>)
Prefix(dc <http://purl.org/dc/terms/>)
Prefix(rif <http://www.w3.org/2007/rif#>)
Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)
Prefix(xs <http://www.w3.org/2001/XMLSchema#>)

(* "http://sample.org"^^rif:iri _pd[dc:publisher -> "http://www.w3.org/"^^rif:iri
dc:date -> "2008-04-04"^^xs:date] *)

Group
(

Forall ?item ?deliverydate ?scheduledate ?diffduration ?diffdays (
cpt:reject(<John> ?item) :-

And(cpt:perishable(?item)
cpt:delivered(?item ?deliverydate <John>)
cpt:scheduled(?item ?scheduledate)
?diffduration = External(func:subtract-dateTimes(?deliverydate ?scheduledate))
?diffdays = External(func:days-from-duration(?diffduration))
External(pred:numeric-greater-than(?diffdays 10)))

)

Forall ?item (
cpt:reject(<Fred> ?item) :- cpt:unsolicited(?item)

)
)

)

XML syntax:

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 17 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

<!DOCTYPE Document [
<!ENTITY cpt "http://example.com/concepts#">
<!ENTITY dc "http://purl.org/dc/terms/">
<!ENTITY rif "http://www.w3.org/2007/rif#">
<!ENTITY func "http://www.w3.org/2007/rif-builtin-function#">
<!ENTITY pred "http://www.w3.org/2007/rif-builtin-predicate#">
<!ENTITY xs "http://www.w3.org/2001/XMLSchema#">

]>

<Document
xml:base="http://example.com/people#"
xmlns="http://www.w3.org/2007/rif#"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xs="http://www.w3.org/2001/XMLSchema#">

<payload>
<Group>
<id>

<Const type="&rif;iri">http://sample.org</Const>
</id>
<meta>

<Frame>
<object>

<Const type="&rif;local">pd</Const>
</object>
<slot ordered="yes">

<Const type="&rif;iri">&dc;publisher</Const>
<Const type="&rif;iri">http://www.w3.org/</Const>

</slot>
<slot ordered="yes">

<Const type="&rif;iri">&dc;date</Const>
<Const type="&xs;date">2008-04-04</Const>

</slot>
</Frame>

</meta>
<sentence>
<Forall>

<declare><Var>item</Var></declare>
<declare><Var>deliverydate</Var></declare>
<declare><Var>scheduledate</Var></declare>
<declare><Var>diffduration</Var></declare>
<declare><Var>diffdays</Var></declare>
<formula>

<Implies>
<if>

<And>
<formula>

<Atom>
<op><Const type="&rif;iri">&cpt;perishable</Const></op>
<args ordered="yes"><Var>item</Var></args>

</Atom>
</formula>
<formula>

<Atom>
<op><Const type="&rif;iri">&cpt;delivered</Const></op>
<args ordered="yes">

<Var>item</Var>
<Var>deliverydate</Var>
<Const type="&rif;iri">John</Const>

</args>
</Atom>

</formula>
<formula>

<Atom>
<op><Const type="&rif;iri">&cpt;scheduled</Const></op>
<args ordered="yes">

<Var>item</Var>
<Var>scheduledate</Var>

</args>
</Atom>

</formula>
<formula>

<Equal>
<left><Var>diffduration</Var></left>
<right>

<External>
<content>

<Expr>
<op><Const type="&rif;iri">&func;subtract-dateTimes</Const></op>
<args ordered="yes">

<Var>deliverydate</Var>
<Var>scheduledate</Var>

</args>
</Expr>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 18 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

</content>
</External>

</right>
</Equal>

</formula>
<formula>

<Equal>
<left><Var>diffdays</Var></left>
<right>

<External>
<content>

<Expr>
<op><Const type="&rif;iri">&func;days-from-duration</Const></op>
<args ordered="yes">

<Var>diffduration</Var>
</args>

</Expr>
</content>

</External>
</right>

</Equal>
</formula>
<formula>

<External>
<content>

<Atom>
<op><Const type="&rif;iri">&pred;numeric-greater-than</Const></op>
<args ordered="yes">

<Var>diffdays</Var>
<Const type="&xs;integer">10</Const>

</args>
</Atom>

</content>
</External>

</formula>
</And>

</if>
<then>

<Atom>
<op><Const type="&rif;iri">&cpt;reject</Const></op>
<args ordered="yes">

<Const type="&rif;iri">John</Const>
<Var>item</Var>

</args>
</Atom>

</then>
</Implies>

</formula>
</Forall>

</sentence>
<sentence>
<Forall>

<declare><Var>item</Var></declare>
<formula>

<Implies>
<if>

<Atom>
<op><Const type="&rif;iri">&cpt;unsolicited</Const></op>
<args ordered="yes"><Var>item</Var></args>

</Atom>
</if>
<then>

<Atom>
<op><Const type="&rif;iri">&cpt;reject</Const></op>
<args ordered="yes">

<Const type="&rif;iri">Fred</Const>
<Var>item</Var>

</args>
</Atom>

</then>
</Implies>

</formula>
</Forall>

</sentence>
</Group>

</payload>
</Document>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 19 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

4.3 Mapping from the Presentation Syntax to the XML Syntax

This section defines a normative mapping, χbld, from the presentation syntax to the XML syntax of RIF-BLD. The mapping is given via tables
where each row specifies the mapping of a particular syntactic pattern in the presentation syntax. These patterns appear in the first column of
the tables and the bold-italic symbols represent metavariables. The second column represents the corresponding XML patterns, which may
contain applications of the mapping χbld to these metavariables. When an expression χbld(metavar) occurs in an XML pattern in the right
column of a translation table, it should be understood as a recursive application of χbld to the presentation syntax represented by the
metavariable. The XML syntax result of such an application is substituted for the expression χbld(metavar). A sequence of terms containing
metavariables with subscripts is indicated by an ellipsis. For the subscript m it is understood that m≥1, i.e. the ellipsis indicates at least one term.
For the subscript n it is understood that n≥0, i.e. the ellipsis indicates zero or more terms. A metavariable or a well-formed XML subelement is
marked as optional by appending a bold-italic question mark, ?, on its right.

4.3.1 Mapping of the Condition Language

The χbld mapping from the presentation syntax to the XML syntax of the RIF-BLD Condition Language is specified by the table below. Each row
indicates a translation χbld(Presentation) = XML. The function remove-outer-quotes used in the translation removes enclosing double quotes
from a string and leaves unquoted strings untouched. Since the presentation syntax of RIF-BLD is context sensitive, the mapping must
differentiate between the terms that occur in the position of individuals and the terms that occur as atomic formulas. To this end, in the
translation table, the positional and named-argument terms that occur in the context of atomic formulas are denoted by expressions of the form
pred(...) and the terms that occur as individuals are denoted by expressions of the form func(...). In the table, each metavariable for an
(unnamed) positional argumenti is assumed to be instantiated to values unequal to the instantiations of named arguments namej -> fillerj.
Regarding the last but first row, we assume that shortcuts for constants [RIF-DTB] have already been expanded to their full form
("..."^^symspace).

Presentation Syntax XML Syntax

And (
conjunct1
. . .
conjunctn

)

<And>
<formula>χbld(conjunct1)</formula>
. . .

<formula>χbld(conjunctn)</formula>
</And>

Or (
disjunct1
. . .
disjunctn
)

<Or>
<formula>χbld(disjunct1)</formula>
. . .

<formula>χbld(disjunctn)</formula>
</Or>

Exists
variable1
. . .
variablen (

premise
)

<Exists>
<declare>χbld(variable1)</declare>
. . .

<declare>χbld(variablen)</declare>
<formula>χbld(premise)</formula>

</Exists>

External (
atomexpr

)

<External>
<content>χbld(atomexpr)</content>

</External>

pred (
)

<Atom>
<op>χbld(pred)</op>

</Atom>

pred (
argument1
. . .
argumentm

)

<Atom>
<op>χbld(pred)</op>
<args ordered="yes">

χbld(argument1)
. . .
χbld(argumentm)

</args>
</Atom>

func (
)

<Expr>
<op>χbld(func)</op>

</Expr>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 20 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

func (
argument1
. . .
argumentm

)

<Expr>
<op>χbld(func)</op>
<args ordered="yes">

χbld(argument1)
. . .
χbld(argumentm)

</args>
</Expr>

List (
element1
. . .
elementn

)

<List>
<items ordered="yes">

χbld(element1)
. . .
χbld(elementn)

</items>
</List>

List (
element1
. . .
elementn
|
remainder

)

<List>
<items ordered="yes">

χbld(element1)
. . .
χbld(elementn)

</items>
<rest>χbld(remainder)</rest>

</List>

pred (
name1 -> filler1
. . .
namen -> fillern

)

<Atom>
<op>χbld(pred)</op>
<slot ordered="yes">

<Name>χbld(name1)</Name>
χbld(filler1)

</slot>
. . .

<slot ordered="yes">
<Name>χbld(namen)</Name>
χbld(fillern)

</slot>
</Atom>

func (
name1 -> filler1
. . .
namen -> fillern

)

<Expr>
<op>χbld(func)</op>
<slot ordered="yes">

<Name>χbld(name1)</Name>
χbld(filler1)

</slot>
. . .

<slot ordered="yes">
<Name>χbld(namen)</Name>
χbld(fillern)

</slot>
</Expr>

inst [
key1 -> filler1
. . .
keyn -> fillern

]

<Frame>
<object>χbld(inst)</object>
<slot ordered="yes">

χbld(key1)
χbld(filler1)

</slot>
. . .

<slot ordered="yes">
χbld(keyn)
χbld(fillern)

</slot>
</Frame>

inst # class <Member>
<instance>χbld(inst)</instance>
<class>χbld(class)</class>

</Member>

sub ## super <Subclass>
_{χbld(sub)}

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 21 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

<super>χbld(super)</super>
</Subclass>

left = right <Equal>
<left>χbld(left)</left>
<right>χbld(right)</right>

</Equal>

"unicodestring"^^symspace <Const type="symspace">unicodestring</Const>

?name1 <Var>χbld(name1)</Var>

namei remove-outer-quotes(namei)

4.3.2 Mapping of the Rule Language

The χbld mapping from the presentation syntax to the XML syntax of the RIF-BLD Rule Language is specified by the table below. It extends the
translation table of Section Mapping of the Condition Language. While the Import directive is handled by the presentation-to-XML syntax
mapping, the Prefix and Base directives are not. Instead, these directives should be handled by expanding the associated shortcuts (compact
URIs). Namely, a prefix name declared in a Prefix directive is expanded into the associated IRI, while relative IRIs are completed using the IRI
declared in the Base directive. The mapping χbld applies only to such expanded documents. RIF-BLD also allows other treatments of Prefix and
Base provided that they produce equivalent XML documents. One such treatment is employed in the examples in this document, especially
Example 8. It replaces prefix names with definitions of XML entities as follows. Each Prefix declaration becomes an ENTITY declaration [XML1.0]
within a DOCTYPE DTD attached to the RIF-BLD Document. The Base directive is mapped to the xml:base attribute [XML-Base] in the XML
Document tag. Compact URIs of the form prefix:suffix are then mapped to &prefix;suffix.

Presentation Syntax XML Syntax

Document(
Import(loc1 prfl1?)
. . .

Import(locn prfln?)
group?

)

<Document>
<directive>

<Import>
<location>χbld(loc1)</location>
<profile>χbld(prfl1)</profile>?

</Import>
</directive>
. . .

<directive>
<Import>

<location>χbld(locn)</location>
<profile>χbld(prfln)</profile>?

</Import>
</directive>
<payload>χbld(group)</payload>?

</Document>

Group(
clause1
. . .
clausen

)

<Group>
<sentence>χbld(clause1)</sentence>
. . .

<sentence>χbld(clausen)</sentence>
</Group>

Forall
variable1
. . .
variablen (

rule
)

<Forall>
<declare>χbld(variable1)</declare>
. . .

<declare>χbld(variablen)</declare>
<formula>χbld(rule)</formula>

</Forall>

conclusion :- condition <Implies>
<if>χbld(condition)</if>
<then>χbld(conclusion)</then>

</Implies>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 22 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

4.3.3 Mapping of Annotations

The χbld mapping from RIF-BLD annotations in the presentation syntax to the XML syntax is specified by the table below. It extends the
translation tables of Sections Mapping of the Condition Language and Mapping of the Rule Language. The metavariable Typetag in the
presentation and XML syntaxes stands for any of the class names And, Or, External, Document, or Group, and Quantifier for Exists or Forall.
The dollar sign, $, stands for any of the binary infix operator names #, ##, =, or :-, while Binop stands for their respective class names Member,
Subclass, Equal, or Implies. Again, each metavariable for an (unnamed) positional argumenti is assumed to be instantiated to values unequal
to the instantiations of named arguments namej -> fillerj.

Presentation Syntax XML Syntax

(* iriconst? frameconj? *)
Typetag (e1 . . . en)

<Typetag>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
e1' . . . en'

</Typetag>

where e1', . . ., en' are defined by the equation
χbld(Typetag(e1 . . . en)) = <Typetag>e1' . . . en'</Typetag>

(* iriconst? frameconj? *)
Quantifier variable1 . . . variablen (formula)

<Quantifier>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
<declare>χbld(variable1)</declare>
. . .
<declare>χbld(variablen)</declare>
<formula>χbld(formula)</formula>

</Quantifier>

(* iriconst? frameconj? *)
pred (

argument1
. . .
argumentn

)

<Atom>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
<op>χbld(pred)</op>
<args ordered="yes">

χbld(argument1)
. . .
χbld(argumentn)

</args>
</Atom>

(* iriconst? frameconj? *)
func (

argument1
. . .
argumentn

)

<Expr>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
<op>χbld(func)</op>
<args ordered="yes">

χbld(argument1)
. . .
χbld(argumentn)

</args>
</Expr>

(* iriconst? frameconj? *)
List (

element1
. . .
elementn

)

<List>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
<items ordered="yes">

χbld(element1)
. . .
χbld(elementn)

</items>
</List>

(* iriconst? frameconj? *)
List (

element1
. . .
elementn
|
remainder

)

<List>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
<items ordered="yes">

χbld(element1)
. . .
χbld(elementn)

</items>
<rest>χbld(remainder)</rest>

</List>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 23 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

(* iriconst? frameconj? *)
pred (

name1 -> filler1
. . .
namen -> fillern

)

<Atom>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
<op>χbld(pred)</op>
<slot ordered="yes">

<Name>χbld(name1)</Name>
χbld(filler1)

</slot>
. . .

<slot ordered="yes">
<Name>χbld(namen)</Name>
χbld(fillern)

</slot>
</Atom>

(* iriconst? frameconj? *)
func (

name1 -> filler1
. . .
namen -> fillern

)

<Expr>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
<op>χbld(func)</op>
<slot ordered="yes">

<Name>χbld(name1)</Name>
χbld(filler1)

</slot>
. . .

<slot ordered="yes">
<Name>χbld(namen)</Name>
χbld(fillern)

</slot>
</Expr>

(* iriconst? frameconj? *)
inst [

key1 -> filler1
. . .
keyn -> fillern

]

<Frame>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
<object>χbld(inst)</object>
<slot ordered="yes">

χbld(key1)
χbld(filler1)

</slot>
. . .

<slot ordered="yes">
χbld(keyn)
χbld(fillern)

</slot>
</Frame>

(* iriconst? frameconj? *)
e1 $ e2

<Binop>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
e1' e2'

</Binop>

where Binop, e1', e2' are defined by the equation
χbld(e1 $ e2) = <Binop>e1' e2'</Binop>

(* iriconst? frameconj? *)
unicodestring^^symspace

<Const type="symspace">
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?
unicodestring

</Const>

(* iriconst? frameconj? *)
?name1

<Var>
<id>χbld(iriconst)</id>?
<meta>χbld(frameconj)</meta>?

χbld(name1)
</Var>

5 Conformance Clauses

RIF-BLD does not require or expect conformant systems to implement the RIF-BLD presentation syntax. Instead, conformance is described in
terms of semantics-preserving transformations between the native syntax of a compliant system and the XML syntax of RIF-BLD.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 24 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

Let Τ be a set of datatypes and symbol spaces that includes the datatypes specified in [RIF-DTB], and the symbol spaces rif:iri, and
rif:local. Suppose Ε is a coherent set of external schemas that includes the built-ins listed in [RIF-DTB]. We say that a formula φ is a BLDΤ,Ε
formula iff

• it is a well-formed BLD formula,
• all datatypes and symbol spaces used in φ are in Τ, and
• all externally defined terms used in φ are instantiations of external schemas from Ε.

A RIF processor is a conformant BLDΤ,Ε consumer iff it implements a semantics-preserving mapping, μ, from the set of all BLDΤ,Ε formulas to
the language L of the processor (μ does not need to be an "onto" mapping).

Formally, this means that for any pair φ, ψ of BLDΤ,Ε formulas for which φ |=BLD ψ is defined, φ |=BLD ψ iff μ(φ) |=L μ(ψ). Here |=BLD denotes the
logical entailment in RIF-BLD and |=L is the logical entailment in the language L of the RIF processor.

A RIF processor is a conformant BLDΤ,Ε producer iff it implements a semantics-preserving mapping, ν, from the language L of the processor to
the set of all BLDΤ,Ε formulas (ν does not need to be an "onto" mapping).

Formally, this means that for any pair φ, ψ of formulas in L for which φ |=L ψ is defined, φ |=L ψ iff ν(φ) |=BLD ν(ψ).

An admissible document is one which conforms to all the syntactic constraints of RIF-BLD, including ones that cannot be checked by an XML
Schema validator (cf. Definition Admissible BLD document in XML syntax).

The above definitions are specializations to BLD of the general conformance clauses defined in the RIF framework for logic dialects [RIF-FLD]. The
following clauses are further restrictions that are specific to RIF-BLD.

RIF-BLD specific clauses

• Conformant BLD producers and consumers are required to support only the entailments of the form φ |=BLD ψ, where ψ is a closed RIF
condition formula, i.e., a RIF condition in which every variable, ?V, is in the scope of a quantifier of the form Exists ?V. In addition,
conformant BLD producers and consumers should preserve all annotations where possible.

• A conformant BLD consumer must reject any document containing features it does not support.
• A conformant BLD producer is a conformant BLDΤ,Ε producer, which produces documents that include only the datatypes and

externals that are required by BLD.

RIF-BLD supports a wide variety of syntactic forms for terms and formulas, which creates infrastructure for exchanging syntactically diverse rule
languages. It is important to realize, however, that the above conformance statements make it possible for systems that do not support some of
the syntax directly to still support it through syntactic transformations. For instance, disjunctions in rule premises can be eliminated through a
standard transformation, such as replacing p :- Or(q r) with a pair of rules p :- q, p :- r. Terms with named arguments can be reduced
to positional terms by ordering the arguments by their names and incorporating the ordered argument names into the predicate name. For
instance, p(bb->1 aa->2) can be represented as p_aa_bb(2 1).

6 RIF-BLD as a Specialization of the RIF Framework for Logic Dialects [RIF-FLD]

This normative section describes RIF-BLD by specializing RIF-FLD. The reader is assumed to be familiar with RIF-FLD as described in RIF
framework for logic dialects [RIF-FLD]. The reader who is not interested in how RIF-BLD is derived from the framework can skip this section.

6.1 The Presentation Syntax of RIF-BLD as a Specialization of RIF-FLD

This section defines the precise relationship between the presentation syntax of RIF-BLD and the syntactic framework of RIF-FLD.

The presentation syntax of the RIF Basic Logic Dialect is defined by specialization from the presentation syntax of the RIF Syntactic Framework for
Logic Dialects described in [RIF-FLD]. Section Syntax of a RIF Dialect as a Specialization of the RIF Framework in [RIF-FLD] lists the parameters of
the syntactic framework in mathematical English, which we will now specialize for RIF-BLD.

1. Extension points.

All extension points of RIF-FLD are removed (specialized by replacing them with zero objects).

2. Alphabet.

The alphabet of the RIF-BLD presentation syntax is the alphabet of RIF-FLD with the symbols Dialect, Neg, and Naf excluded.

3. Assignment of signatures to each constant and variable symbol.

The signature set of RIF-BLD contains the following signatures:

a. Basic
▪ individual{ }
▪ atomic{ }

The signature individual{ } represents the context in which individual objects (but not atomic formulas) can appear.
The signature atomic{ } represents the context where atomic formulas can occur.

b. Signatures for lists
▪ The signature list for closed lists. It has the following arrow expressions: () ⇒ individual, (individual) ⇒

individual, (individual individual) ⇒ individual, ...
▪ The signature openlist for open lists (that have tails). It has the following arrow expressions: (individual individual)

⇒ individual, (individual individual individual) ⇒ individual, ...
c. Signatures for functions, predicates, and external functions and predicates

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 25 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-syntactic-framework
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-syntactic-framework
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-dialect-syntax

▪ Function signature f. This signature has the arrow expressions for positional functions: () ⇒ individual, (individual)
⇒ individual, (individual individual) ⇒ individual, ..., plus the arrow expressions for functions with named
arguments: (s1->individual ... sk->individual) ⇒ individual}, for all k>0 and all s1, ..., sk ∈ ArgNames.

▪ Predicate signature p. This signature has the arrow expressions for positional predicates: () ⇒ atomic, (individual) ⇒
atomic, (individual individual) ⇒ atomic, ..., plus the arrow expressions for predicates with named arguments:
(s1->individual ... sk->individual) ⇒ atomic}, for all k>0 and all s1, ..., sk ∈ ArgNames.

In the RIF-BLD specialization of RIF-FLD, the argument names s1, ..., sk must be pairwise distinct.

d. Every symbol in Const has exactly one signature: individual, f, or p.

A constant cannot have the signature atomic -- only complex terms can have such signatures. Thus, by itself a symbol, s, cannot
be a proposition in RIF-BLD, but a term of the form s() can.

According to the above, each constant symbol in RIF-BLD can be either an individual, a function, or a predicate. However, the
same function or predicate symbol (normal or external) can occur with different numbers of arguments in different places. Also,
the additional restrictions spelled out below ensure that the same symbol cannot represent both an externally defined predicate
or function and a regular predicate or function.

e. The constant symbols that correspond to RIF datatypes (XML Schema datatypes, rdf:XMLLiteral, rdf:PlainLiteral, etc.) all
have the signature individual in RIF-BLD.

f. The symbols of type rif:iri and rif:local can have the following signatures in RIF-BLD: individual, f, or p.
g. All variables are associated with signature individual, so they can range only over individuals.
h. The signature for equality is ={(individual individual) ⇒ atomic}.

This means that equality can compare only those terms whose signature is individual; it cannot compare predicate or function
symbols. Equality terms are also not allowed to occur inside other terms, since the above signature implies that any term of the
form t = s has signature atomic and not individual.

i. The frame signature, ->, is ->{(individual individual individual) ⇒ atomic}.

Note that this precludes the possibility that a frame term might occur as an argument to a predicate, a function, or inside some
other term.

j. The membership signature, #, is #{(individual individual) ⇒ atomic}.

Note that this precludes the possibility that a membership term might occur as an argument to a predicate, a function, or inside
some other term.

k. The signature for the subclass relationship is ##{(individual individual) ⇒ atomic}.

As with frames and membership terms, this precludes the possibility that a subclass term might occur inside some other term.

RIF-BLD uses no special syntax for declaring signatures. Instead, the rule author specifies signatures contextually. That is, since RIF-BLD
requires that each symbol is associated with a unique signature, the signature is determined from the context in which the symbol is
used. If a symbol is used in more than one context, the parser must treat this as a syntax error. If no errors are found, all terms and
atomic formulas are guaranteed to be well-formed. Thus, signatures are not part of the RIF-BLD language, and individual, atomic, list,
etc., are not reserved keywords.

4. Supported types of terms.
◦ RIF-BLD supports the following types of terms defined by the syntactic framework (see the Section Terms of [RIF-FLD]):

a. constants
b. variables
c. positional
d. with named arguments
e. equality
f. frame

g. membership
h. subclass
i. list
j. external
k. formula

◦ Compared to RIF-FLD, terms (both positional and with named arguments) have significant restrictions, which are intended to keep
BLD relatively simple.

▪ Variables: The signature for the variable symbols does not permit them to occur in the context of predicates, functions, or
formulas. In particular, in the RIF-BLD specialization of RIF-FLD, a variable is not an atomic formula.

▪ Symbols as atomic formulas: A symbol cannot be an atomic formula by itself. That is, if s ∈ Const then s is not a well-
formed atomic formula. However, s() can be an atomic formula. Note that Propositional Logic can thus be expressed in
RIF-BLD using zero-argument predicate formulas.

▪ Functions and predicates: Signatures permit only constant symbols to occur in the context of functions or predicate.
Indeed, RIF-BLD signatures ensure that all variables have the signature individual{ } and all other terms, except for the
constants from Const, can have either the signature individual{ } or atomic{ }. Therefore, if t is a (non-Const) term
then t(...) is not a well-formed term.

▪ External:
▪ A term, t, may appear as an external term or an external atomic formula (i.e., in the context External(t)) if and

only if t is an instantiation of an externally defined schema from the coherent set of external schemas associated
with the language.

It thus follows that a predicate or a function symbol, s, that occurs in an external term External(s(...)) cannot
also occur as a non-external symbol.

▪ In an externally defined term, External(t), the subterm t can be only a positional or a named-argument term of
the form s(...) where s has the signature f or p. Compared to RIF-FLD, this restricts t so that it cannot be a
constant, a frame, an equality, or a classification term. RIF-FLD's two-argument form of External is not supported
in RIF-BLD either.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 26 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#rif-xmlliteral-space
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#rdf-PlainLiteral-space
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#rif-iri-space
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#rif-local-space
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-terms
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set

▪ Formula: The formula terms are restricted, as specified in Supported formulas below. In particular, they cannot appear as
arguments to predicates, functions, etc.

5. No aggregate terms or module terms are allowed. (In RIF-FLD, formula terms correspond to compound formulas that involve logical
connectives and quantifiers.)

6. Required symbol spaces.

RIF-BLD requires the symbol spaces defined in Section Constants, Symbol Spaces, and Datatypes of [RIF-DTB].

7. Supported formulas.

RIF-BLD supports the following types of formulas (see Well-formed Terms and Formulas in [RIF-FLD] for the definitions):

◦ RIF-BLD condition

A RIF-BLD condition is an atomic formula, and external atomic formula, or a conjunctive or disjunctive combination of such atomic
formulas. All these formulas and their combinations can be optionally preceded with existential quantifiers.

◦ RIF-BLD rule

A RIF-BLD rule is a universally quantified RIF-FLD rule with the following restrictions:

▪ The conclusion of the rule is an atomic formula or a conjunction of atomic formulas.
▪ None of the atomic formulas mentioned in the rule conclusion is externally defined (i.e., cannot have the form

External(...)).
▪ The premise of the rule is a RIF-BLD condition.
▪ All free (non-quantified) variables in the rule must be quantified with Forall outside of the rule (i.e.,

Forall ?vars (conclusion :- premise)).
◦ Universal fact

A universal fact is a universally quantified atomic formula with no free variables.

◦ RIF-BLD group

A RIF-BLD group is a RIF-FLD group that contains only RIF-BLD rules, universal facts, variable-free rule implications, variable-free
atomic formulas, and RIF-BLD groups.

◦ RIF-BLD document

A RIF-BLD document is a RIF-FLD document that consists of directives and a RIF-BLD group formula. There is no Dialect or
Module directives, and the Import(<loc>) directive (with one argument) can import RIF-BLD documents only. Here loc must be a
Unicode character sequence that forms an IRI. There are no BLD-specific restrictions on the two-argument directive Import
except that the second argument must be a Unicode sequence of characters of the form <loc>, where loc is an IRI.

Negation (Neg and Naf) is not allowed in RIF-BLD rules: neither in rule conclusions nor in premises.

6.2 The Semantics of RIF-BLD as a Specialization of RIF-FLD

This normative section defines the precise relationship between the semantics of RIF-BLD and the semantic framework of RIF-FLD. Specification
of the semantics that does not rely on RIF-FLD is given in Section Direct Specification of RIF-BLD Semantics.

The semantics of the RIF Basic Logic Dialect is defined by specialization from the semantics of the semantic framework for logic dialects of RIF.
Section Semantics of a RIF Dialect as a Specialization of the RIF Framework in [RIF-FLD] lists the parameters of the semantic framework that can
be specialized. Thus, for RIF-BLD, we need to look at the following parameters:

• The effect of the syntax.

RIF-BLD does not support negation. This is the only obvious simplification with respect to RIF-FLD as far as the semantics is concerned.
The restrictions on the signatures of symbols in RIF-BLD do not affect the semantics in a significant way.

• Truth values.

The set TV of truth values in RIF-BLD consists of two values, t and f, such that f <t t.

• Datatypes.

RIF-BLD supports the datatypes listed in Section Datatypes of [RIF-DTB].

• Logical entailment.

Recall that logical entailment in RIF-FLD is defined with respect to an unspecified set of intended semantic structures and that dialects of
RIF must make this notion concrete. For RIF-BLD, this set is defined as the set of all models.

• Semantic multi-structures.

Since RIF-BLD has no modules (i.e., all formulas are in the same single module), a semantic multi-structure Î has the form (Îren, {I}), i.e.,
Îset (in RIF-BLD multistructures) has only one semantic structure; the modularization mapping Îmap plays no role and can be omitted.

• Import directive.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 27 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-fld-20121211/#ref-aggregate-term
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#ref-module-term
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-constants
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-fld-wff
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-fld-semantic-framework
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-rif-dialect-semantics
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#sec-data-types

The semantics of the two-argument Import directive is given in [RIF-RDF+OWL]. The semantics of the one-argument directive is the
same as in RIF-FLD.

6.3 The XML Serialization of RIF-BLD as a Specialization of RIF-FLD

Section Mapping from the RIF-FLD Presentation Syntax to the XML Syntax of [RIF-FLD] defines a mapping, χfld, from the presentation syntax of
RIF-FLD to its XML serialization. When restricted to well-formed RIF-BLD formulas, χfld coincides with the BLD-to-XML mapping χbld. In this way,
the XML serialization of RIF-BLD is a specialization of the RIF-FLD XML Serialization Framework defined in [RIF-FLD].

6.4 RIF-BLD Conformance as a Specialization of RIF-FLD

If T is a set of datatypes and symbol spaces and E a coherent set of external schemas for functions and predicates, then the general definition of
conformance in RIF-FLD yields the notion of conformant BLDT,E producers and consumers.

BLD further requires strictness, i.e., that a conformant producer produces only the documents where T are precisely the datatypes/symbol spaces
and E are the external schemas specified in [RIF-DTB], and that a conformant consumer consumes only such documents.

7 Acknowledgements

This document is the product of the Rules Interchange Format (RIF) Working Group (see below) whose members deserve recognition for their time
and commitment. The editors extend special thanks to: Jos de Bruijn, Gary Hallmark, Stella Mitchell, Leora Morgenstern, Adrian Paschke, Axel
Polleres, and Dave Reynolds, for their thorough reviews and insightful discussions; the working group chairs, Chris Welty and Christian de Sainte-
Marie, for their invaluable technical help and inspirational leadership; and W3C staff contact Sandro Hawke, a constant source of ideas, help, and
feedback.

The regular attendees at meetings of the Rule Interchange Format (RIF) Working Group at the time of the publication were: Adrian Paschke (Freie
Universitaet Berlin), Axel Polleres (DERI), Chris Welty (IBM), Christian de Sainte Marie (IBM), Dave Reynolds (HP), Gary Hallmark (ORACLE), Harold
Boley (NRC), Jos de Bruijn (FUB), Leora Morgenstern (IBM), Michael Kifer (Stony Brook), Mike Dean (BBN), Sandro Hawke (W3C/MIT), and Stella
Mitchell (IBM). We would also like to thank past members of the working group, Allen Ginsberg, David Hirtle, Igor Mozetic, and Paula-Lavinia
Patranjan.

8 References

8.1 Normative References

[RDF-CONCEPTS]
Resource Description Framework (RDF): Concepts and Abstract Syntax, Klyne G., Carroll J. (Editors), W3C Recommendation, 10 February
2004, http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/. Latest version available at http://www.w3.org/TR/rdf-concepts/.

[RFC-3066]
RFC 3066 - Tags for the Identification of Languages, H. Alvestrand, IETF, January 2001. This document is at http://www.ietf.org/rfc/rfc3066.

[RFC-3987]
RFC 3987 - Internationalized Resource Identifiers (IRIs), M. Duerst and M. Suignard, IETF, January 2005. This document is http://www.ietf.org/
rfc/rfc3987.txt.

[RIF-Core]
RIF Core Dialect Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, Dave Reynolds, eds. W3C Proposed Edited
Recommendation, 11 December 2012, http://www.w3.org/TR/2012/PER-rif-core-20121211/. Latest version available at http://www.w3.org/TR/
rif-core/.

[RIF-DTB]
RIF Datatypes and Built-Ins 1.0 Axel Polleres, Harold Boley, Michael Kifer, eds. W3C Proposed Edited Recommendation, 11 December 2012,
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/. Latest version available at http://www.w3.org/TR/rif-dtb/.

[RIF-FLD]
RIF Framework for Logic Dialects Harold Boley, Michael Kifer, eds. W3C Proposed Edited Recommendation, 11 December 2012,
http://www.w3.org/TR/2012/PER-rif-fld-20121211/. Latest version available at http://www.w3.org/TR/rif-fld/.

[RIF-PRD]
RIF Production Rule Dialect Christian de Sainte Marie, Gary Hallmark, Adrian Paschke, eds. W3C Proposed Edited Recommendation, 11
December 2012, http://www.w3.org/TR/2012/PER-rif-prd-20121211/. Latest version available at http://www.w3.org/TR/rif-prd/.

[RIF-RDF+OWL]
RIF RDF and OWL Compatibility Jos de Bruijn, Chris Welty, eds. W3C Proposed Edited Recommendation, 11 December 2012,
http://www.w3.org/TR/2012/PER-rif-rdf-owl-20121211/. Latest version available at http://www.w3.org/TR/rif-rdf-owl/.

[XML1.0]
Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C Recommendation, World Wide Web Consortium, 16 August 2006, edited in
place 29 September 2006. This version is http://www.w3.org/TR/2006/REC-xml-20060816/.

[XML-Base]
XML Base, W3C Recommendation, World Wide Web Consortium, 27 June 2001. This version is http://www.w3.org/TR/2001/REC-
xmlbase-20010627/. The latest version is available at http://www.w3.org/TR/xmlbase/.

[XML Schema Datatypes]
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. David Peterson, Shudi Gao, Ashok Malhotra, C. M. Sperberg-McQueen,
and Henry S. Thompson, eds. W3C Recommendation, 5 April 2012, http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/. Latest
version available as http://www.w3.org/TR/xmlschema11-2/.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 28 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-translate-fld-to-xml
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-fld-specialization-framework
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/#def-external-schema-set
http://www.w3.org/TR/2012/PER-rif-fld-20121211/#sec-conformance
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-concepts/
http://tools.ietf.org/html/rfc3066
http://www.ietf.org/rfc/rfc3066
http://tools.ietf.org/html/rfc3987
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2012/PER-rif-core-20121211/
http://www.w3.org/TR/2012/PER-rif-core-20121211/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/
http://www.w3.org/TR/2012/PER-rif-dtb-20121211/
http://www.w3.org/TR/rif-dtb/
http://www.w3.org/TR/2012/PER-rif-fld-20121211/
http://www.w3.org/TR/2012/PER-rif-fld-20121211/
http://www.w3.org/TR/rif-fld/
http://www.w3.org/TR/2012/PER-rif-prd-20121211/
http://www.w3.org/TR/2012/PER-rif-prd-20121211/
http://www.w3.org/TR/rif-prd/
http://www.w3.org/TR/2012/PER-rif-rdf-owl-20121211/
http://www.w3.org/TR/2012/PER-rif-rdf-owl-20121211/
http://www.w3.org/TR/rif-rdf-owl/
http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/2001/REC-xmlbase-20010627/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/2009/CR-xmlschema11-2-20090430/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/xmlschema11-2/

8.2 Informational References

[ANF01]
Normal Form Conventions for XML Representations of Structured Data, Henry S. Thompson. October 2001. Available at
http://www.ltg.ed.ac.uk/~ht/normalForms.html.

[AG08]
The Expressive Power of SPARQL, Renzo Angles and Claudio Gutierrez. International Semantic Web Conference 2008: 114-129

[AP07]
From SPARQL to rules (and back), Axel Polleres. WWW 2007: 787-796

[CG]
Information Processing, John Sowa, in Mind and Machine. JReading, MA: Addison-Wesley Publ., 1984.

[CL73]
Symbolic Logic and Mechanical Theorem Proving, C.L. Chang and R.C.T. Lee. Academic Press, 1973.

[CL07]
ISO/IEC 24707:2007. The ISO Common Logic Standard. Available through http://common-logic.org

[CURIE]
CURIE Syntax 1.0, S. McCarron, M. Birbeck, Editors, W3C Working Group Note, 16 December 2010, http://www.w3.org/TR/2010/NOTE-
curie-20101216 . Latest version available at http://www.w3.org/TR/curie.

[Enderton01]
A Mathematical Introduction to Logic, Second Edition, H. B. Enderton. Academic Press, 2001.

[KIF]
Knowledge Interchange Format, M. Genesereth, et al. 1998. Available at http://logic.stanford.edu/kif/dpans.html

[KLW95]
Logical foundations of object-oriented and frame-based languages, M. Kifer, G. Lausen, J. Wu. Journal of ACM, July 1995, pp. 741--843.

[Mendelson97]
Introduction to Mathematical Logic, Fourth Edition, E. Mendelson. Chapman & Hall, 1997.

[OWL-Reference]
OWL Web Ontology Language Reference, M. Dean, G. Schreiber, Editors, W3C Recommendation, 10 February 2004. Latest version available
at http://www.w3.org/TR/owl-ref/.

[RDFSYN04]
RDF/XML Syntax Specification (Revised), Dave Beckett, Editor, W3C Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-
rdf-syntax-grammar-20040210/. Latest version available at http://www.w3.org/TR/rdf-syntax-grammar/.

[RIF-UCR]
RIF Use Cases and Requirements Adrian Paschke, David Hirtle, Allen Ginsberg, Paula-Lavinia Patranjan, Frank McCabe, eds. W3C Working
Draft, 18 December 2008, http://www.w3.org/TR/2008/WD-rif-ucr-20081218/. Latest version available at http://www.w3.org/TR/rif-ucr/.

[Steele90]
Common LISP: The Language, Second Edition, G. L. Steele Jr. Digital Press, 1990.

[TRT03]
Object-Oriented RuleML: User-Level Roles, URI-Grounded Clauses, and Order-Sorted Terms, H. Boley. Springer LNCS 2876, Oct. 2003, pp.
1-16. Available at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=5764336&article=19&fd=pdf.

[URD08]
Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension, J. Zhao, H. Boley. 4th Int’l Workshop on Uncertainty
Reasoning for the Semantic Web (URSW 2008). Available at http://c4i.gmu.edu/ursw/2008/papers/URSW2008_F9_ZhaoBoley.pdf.

[vEK76]
The semantics of predicate logic as a programming language, M. van Emden and R. Kowalski. Journal of the ACM 23 (1976), pp. 733-742.

9 Appendix: XML Schema for RIF-BLD

The namespace of RIF is "http://www.w3.org/2007/rif#".

XML schemas for the RIF-BLD sublanguages are defined below and are also available at http://www.w3.org/2010/rif-schema/bld/ with additional
examples.

9.1 Condition Language

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns="http://www.w3.org/2007/rif#"
targetNamespace="http://www.w3.org/2007/rif#"
elementFormDefault="qualified"

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 29 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.ltg.ed.ac.uk/~ht/normalForms.html
http://common-logic.org
http://www.w3.org/TR/2010/NOTE-curie-20101216
http://www.w3.org/TR/2010/NOTE-curie-20101216
http://www.w3.org/TR/2010/NOTE-curie-20101216
http://www.w3.org/TR/curie
http://logic.stanford.edu/kif/dpans.html
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/2008/WD-rif-ucr-20081218/
http://www.w3.org/TR/2008/WD-rif-ucr-20081218/
http://www.w3.org/TR/rif-ucr/
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=5764336&article=19&fd=pdf
http://c4i.gmu.edu/ursw/2008/papers/URSW2008_F9_ZhaoBoley.pdf
http://www.w3.org/2007/rif
http://www.w3.org/2010/rif-schema/bld/

version="Id: BLDCond.xsd, v. 1.6, 2010-05-08, dhirtle/hboley">

<xs:import namespace='http://www.w3.org/XML/1998/namespace'
schemaLocation='http://www.w3.org/2001/xml.xsd'/>

<xs:annotation>
<xs:documentation>
This is the XML schema for the Condition Language as defined by
the Last Call Draft of the RIF Basic Logic Dialect.

The schema is based on the following EBNF for the RIF-BLD Condition Language:

FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |
IRIMETA? 'Or' '(' FORMULA* ')' |
IRIMETA? 'Exists' Var+ '(' FORMULA ')' |
ATOMIC |
IRIMETA? 'External' '(' Atom ')'

ATOMIC ::= IRIMETA? (Atom | Equal | Member | Subclass | Frame)
Atom ::= UNITERM
UNITERM ::= Const '(' (TERM* | (Name '->' TERM)*) ')'
Equal ::= TERM '=' TERM
Member ::= TERM '#' TERM
Subclass ::= TERM '##' TERM
Frame ::= TERM '[' (TERM '->' TERM)* ']'
TERM ::= IRIMETA? (Const | Var | Expr | List | 'External' '(' Expr ')')
Expr ::= UNITERM
List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT
Var ::= '?' Name
Name ::= NCName | '"' UNICODESTRING '"'
SYMSPACE ::= ANGLEBRACKIRI | CURIE

IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'

</xs:documentation>
</xs:annotation>

<xs:group name="FORMULA">
<!--

FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |
IRIMETA? 'Or' '(' FORMULA* ')' |
IRIMETA? 'Exists' Var+ '(' FORMULA ')' |
ATOMIC |
IRIMETA? 'External' '(' Atom ')'

-->
<xs:choice>

<xs:element ref="And"/>
<xs:element ref="Or"/>
<xs:element ref="Exists"/>
<xs:group ref="ATOMIC"/>
<xs:element name="External" type="External-FORMULA.type"/>

</xs:choice>
</xs:group>

<xs:complexType name="External-FORMULA.type">
<!-- sensitive to FORMULA (Atom) context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="content" type="content-FORMULA.type"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="content-FORMULA.type">
<!-- sensitive to FORMULA (Atom) context-->
<xs:sequence>

<xs:element ref="Atom"/>
</xs:sequence>

</xs:complexType>

<xs:element name="And">
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="formula" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Or">
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="formula" minOccurs="0" maxOccurs="unbounded"/>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 30 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Exists">
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="1" maxOccurs="unbounded"/>
<xs:element ref="formula"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="formula">
<xs:complexType>

<xs:sequence>
<xs:group ref="FORMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="declare">
<xs:complexType>

<xs:sequence>
<xs:element ref="Var"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="ATOMIC">
<!--

ATOMIC ::= IRIMETA? (Atom | Equal | Member | Subclass | Frame)
-->
<xs:choice>

<xs:element ref="Atom"/>
<xs:element ref="Equal"/>
<xs:element ref="Member"/>
<xs:element ref="Subclass"/>
<xs:element ref="Frame"/>

</xs:choice>
</xs:group>

<xs:element name="Atom">
<!--

Atom ::= UNITERM
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="UNITERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="UNITERM">
<!--

UNITERM ::= Const '(' (TERM* | (Name '->' TERM)*) ')'
-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="op"/>
<xs:choice>

<xs:element ref="args" minOccurs="0" maxOccurs="1"/>
<xs:element name="slot" type="slot-UNITERM.type" minOccurs="0" maxOccurs="unbounded"/>

</xs:choice>
</xs:sequence>

</xs:group>

<xs:element name="op">
<xs:complexType>

<xs:sequence>
<xs:element ref="Const"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="args">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>

</xs:complexType>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 31 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

</xs:element>

<xs:complexType name="slot-UNITERM.type">
<!-- sensitive to UNITERM (Name) context-->
<xs:sequence>

<xs:element ref="Name"/>
<xs:group ref="TERM"/>

</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>

</xs:complexType>

<xs:element name="Equal">
<!--

Equal ::= TERM '=' TERM
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="left"/>
<xs:element ref="right"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="left">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="right">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Member">
<!--

Member ::= TERM '#' TERM
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="instance"/>
<xs:element ref="class"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Subclass">
<!--

Subclass ::= TERM '##' TERM
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="sub"/>
<xs:element ref="super"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="instance">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="class">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="sub">

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 32 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

<xs:complexType>
<xs:sequence>

<xs:group ref="TERM"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="super">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Frame">
<!--

Frame ::= TERM '[' (TERM '->' TERM)* ']'
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="object"/>
<xs:element name="slot" type="slot-Frame.type" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="object">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="slot-Frame.type">
<!-- sensitive to Frame (TERM) context-->
<xs:sequence>

<xs:group ref="TERM"/>
<xs:group ref="TERM"/>

</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>

</xs:complexType>

<xs:group name="TERM">
<!--

TERM ::= IRIMETA? (Const | Var | Expr | List | 'External' '(' Expr ')')
-->

<xs:choice>
<xs:element ref="Const"/>
<xs:element ref="Var"/>
<xs:element ref="Expr"/>
<xs:element ref="List"/>
<xs:element name="External" type="External-TERM.type"/>

</xs:choice>
</xs:group>

<xs:element name="List">
<!--

List ::= 'List' '(' TERM* ')' | 'List' '(' TERM+ '|' TERM ')'
rewritten as

List ::= 'List' '(' LISTELEMENTS? ')'
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:group ref="LISTELEMENTS" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="LISTELEMENTS">
<!--

LISTELEMENTS ::= TERM+ ('|' TERM)?
-->
<xs:sequence>

<xs:element ref="items"/>
<xs:element ref="rest" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:group>

<xs:element name="items">

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 33 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

<xs:complexType>
<xs:sequence>

<xs:group ref="TERM" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="ordered" type="xs:string" fixed="yes"/>

</xs:complexType>
</xs:element>

<xs:element name="rest">
<xs:complexType>

<xs:sequence>
<xs:group ref="TERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="External-TERM.type">
<!-- sensitive to TERM (Expr) context-->
<xs:sequence>

<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element name="content" type="content-TERM.type"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="content-TERM.type">
<!-- sensitive to TERM (Expr) context-->
<xs:sequence>

<xs:element ref="Expr"/>
</xs:sequence>

</xs:complexType>

<xs:element name="Expr">
<!--

Expr ::= UNITERM
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="UNITERM"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Const">
<!--

Const ::= '"' UNICODESTRING '"^^' SYMSPACE | CONSTSHORT
-->
<xs:complexType mixed="true">

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="type" type="xs:anyURI" use="required"/>
<xs:attribute ref="xml:lang"/>

</xs:complexType>
</xs:element>

<xs:element name="Name" type="xs:string">
<!--

Name ::= NCName | '"' UNICODESTRING '"'
... i.e., 'Name' stands for either the NCName string or the UNICODESTRING with the outer quotes stripped off.

-->
</xs:element>

<xs:element name="Var">
<!--

Var ::= '?' Name
-->
<xs:complexType mixed="true">

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:group name="IRIMETA">
<!--

IRIMETA ::= '(*' IRICONST? (Frame | 'And' '(' Frame* ')')? '*)'
-->
<xs:sequence>

<xs:element ref="id" minOccurs="0" maxOccurs="1"/>
<xs:element ref="meta" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:group>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 34 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

<xs:element name="id">
<xs:complexType>

<xs:sequence>
<xs:element name="Const" type="IRICONST.type"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="meta">
<xs:complexType>
<xs:choice>

<xs:element ref="Frame"/>
<xs:element name="And" type="And-meta.type"/>

</xs:choice>
</xs:complexType>

</xs:element>

<xs:complexType name="And-meta.type">
<!-- sensitive to meta (Frame) context-->

<xs:sequence>
<xs:element name="formula" type="formula-meta.type" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="formula-meta.type">
<!-- sensitive to meta (Frame) context-->
<xs:sequence>

<xs:element ref="Frame"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="IRICONST.type" mixed="true">
<!-- sensitive to location/id context-->
<xs:sequence/>
<xs:attribute name="type" type="xs:anyURI" use="required" fixed="http://www.w3.org/2007/rif#iri"/>

</xs:complexType>

</xs:schema>

9.2 Rule Language

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xml="http://www.w3.org/XML/1998/namespace"
xmlns="http://www.w3.org/2007/rif#"
targetNamespace="http://www.w3.org/2007/rif#"
elementFormDefault="qualified"
version="Id: BLDRule.xsd, v. 1.6, 2010-02-02, dhirtle/hboley">

<xs:annotation>
<xs:documentation>
This is the XML schema for the Rule Language as defined by
the Last Call Draft of the RIF Basic Logic Dialect.

The schema is based on the following EBNF for the RIF-BLD Rule Language:

Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'
Base ::= 'Base' '(' ANGLEBRACKIRI ')'
Prefix ::= 'Prefix' '(' NCName ANGLEBRACKIRI ')'
Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'
RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE
CLAUSE ::= Implies | ATOMIC
Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA
LOCATOR ::= ANGLEBRACKIRI
PROFILE ::= ANGLEBRACKIRI

Note that this is an extension of the syntax for the RIF-BLD Condition Language (BLDCond.xsd).
</xs:documentation>

</xs:annotation>

<!-- The Rule Language includes the Condition Language from the same directory -->
<xs:include schemaLocation="BLDCond.xsd"/>

<xs:element name="Document">
<!--

Document ::= IRIMETA? 'Document' '(' Base? Prefix* Import* Group? ')'
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 35 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

<xs:element ref="directive" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="payload" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="directive">
<!--

Base and Prefix represented directly in XML
-->
<xs:complexType>

<xs:sequence>
<xs:element ref="Import"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="payload">
<xs:complexType>

<xs:sequence>
<xs:element ref="Group"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="Import">
<!--

Import ::= IRIMETA? 'Import' '(' LOCATOR PROFILE? ')'
LOCATOR ::= ANGLEBRACKIRI
PROFILE ::= ANGLEBRACKIRI

-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="location"/>
<xs:element ref="profile" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="location" type="xs:anyURI"/>

<xs:element name="profile" type="xs:anyURI"/>

<xs:element name="Group">
<!--

Group ::= IRIMETA? 'Group' '(' (RULE | Group)* ')'
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="sentence" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="sentence">
<xs:complexType>

<xs:choice>
<xs:group ref="RULE"/>
<xs:element ref="Group"/>

</xs:choice>
</xs:complexType>

</xs:element>

<xs:group name="RULE">
<!--

RULE ::= (IRIMETA? 'Forall' Var+ '(' CLAUSE ')') | CLAUSE
-->
<xs:choice>

<xs:element ref="Forall"/>
<xs:group ref="CLAUSE"/>

</xs:choice>
</xs:group>

<xs:element name="Forall">
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="declare" minOccurs="1" maxOccurs="unbounded"/>
<!-- different from formula in And, Or and Exists -->
<xs:element name="formula">

<xs:complexType>

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 36 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

<xs:group ref="CLAUSE"/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:group name="CLAUSE">
<!--

CLAUSE ::= Implies | ATOMIC
-->
<xs:choice>

<xs:element ref="Implies"/>
<xs:group ref="ATOMIC"/>

</xs:choice>
</xs:group>

<xs:element name="Implies">
<!--

Implies ::= IRIMETA? (ATOMIC | 'And' '(' ATOMIC* ')') ':-' FORMULA
-->
<xs:complexType>

<xs:sequence>
<xs:group ref="IRIMETA" minOccurs="0" maxOccurs="1"/>
<xs:element ref="if"/>
<xs:element ref="then"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="if">
<xs:complexType>

<xs:sequence>
<xs:group ref="FORMULA"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="then">
<xs:complexType>
<xs:choice>

<xs:group ref="ATOMIC"/>
<xs:element name="And" type="And-then.type"/>

</xs:choice>
</xs:complexType>

</xs:element>

<xs:complexType name="And-then.type">
<!-- sensitive to then (ATOMIC) context-->
<xs:sequence>

<xs:element name="formula" type="formula-then.type" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="formula-then.type">
<!-- sensitive to then (ATOMIC) context-->
<xs:sequence>

<xs:group ref="ATOMIC"/>
</xs:sequence>

</xs:complexType>

</xs:schema>

10 Appendix: Change Log (Informative)

This appendix summarizes the main changes to this document.

Changes since the draft of July 30, 2008.

• The definition of entailment in Section Logical Entailment relied on the notion of a "query document," which was not defined. The
definitions in Sections Interpretation of Documents and Logical Entailment has been changed to eliminate this and related problems.

• Section EBNF Grammar for the Presentation Syntax of RIF-BLD now presents the EBNF of the entire language in one place. Previously the
EBNF was given forst for the condition sublanguage and then repeated again when the entire rule language is defined.

• Symbols can now have many different arities.
• Lists have been added.
• Import: the first argument is now a character sequence that forms and IRI.
• Base, Prefix, Import: IRIs are now delimited with angle brackets.
• Numerous clarifications and explanations were added in response to the public comments.
• A number of typos were found and fixed.

Changes since the draft of July 3, 2009.

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 37 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2008/WD-rif-bld-20080730/
http://www.w3.org/TR/2009/WD-rif-bld-20090703/

• A definedness condition was added to the definition of logical entailment.
• The bag of attribute/value pairs example was better explained.
• IRICONST was replaced with ANYURICONST in BLDRule.xsd, v. 1.5.
• A number of typos were found and fixed.
• "instance" of an external schema was replaced with "instantiation" of an external schema.

Changes since the Candidate Recommendation of October 1, 2009.

• Import's anyURIs were moved directly into location and profile.
• A number of typos was fixed and various clarifications added.
• Simplified notion of conformant BLD consumer.
• Fixed List by permitting IRIMETA and aligning syntax to Expr and Atom.

Changes since the Recommendation of June 22 2010.

• Definitions in Section Interpretation of Documents have been rewritten and significantly simplified.
• In SectionThe Semantics of RIF-BLD as a Specialization of RIF-FLD, a paragraph added about specialization from RIF-FLD semantic multi-

structures.
• Other minor corrections (see here and here).
• Two new rows added in the table of Section Mapping of the Condition Language for empty args in Atom and Expr; restriction of earlier

Atom and Expr rows to non-empty args (replaced n with m).

RIF Basic Logic Dialect W3C Proposed Edited Recommendation 11 December 2012

Page 38 of 38 http://www.w3.org/TR/2012/PER-rif-bld-20121211/

http://www.w3.org/TR/2009/CR-rif-bld-20091001/
http://www.w3.org/TR/rif-bld
http://www.w3.org/2005/rules/wiki/index.php?title=BLD&diff=14354&oldid=12716
http://www.w3.org/2005/rules/wiki/index.php?title=BLD&diff=14586&oldid=14582

	RIF Basic Logic Dialect
	W3C Proposed Edited Recommendation 11 December 2012
	Abstract
	Status of this Document
	May Be Superseded
	Set of Documents
	Summary of Changes
	W3C Members Please Review By 8 January 2013
	No Endorsement
	Patents

	Table of Contents
	1 Overview
	2 Direct Specification of RIF-BLD Presentation Syntax
	2.1 Alphabet of RIF-BLD
	2.2 Terms
	2.3 Formulas
	2.4 RIF-BLD Annotations in the Presentation Syntax
	2.5 Well-formed Formulas
	2.6 EBNF Grammar for the Presentation Syntax of RIF-BLD (Informative)
	2.6.1 EBNF for the Condition Language
	2.6.2 EBNF for the Rule Language
	2.6.3 EBNF for Annotations

	3 Direct Specification of RIF-BLD Semantics
	3.1 Truth Values
	3.2 Semantic Structures
	3.3 RIF-BLD Annotations in the Semantics
	3.4 Interpretation of Non-document Formulas
	3.5 Interpretation of Documents
	3.6 Logical Entailment

	4 XML Serialization Syntax for RIF-BLD
	4.1 XML for the Condition Language
	4.2 XML for the Rule Language
	4.3 Mapping from the Presentation Syntax to the XML Syntax
	4.3.1 Mapping of the Condition Language
	4.3.2 Mapping of the Rule Language
	4.3.3 Mapping of Annotations

	5 Conformance Clauses
	6 RIF-BLD as a Specialization of the RIF Framework for Logic Dialects [RIF-FLD]
	6.1 The Presentation Syntax of RIF-BLD as a Specialization of RIF-FLD
	6.2 The Semantics of RIF-BLD as a Specialization of RIF-FLD
	6.3 The XML Serialization of RIF-BLD as a Specialization of RIF-FLD
	6.4 RIF-BLD Conformance as a Specialization of RIF-FLD

	7 Acknowledgements
	8 References
	8.1 Normative References
	8.2 Informational References

	9 Appendix: XML Schema for RIF-BLD
	9.1 Condition Language
	9.2 Rule Language

	10 Appendix: Change Log (Informative)

