
Windows Subsystem for 
Linux 

Graphics Architecture



About us

Steve Pronovost
Lead Windows Graphics Kernel

Jesse Natalie
Developer on Direct3D



What is WSL?

• Windows Subsystem for Linux
• Infrastructure to run Linux applications inside of Windows

• Today only terminal applications are supported



Why WSL?

• But can’t you just run Linux inside of a VM already?
• Yes, but managing a VM is a pain and not user friendly

• WSL is all about developers
• Creating a friendly and integrated experience for developers that needs both 

a Windows and Linux development environment
• Some tools run best or only on Windows
• Some tools run best or only on Linux

• Get the best of both worlds
• Developer can run their Windows and Linux development workflow from a single PC

• No clunky dual boot setup
• No need for multiple PCs
• No need for manually managed VM



WSL

• Terminal integration
• Filesystem integration
• Windows / Linux interop
• … and many more

• Limited to terminal 
applications today



WSL 1 vs WSL 2

• WSL 1
• Linux userspace running against an emulated Linux Kernel

• Linux userspace isolated in a pico process

• Linux userspace call to kernel trap and emulated on top of ntos

• WSL 2
• Full Linux userspace and Linux kernel running in a VM

• Same integrated experience

• Better compat (no more kernel emulation)



Most requested WSL features

• Access to the GPU from within WSL
• Mostly for compute

• Most requested is access to NVIDIA CUDA API

• Subject of this talk

• Ability to run GUI applications
• Going beyond a terminal only experience and the ability to run X11 and 

Wayland applications

• This is the subject of our other XDC talk
• X11 and Wayland applications in WSL



Bringing GPU 
to WSL

• We want to share the GPU(s) with the host
• Not dedicated assignment

• All host GPU available to WSL VM

• Both host and WSL VM can submit work 
simultaneously to the GPU

• We want to flexibly manage the resources
• No partition of video memory or fix scheduling 

quantum

• Resource assignment based on applications need

• We want to enable a broad set of APIs
• CUDA, OpenCL, OpenGL, and more

• DirectX 12 is an implementation details that allow us to 
get there. 



WDDM GPU Para-Virtualization (GPU-PV)

• WDDM – Windows Display Driver Model
• Thin abstractions for the GPU that all graphics and compute APIs are based on
• Abstract and manage GPU access for multiple clients
• Think about it as DRM & KMS

• Para-Virtualization
• Level of abstraction is the WDDM interface
• Project the compute/rendering portion of the WDDM interface in a VM so driver can 

interact with it as if the GPU was local

• Was designed precisely for these usage scenarios
• Windows Defender Application Guard for Edge
• Windows Sandbox
• Device Emulator (e.g. Hololens emulator)

• Extending to support Linux Guest, including WSL



WDDM Architecture

Userspace

Kernel

Graphics Kernel
(dxgkrnl.sys & dxgmms*.sys)

GPU KMD
(Kernel Mode Driver)

API

ICD
(Installable Client Driver)

WDDM Services (D3DKMT*)

D3D API

UMD
(User Mode Driver)

WDDM Services low level and API agnostic
• Enumerate GPU
• Create Device
• Create Context / HwQueues
• Allocate GPU memory
• Request GPU VA mapping
• Request CPU pointer to GPU memory
• Create synchronization object
• Submit work
• …



WDDM Architecture

Userspace

Kernel

Graphics Kernel
(dxgkrnl.sys & dxgmms*.sys)

GPU KMD

API

ICD

WDDM Services (D3DKMT*)

D3D API

UMD

Process #1 Process #2

D3D API

UMD

Process #3

API

ICD

Isolation between processes
• GPU VA Space per process
• Command buffer execute within process 

GPU VA space bubble



VM Bus
WDDM 

Paravirtualization 

Protocol

Linux Kernel

libd3d12

/dev/dxg User mode

Kernel mode

drivers/gpu/dxgkrnl

dxgkrnl
GPU Kernel mode 

driver (KMD)

D3D12 User Mode 

Driver (UMD)

Linux

Windows

libdxcore
D3DKMT*

Kernel mode

Mesa

(GLon12)

libdxcore
D3DKMT*

libcuda

WDDM GPU Paravirtualization



Dxgkrnl Linux Edition

• Open source
• https://github.com/microsoft/WSL2-Linux-Kernel/tree/linux-msft-wsl-

4.19.y/drivers/gpu/dxgkrnl

• Not a straight pass-through
• Some WDDM API implemented locally

• Some a combination of local and messages to the host

• Fundamentally memory manager, scheduler and GPU are on the host

• No data copy
• Only control information exchanged over VM bus

• Data in command buffers or GPU surfaces shared between guest and host

https://github.com/microsoft/WSL2-Linux-Kernel/tree/linux-msft-wsl-4.19.y/drivers/gpu/dxgkrnl


M

Guest CPU Access to GPU Memory
Windows HostWSL VM

VMMEM

VirtualAllocRAM

CPU Physical 
Address Space

Kernel

Userspace

SLAT

SLAT

VRAM

PCI BAR

/dev/dxg

Linux Kernel

dxgkrnl

Allocate GPU 
Memory



WDDM 3.0

• Seamless support in WDDM3.0+
• User mode driver compiled for Linux included in driver package

• Host driver store mounted in Linux

• Works out of the box

• Integrated into the Windows Driver Certification process
• IHV Partner adding WSL 2 configured system to their test pool

• HLK contains WSL 2 specific test validating driver



WSL Graphics Userspace



Goals

• Support breadth of existing Linux compute APIs
• CUDA

• OpenCL

• Eventually graphics APIs like OpenGL/Vulkan too

• Minimize redundant/unnecessary work from driver vendors

• Support hardware-accelerated ML like TensorFlow

• NOT trying to introduce new competing APIs



How to get compute acceleration in WSL

• Two possible approaches
• Ask driver vendors to port ICDs for APIs apps are using
• Ask driver vendors to port UMD, we port D3D, we build layers to support APIs in 

terms of D3D

• ICD approach means continued asks on driver vendors for new APIs
• E.g. 3+ APIs across 4+ vendors

• Mapping layer approach improves both Windows + WSL
• 1 UMD per vendor, 1 mapping layer per API
• Enables us to leverage DirectML as backend for ML frameworks
• Mapping layers can be used to decrease vendor burden for supporting Windows

• Also possible for ICDs to be ported
• CUDA in WSL works this way



What exists today

• DXCore
• APIs for enumerating GPUs and querying properties
• Similar role to DRM render nodes

• D3D12
• Requires D3D12 UMD to be ported as well
• UMDs available or in development from all Windows 

GPU vendors

• DirectML
• Layer on top of D3D12 to provide highly optimized 

GPU-accelerated ML operators

• TensorFlow
• Uses DirectML backend in WSL

libdxcore

libd3d12

libdirectml

TensorFlow



What exists today - notes

• Compute-only functionality
• Rasterization pipeline is available, but no swapchains / window integration

• Intention of D3D in WSL is implementation detail for GPU access
• Not trying to introduce a new API for apps – no SDK planned

• Added only to allow GPU access for higher level frameworks / APIs

• D3D stack is same code that runs on Windows
• All components involved modified to dual-compile

• Fixed lots of non-conformant code depending on MSVC quirks

• Replaced Windows-specific constructs with cross-platform code

• Wrote header shim with #defines/typedefs for things that come from Windows SDK

• Clang caught several real bugs with its better warnings



What exists today – TensorFlow

• TensorFlow on DirectML
• Runs on a wide variety of hardware

• CUDA is NVIDIA

• ROCm is a limited set of newer AMD hardware

• Consistency/conformance
• We test and work with all hardware vendors for consistent compute results

• Easy to set up (just pip install tensorflow-directml)

• https://github.com/microsoft/tensorflow-directml
• Working closely with the TensorFlow community to bring this feature 

upstream so that it’s available in the official build of TensorFlow going forward

https://github.com/microsoft/tensorflow-directml


Shipping as binaries

• Attempting to be distro-agnostic
• Both Microsoft code (D3D, DML) and WSL drivers

• Note quite statically-linked, but close
• Only external dependencies on libc

• C++ runtime and other dependencies included

• No exceptions crossing module boundaries

• Technically linking against musl in our build, but in a glibc-compatible way



What’s in the works

• OpenCLOn12

• OpenGLOn12
• Both leveraging Mesa

• Both currently working on Windows – WSL efforts not yet started

• OpenGL requires solving window integration: hard problem
• Lots of open design questions, not intrinsically hard due to Mesa/GL

• Some work here underway – see later talk for non-accelerated WSL window integration: 
“X11 and Wayland Applications in WSL”



Demo



More info / how to try it out

• https://aka.ms/gpuinwsldocs

https://aka.ms/gpuinwsldocs

