
Mesa for Mapping Layers



The 5 Ws

Who

What

When

Where

Why

How



Who • Microsoft

• Me (Jesse Natalie)

• Bill Kristiansen

• Angela Jiang

• Collabora

• Erik Faye-Lund

• Daniel Stone

• Gert Wollny

• Louis-Francis Ratté-Boulianne

• Boris Brezillon

• Elie Tournier



What

Two mapping layers

• OpenGL on D3D12

• OpenCL on D3D12

OpenGLOn12

• Gallium driver in Mesa

OpenCLOn12

• Compiler stack built out of Mesa

• Leveraging and extending work done for Clover

• Runtime separate from Mesa

• Based on D3D12TranslationLayer, core of other 
D3D12 mapping layers



When

• Project underway for ~1 year

• Was the reason for Microsoft’s presence at XDC last year



Where

• Development started in secret

• Private GitLab project hosted by Collabora

• Shifted to full open-source

• Erik’s FreeDesktop.org GitLab Mesa fork

• Upstreaming to Mesa’s mainline



Why

• Windows

• Devices with no Windows drivers for these APIs

• Qualcomm

• WARP – Virtual Machines

• New devices?

• Enable partners to transition to mapping layers instead of native

• Not a requirement

• If desired, they can reduce development costs

• Interop

• Possibility for simpler / more efficient cross-API interop via mapping layers than across driver 
stacks

• Debugging

• Access to D3D12 debugging tools



Why - continued

• WSL

• Only one vendor usermode driver needed in WSL

• Why Mesa
• We considered it the only way to have a viable OpenGL implementation

• Collabora’s suggestion to use it for OpenCL as well
• Definitely the right call



How

• 4 primary components

• NIR DXIL translator

• DXIL is LLVM-based, but old LLVM – would conflict with other LLVMs

• Built a custom LLVM bitcode emitter

• Mesa Gallium driver

• Implements Gallium interface, translates to D3D12 APIs

• Built on the shoulders of Zink

• Windows DXGI/D3D12 WinSys

• Enables more efficient Present than software path

• CLC DXIL compiler

• OpenCL C Clang SPIR SPIRV-LLVM-Translator SPIR-V Mesa SPIRV-to-NIR 
NIR NIR-to-DXIL DXIL



NIR DXIL

Why not use LLVM?

• DXIL is LLVM 3.7

• Already wanted to 
use Clang/LLVM for 
OpenCL, but not 
3.7

LLVM bitcode 
difficult to deal with

• Variable-sized 
fields, unaligned 
data

• DXIL validator 
imposes additional 
constraints, such as 
metadata ordering

Two-pass approach

• First: Translate NIR 
to data structures 
which match DXIL 
semantics

• Second: Walk data 
structures and deal 
with LLVM bitcode 
emission

LLVM IR wrapped in 
container

• Additional chunks 
of data for 
validation and 
quick analysis



D3D12 Gallium Driver

• More or less self-contained

• Deals with tracking state, allocating resources, managing command lists

• Has to emulate several features… examples:
• Wide points – D3D10+ don’t support these
• Interleaved depth-stencil – D3D12 treats depth-stencil as planar
• Missing vertex formats – R10G10B10A2 vertex input
• 8bit index buffer formats
• Two-sided polygon mode
• Provoking vertex
• Combined image+sampler – D3D has these separated
• Point-sampling of integer textures – D3D only allows loads

• Needs to deal with normalized cords and border behavior



DXGI/D3D12 WinSys

• On Windows, Present is complicated

• OpenGL32.dll provides some callbacks to help, but requires being a Windows driver 
– a mapping layer can’t really use them

• Only other option in Mesa was to use GDI

• Requires copying from GPU CPU and waiting, then another CPU CPU copy 
via GDI. Really slow 

• DXGI allows queued, efficient Present

• But… Mesa state tracker likes to own framebuffer allocations. DXGI needs to own 
its resources.

• Somewhat messy interface to winsys, but it works and is efficient



OpenCL Compiler

• Complex compilation pipeline

• Fortunately, Clover pioneered it

• Clover NIR support at sub-1.0. Lots of work to get things up to 1.2

• Crazy float<->integer conversions with all kinds of rounding

• Support for work item offsets

• Images – not technically required, but required in practice

• Complex math – importing from LLVM’s libclc

• More pointer types

• DXIL-specific shortcomings

• No pointers… eventually able to use NIR to convert OpenCL pointers into (index, offset) pairs

• Upstream contributions accelerating Clover support



How… will customers get it?



It’s alive:
Blender OpenGL 

on Qualcomm


