

The 5 Ws

Who

What

When

Where

Why

How

Who

- Microsoft
 - Me (Jesse Natalie)
 - Bill Kristiansen
 - Angela Jiang
- Collabora
 - Erik Faye-Lund
 - Daniel Stone
 - Gert Wollny
 - Louis-Francis Ratté-Boulianne
 - Boris Brezillon
 - Elie Tournier

What

Two mapping layers

- OpenGL on D3D12
- OpenCL on D3D12

OpenGLOn12

• Gallium driver in Mesa

OpenCLOn12

- Compiler stack built out of Mesa
 - Leveraging and extending work done for Clover
- Runtime separate from Mesa
 - Based on D3D12TranslationLayer, core of other D3D12 mapping layers

When

- Project underway for ~1 year
- Was the reason for Microsoft's presence at XDC last year

Where

- Development started in secret
 - Private GitLab project hosted by Collabora
- Shifted to full open-source
 - Erik's FreeDesktop.org GitLab Mesa fork
- Upstreaming to Mesa's mainline

Why

- Windows
 - Devices with no Windows drivers for these APIs
 - Qualcomm
 - WARP Virtual Machines
 - New devices?
 - Enable partners to transition to mapping layers instead of native
 - Not a requirement
 - If desired, they can reduce development costs
 - Interop
 - Possibility for simpler / more efficient cross-API interop via mapping layers than across driver stacks
 - Debugging
 - Access to D3D12 debugging tools

Why - continued

- WSL
 - Only one vendor usermode driver needed in WSL
- Why Mesa
 - We considered it the only way to have a viable OpenGL implementation
 - Collabora's suggestion to use it for OpenCL as well
 - Definitely the right call

How

- 4 primary components
 - NIR DXIL translator
 - DXIL is LLVM-based, but old LLVM would conflict with other LLVMs
 - Built a custom LLVM bitcode emitter
 - Mesa Gallium driver
 - Implements Gallium interface, translates to D3D12 APIs
 - Built on the shoulders of Zink
 - Windows DXGI/D3D12 WinSys
 - Enables more efficient Present than software path
 - CLC DXIL compiler
 - OpenCL C Clang SPIR SPIRV-LLVM-Translator SPIR-V Mesa SPIRV-to-NIR NIR NIR-to-DXIL DXIL

NIR DXIL

Why not use LLVM?

- DXIL is LLVM 3.7
- Already wanted to use Clang/LLVM for OpenCL, but not 3.7

LLVM bitcode difficult to deal with

- Variable-sized fields, unaligned data
- DXIL validator imposes additional constraints, such as metadata ordering

Two-pass approach

- First: Translate NIR to data structures which match DXIL semantics
- Second: Walk data structures and deal with LLVM bitcode emission

LLVM IR wrapped in container

 Additional chunks of data for validation and quick analysis

D3D12 Gallium Driver

- More or less self-contained
- Deals with tracking state, allocating resources, managing command lists
- Has to emulate several features... examples:
 - Wide points D3D10+ don't support these
 - Interleaved depth-stencil D3D12 treats depth-stencil as planar
 - Missing vertex formats R10G10B10A2 vertex input
 - 8bit index buffer formats
 - Two-sided polygon mode
 - Provoking vertex
 - Combined image+sampler D3D has these separated
 - Point-sampling of integer textures D3D only allows loads
 - Needs to deal with normalized cords and border behavior

DXGI/D3D12 WinSys

- On Windows, Present is complicated
- OpenGL32.dll provides some callbacks to help, but requires being a Windows driver

 a mapping layer can't really use them
- Only other option in Mesa was to use GDI
 - Requires copying from GPU CPU and waiting, then another CPU CPU copy via GDI. Really slow
- DXGI allows queued, efficient Present
- But... Mesa state tracker likes to own framebuffer allocations. DXGI needs to own its resources.
 - Somewhat messy interface to winsys, but it works and is efficient

OpenCL Compiler

- Complex compilation pipeline
 - Fortunately, Clover pioneered it
- Clover NIR support at sub-1.0. Lots of work to get things up to 1.2
 - Crazy float<->integer conversions with all kinds of rounding
 - Support for work item offsets
 - Images not technically required, but required in practice
 - Complex math importing from LLVM's libclc
 - More pointer types
- DXIL-specific shortcomings
 - No pointers... eventually able to use NIR to convert OpenCL pointers into (index, offset) pairs
- Upstream contributions accelerating Clover support

How... will customers get it?

