

* Microsoft
* Me (Jesse Natalie)
* Bill Kristiansen
* Angela Jiang

* Collabora
* Erik Faye-Lund
Daniel Stone
Gert Wollny
Louis-Francis Ratté-Boulianne
Boris Brezillon
Elie Tournier

Two mapping layers

e OpenGL on D3D12
e OpenCL on D3D12

OpenGLON12

e Gallium driver in Mesa

What

OpenCLON12

e Compiler stack built out of Mesa
e Leveraging and extending work done for Clover
e Runtime separate from Mesa

e Based on D3D12TranslationLayer, core of other
D3D12 mapping layers

* Project underway for ~1 year

* Was the reason for Microsoft’s presence at XDC last year

* Development started in secret
* Private GitLab project hosted by Collabora

 Shifted to full open-source
* Erik’s FreeDesktop.org GitLab Mesa fork

* Upstreaming to Mesa’s mainline

Why

* Windows

* Devices with no Windows drivers for these APIs
* Qualcomm
 WARP — Virtual Machines
* New devices?

* Enable partners to transition to mapping layers instead of native
* Not a requirement
 |If desired, they can reduce development costs

* |[nterop
 Possibility for simpler / more efficient cross-API interop via mapping layers than across driver
stacks
* Debugging

* Access to D3D12 debugging tools

Why - continued

* WSL
* Only one vendor usermode driver needed in WSL

* Why Mesa

* We considered it the only way to have a viable OpenGL implementation

* Collabora’s suggestion to use it for OpenCL as well
* Definitely the right call

How

* 4 primary components

* NIR DXIL translator
* DXIL is LLVM-based, but old LLVM — would conflict with other LLVMs
* Built a custom LLVM bitcode emitter

e Mesa Gallium driver
* Implements Gallium interface, translates to D3D12 APIs
* Built on the shoulders of Zink

* Windows DXGI/D3D12 WinSys
* Enables more efficient Present than software path

e CLC DXIL compiler

e OpenCLC Clang SPIR SPIRV-LLVM-Translator = SPIR-V Mesa SPIRV-to-NIR
NIR NIR-to-DXIL DXIL

NIR

e DXIL is LLVM 3.7

e Already wanted to
use Clang/LLVM for
OpenCL, but not
3.7

e Variable-sized
fields, unaligned
data

e DXIL validator
imposes additional
constraints, such as
metadata ordering

e First: Translate NIR
to data structures
which match DXIL
semantics

e Second: Walk data
structures and deal
with LLVM bitcode
emission

e Additional chunks
of data for
validation and
quick analysis

D3D12 Gallium Driver

* More or less self-contained
* Deals with tracking state, allocating resources, managing command lists

* Has to emulate several features... examples:
* Wide points — D3D10+ don’t support these
* Interleaved depth-stencil — D3D12 treats depth-stencil as planar
* Missing vertex formats — R10G10B10A2 vertex input
* 8bit index buffer formats
* Two-sided polygon mode
* Provoking vertex
e Combined image+sampler — D3D has these separated

* Point-sampling of integer textures — D3D only allows loads
* Needs to deal with normalized cords and border behavior

DXGI/D3D12 WinSys

 On Windows, Present is complicated

OpenGL32.dll provides some callbacks to help, but requires being a Windows driver
—a mapping layer can’t really use them

Only other option in Mesa was to use GDI

e Requires copying from GPU CPU and waiting, then another CPU CPU copy
via GDI. Really slow

DXGI allows queued, efficient Present

But... Mesa state tracker likes to own framebuffer allocations. DXGI needs to own
its resources.

 Somewhat messy interface to winsys, but it works and is efficient

OpenCL Compiler

* Complex compilation pipeline
* Fortunately, Clover pioneered it

* Clover NIR support at sub-1.0. Lots of work to get things up to 1.2
e Crazy float<->integer conversions with all kinds of rounding
* Support for work item offsets
* Images — not technically required, but required in practice
* Complex math — importing from LLVM'’s libclc
* More pointer types

e DXIL-specific shortcomings
* No pointers... eventually able to use NIR to convert OpenCL pointers into (index, offset) pairs

e Upstream contributions accelerating Clover support

How... will customers get it?

= Microsoft | Home Devices ~ Software ~ More ~ all Microsoft ~ JOR = EN ~ o)

0 You own this app. Installfopen

OpenCL™ and OpenGL® Compatibility Pack

Microsoft Corporation = Utilities & tools

&7 Wish list

This compatibility pack allows more of your favorite OpenCL™ and OpenGLE apps to
run on a Windows 10 PC that doesn't have CpenCL and CpenGL hardware drivers
installed by default. If a DirectX 12 driver is installed, supported apps will run with

M See System Requirements

E EVERYONE

Edit Render Window

Zb File

1@, B Object Mode View

fps: 24

-
g
4= *p
'
v

Q

AN i
y W

-

v/

2

C:\Users\Admin\Desktop>tlist.exe -m openglonl2.dll
C:\Program Files\WindowsApps\Microsoft.D3DMappinglLayers_2.2007.7.0_arm64__ 8wekyb3d8bbwe\x86\0penGLOn12.d11

10568 blender.exe

C:\Users\Admin\Desktop>

4 (116) Collection | Cube

Help Layout &5 Scene = &l View Layer 18
Select Add Object 12, Global v) G~ = 2 (\" T=v W jo)
i’ Scene (le
. 20ene Lolec
g oD
S b ‘w /o v E Colles ©®
) = A("‘ Came ©
» & Cube ©
9 ght ©
= W Cube
*Y M, ~ Cube
¥ Transform
CB
- Locat
) |
Y
N z
t' Rotati
Y
74
m Scale
Y
"J
’ z
Rotati

Blender

Processes Performance App history Startup Users Details Services

CPU
45% 2.68 GHz

Memory
5.7/15.5 GB (37%)

Disk 0 (C:)

Wi-Fi

Wi-Fi
2.5 R: 0.1 Mbps

GPU O

Microsoft SO~

49%

GPU

Microsoft SQ1 Adreno 685 GPU

Video Encode

cessing

It’s alive:
Blender OpenGL
on Qualcomm

