RCDA: Architecting as a Risk- and Cost Management
Discipline

Eltjo R. Poort®*, Hans van VlietP

% Logica, Amstelveen, The Netherlands
bVU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Abstract

We propose to view architecting as a risk- and cost management discipline.
This point of view helps architects identify the key concerns to address in their
decision making, by providing a simple, relatively objective way to assess archi-
tectural significance. It also helps business stakeholders to align the architect’s
activities and results with their own goals. We examine the consequences of
this point of view on the architecture process. The point of view is the basis
of RCDA, the Risk- and Cost Driven Architecture approach. So far, more than
150 architects have received RCDA training. For a majority of the trainees,
RCDA has a significant positive impact on their architecting work.

Keywords: Software architecture, Risk Management, Cost management

1. Introduction

The notion of “software architecture” is one of the key technical advances in
the field of software engineering over the last decades [1]. In that period, there
have been two distinct fundamental views as to the nature of architecture:

1. Architecture as a higher level abstraction for software systems, expressed
in components and connectors [2, 3]
2. Architecture as a set of design decisions, including their rationale [4, 5, 6]

View 1 is about “the system-level design of software, in which the important
decisions are concerned with the kinds of modules and subsystems to use and
the way these modules and subsystems are organized” [2]. View 1 is focused
on the choice and organization of components and connectors, but practicing
architects’ decisions appear to have a much wider range.

*Corresponding author
Email addresses: eltjo.poort@logica.com (Eltjo R. Poort), hans@cs.vu.nl (Hans van
Vliet)

Preprint submitted to Elsevier March 29, 2012

View 2, architecture as a set of design decisions [5], is more generic and has
been beneficial to both the architecture research community and its practition-
ers [6]. This view of architecture implies a view of architecting as a decision
making process, and likewise a view of the architect as a decision maker.

In recent years, this view of architecture and architecting has been espe-
cially beneficial in promoting insight into architectural knowledge management:
among other results, it has led to new insights into the structure of what ar-
chitects need to know and document to make their decisions [6, 7], and it has
stimulated research into re-usable architectural decisions [8, 9]. Both these av-
enues of research have devoted much attention to structure and tooling, but
so far there is limited focus on what the architect’s decisions should be about
beyond components and connectors.

We propose to view architecting as a risk- and cost management discipline.
In other words, the important things architects should make decisions about
are those concerns that have the highest impact in terms of risk and cost. Of
course, risk and cost have always been important drivers in architecture [10], but
our point of view goes a step further than this obvious point: we see risk- and
cost management as the primary business goal of architecting. All architecture
activities such as architecture documentation, evaluation and decision making
are in essence ways to fulfill this business goal.

As we will see in this paper, considering architecture as a risk- and cost
management discipline, rather than merely as a high-level design discipline,
makes the architect more effective in a number of ways:

e it helps the architect order their work, in both focus and timing of their
decision making

e it helps in communicating about the architecture with stakeholders in
business terms

This point of view is the basis of an architecting approach developed in
Logica: Risk- and Cost Driven Architecture (RCDA), discussed in section 7.
RCDA encompasses a lot more than merely viewing architecture as a risk- and
cost-driven activity. It consists of a set of practices covering the whole spectrum
of activities involved in architecting. So far, more than 150 architects have
received RCDA training. We have assessed the impact hereof on the work of the
architects. It shows that for a majority of the trainees, RCDA has a significant
positive impact on their architecting work.

The rest of this paper is structured as follows:

e in section 2, we will show how we arrived at this point of view of what
architecture is all about, and define some key concepts

e in section 3, we will elaborate on the meaning of risk and cost and how
they determine architectural significance

e then in section 4, we will examine how viewing architecture as a risk- and
cost management discipline impacts the architecting process and helps
architects in the focus and timing of their decision making

e in section 5, we will use three examples from industry to illustrate how this
approach helps to communicate architectural significance to stakeholders

e in section 6, we will give some guidance on how to implement this point
of view

e in section 7, we give an overview of RCDA, the Risk- and Cost Driven
Architecture Approach

e in section 8, we give quantitative and qualitative evidence of the impact
of RCDA

e we conclude the paper with a discussion, including some frequently asked
questions about this approach

This paper is an extended version of [11]. The main extensions consist of the
description of RCDA in section 7 as well as the empirical validation of its impact
in section 8. We have also added more depth to the discussion on risk and the
related work section.

2. What are architectural decisions about?

For years, we have been talking and writing about software architecture as
a set of design decisions [4, 5, 6]. Hence, the topic of an architect’s decisions
is supposedly software design. If we take the slightly more inclusive accepted
view of software architecture as the architecture of software-intensive systems
[12], this view of the world sees a software architect as someone who makes
design decisions about software-intensive systems. On further scrutiny, this
qualification appears to be too generic: not all design decisions about software-
intensive systems can be called architectural. For example, programmers make
minor design decisions whenever they are writing code, which are manifestly
not architectural: if they were, every programmer would be called an architect.

An often heard distinction is that architects operate at a higher level of ab-
straction than designers or programmers [2]. This certainly appears to be true
of architects who operate mainly by establishing design principles. Many archi-
tects, however, do much more than that, all the way down to prescribing details
of particular coding practices that they deem architecturally significant [13].

Let’s see if the international standard definition of software architecture [12]
helps: “fundamental concepts or properties of a system in its environment em-
bodied in its elements, relationships, and in the principles of its design and
evolution”. Going back to the example of our programmer and his daily minor
design decisions, these can certainly be about the properties of the system, its
elements and their relationships. The programmer’s decisions may also affect
the system’s evolution. There are only two concepts in the ISO 42010 definition
that are clearly out of the league of the programmer’s decisions: “fundamental”
and “principles”. These concepts can guide us towards the class of decisions
architects should focus on: decisions about fundamental things and principles.

Ralph Johnson, quoted by Martin Fowler [13], makes a similar statement in less
formal words: “Architecture is about the important stuff. Whatever that is.”

In the last few years, the authors have started to equate “the important
stuff” with “the stuff that has the most impact on risk and cost”. In other words,
architects focus on concerns that involve high risk and cost, and architectural
decisions are those decisions that have significant impact on risk and cost. This
view is a joint understanding that has come into being after five years of seeing
IT architects at work on dozens of diverse complex solutions, and after extensive
discussions with the architects and their stakeholders on what should be the
focus of an architect’s work. This point of view is the basis for RCDA, the
Risk- and Cost Driven Architecture Approach. It has so far been beneficial in
several ways:

First, it helps architects organize their workflow by giving them a relatively
objective way of prioritizing concerns and determining when to make decisions.
How it does this is explained in sections 4.2 and 4.3 below.

Furthermore, it helps architects discuss architectural significance with busi-
ness stakeholders in terms that they all understand: risk and cost. This is
explained in section 5.

2.1. Key concepts

“Concern” and “Decision” are key concepts throughout this paper. Concern
is a well-understood, established concept: [12] uses the term concern to mean
any topic of interest pertaining to the system. Concerns originate from stake-
holders’ needs: this makes them “of interest” in the ISO42010 definition. A
decision is a choice by the architect amongst alternatives. The architect makes
decisions to Address (fulfill, satisfice, handle) concerns. The SEI’s Attribute-
Driven Design [14] is an example of decision-making where you choose from
tactics to address a quality attribute concern. Some examples of architectural
concerns from our experience:

e How to fulfill the requirement to instantly revoke a user’s authorization,
even in the middle of a session?

How to implement required Ul elements that are not supported by HTML?
How to fulfill the response time criteria?

When to upgrade to the new version of the application server platform?
Which workflow engine to use?

Whether or not to virtualize our server landscape?

As we can see from these examples, concerns can usually be phrased as a
question, and it is the architect’s task to decide on the answer to that question,
thereby addressing the concern. Sometimes the concern is an open question, e.g.:
“How to fulfill the client’s security requirement?”. Other times the concern is a
closed question, e.g.: “Should we buy component A or build it ourselves?” or
“Should we use thin or fat client technology?”. The closed questions are usually
elaborations of previous open questions, narrowing down the answer space after

-Origin
Stakeholder

Risk

| Cost | | Concern
-Architectural Significance

-Addresses *
Decision

Figure 1: Key concept model.

some research. We can usually see the decisions taking shape in these closed-
question concerns: they point to a choice to be made between a number of
alternatives. The word “concern” also has a connotation of “worry”, and this is
no coincidence: architects worry about fulfilling the concerns. They would like
to prioritize the concerns that they worry most about, and consider those the
most significant concerns at any point in time.

Several models exist linking design decisions to concerns [15, 5, 12]. [15, 5]
represent the Concern-Decision relationship as a 1-to-n association that crosses
other entities like “alternative” or “solutions”, even though in our experience,
architectural decisions regularly address more than one concern at the same
time. For our purposes, these other entities are not needed, so like [12] we
simplify and generalize them to Figure 1.

In our model, we see Stakeholders in three important relationships: as the
origin of Concerns, as the party that bears the Cost of implementing Decisions,
and as the victim bearing the Risk of wrong Decisions. Please note that these
are independent associations: the Stakeholder paying for the implementation or
suffering the risk of a wrong decision is not necessarily the same Stakeholder
from whom originates the Concern that the Decision is addressing.

The final concept we would like to define here is Architectural Significance.
This is an attribute of Concern. It is the key concept used in this paper to de-
scribe the amount of attention the architect should pay to a particular concern.

3. Architectural significance in terms of risk and cost

In section 2, we stated that architects focus on concerns that involve high risk
and cost. In this section, we make this statement more exact: the architectural
significance of concerns can be represented by their cost and risk level.

Below, we present an approach for roughly quantifying the architectural sig-
nificance of a concern. The purpose of quantifying the architectural significance
of concerns is to be able to order them, so that architects can direct their at-
tention to the most significant concerns as explained in section 4. It should be
noted that architects in industry mostly follow their gut-feeling and experience,

supported by checklists and templates, for assessing what is architecturally sig-
nificant, and that in our experience this assessment is usually strongly related
to risk and cost. The formulas presented below are primarily a conceptual tool,
a vehicle to explore the relationships between architectural concerns and deci-
sions, and their architectural significance in terms of cost and risk. The usage of
the formulas in practice is limited to those occasions where an architect feels the
need to validate their gut feeling of architectural significance by a rough quan-
tification, or needs to justify their prioritization towards business stakeholders
in broad economic terms.

The principle on which our approach is based is this: the architectural sig-
nificance of a concern can be represented by the budget an organization would
have to reserve to address that concern, including cost contingency, or:

AS(C) = Cost(C) + Risk(C)

In this formula, AS(C) represents the quantified architectural significance
of concern C. Cost(C) is the estimated cost of addressing the concern, as
explained in section 3.2. Risk(C) is the total expected cost of “things going
wrong” associated with C as explained in section 3.1: the cost contingency.

An example of how this principle would be used to assess the architectural
significance of a performance concern Cpeyy: Cost(Cpery) would represent the
cost of addressing the concern, including the cost of designing and engineer-
ing work specifically aimed at achieving the required performance, performance
testing and tuning, and cost of any tools used in this work. Risk(Cpe,r) would
then be the cost contingency associated with the risk of not properly addressing
the concern - this term will be elaborated in section 3.1.1.

The formula represents architectural significance in terms of money. Apart
from giving us a way to order concerns, it also gives us an idea of the maximum
economic benefit that can be achieved by architectural activities related to these
concerns. If the cost of these activities grows beyond this maximum benefit, it
clearly makes no sense to continue them: they are not architecturally significant.
A special case of this, regarding the cost of quantification of quality attributes,
is presented by Glinz [16]. Spending more resources on addressing concerns than
is warranted by their impact in terms of risk and cost is a waste. Such concerns
are clearly not architectural. Using risk level to determine what an architect
should do, and especially not do, is the basis of Fairbanks’s [17] risk-driven
model; we add cost as an equally prominent factor to consider.

3.1. Risk

A Risk is something that may go wrong. Traditional architecting activi-
ties control risk in a number of ways, both before and after committing to an
architectural decision:

1. gathering information (before committing), reducing the uncertainty of a
wrong architectural decision by e.g. architectural prototyping or architec-
tural analysis

2. risk-mitigating design, using architectural strategies and tactics that re-
duce the impact of change after committing, such as loose coupling and
abstraction layering

3. documenting architectures, reducing the probability of misunderstanding
architectural requirements and/or decisions

4. evaluating architectures, reducing the probability of wrong architectural
decisions by having the architecture reviewed against critical criteria be-
fore committing

The quantified definition of risk in this paper is the risk exposure relationship
used by Boehm [18]:

Risk(F) = p(F) x I(F)

in which F is a particular failure scenario, p(F) is the perceived probability of F'
occurring, and I(F) is the estimated impact of F. When thinking about risks,
normally cost is not the only impact if things go wrong: other impacts should
not be forgotten, such as the impact of failure on delivery time or stakeholder
satisfaction. When calculating risk exposure, all impact needs to be somehow
converted to financial impact. The reason we are talking about perceived proba-
bility and estimated impact is because the architect, at the time of architecting
the solution, can never determine the actual probability and impact of failure.

We state that risk is an important factor in determining which concerns an
architect should focus on. To be able to do this and quantify the risk aspect
of a concern, the architect must tie architectural concerns to failure scenarios.
Most concerns have inherent failure scenarios; this is what architects worry
about. The most generic failure scenario related to a concern is “not addressing
the concern”, a failure to meet the stakeholders’ needs underlying the concern.
Sometimes obligation to meet the concern is formalized in an agreement (e.g.
a Service Level Agreement), with related specified penalties: in those cases the
direct financial impact to the supplier is equal to those penalties (but there
may also be indirect impact, like reputation damage). Sometimes the impact is
harder to express financially, like loss of life when not meeting a safety concern.

Once we have identified all independent failure scenarios related to a concern
and estimated their associated probability and impact, we can determine the
concern’s financial risk impact by simply adding the financial risks of these
scenarios. This calculation is exactly the same as calculating a project’s required
contingency budget based on its risk register [19], which we do not have to
explain here.

An important aspect the solution architect should take into account is that
stakeholders have different interests in risks, related to the difference of the
scope of their stake in the solution. Stakeholders each have their own interests:
a project manager will be mostly interested in the risks that impact project
success, while a security officer will be more interested in risks that impact
security, which usually occur only after the project has delivered the solution
and the project manager has been discharged. This difference could be made

visible in the model described above by making the impact estimate of failure
scenarios stakeholder-dependent. One can then choose to add the risk exposure
of all stakeholders, or to filter out the impact related to less critical stakehold-
ers. What this tells us, is that the architectural significance of a concern is
stakeholder-dependent, and architects have to be able to deal with diverging
stakeholder views on which concerns are more critical to deal with. Many archi-
tects working in a project context feel an inherent responsibility for the lifetime
of the system, extending beyond the project’s end. The approach presented
here gives them a way to quantify differences in stakeholder interests.

8.1.1. Risk example

Returning to our example performance concern Cy., s above: failure scenar-
ios are those turns of events in which the solution fails to meet the performance
criteria, e.g. the response times of a web application are too slow. Three exam-
ples failure scenarios for the web application that is too slow:

Fy The hosting platform is underdimensioned.
F5 The connection between the hosting platform and the internet is too slow.

F3 The number of web-users exceeds expectations.

The architect has to assess these risks at design time — more precisely, at
the time she is ordering the concerns to be addressed. F; and F, are design
or construction “errors”: the architect assesses the probability p(F}) and p(F)
of such errors based on her experience with similar solutions, probably taking
into account the available budget, technical parameters and uncertainty. The
impact of such construction errors I(F;) and I(F») consists of the damage and
repair costs. Damage is caused by e.g. contract penalties in the Service Level
Agreement and/or users turning away from the system because of its unrespon-
siveness. Repair costs are the costs of adding hardware and/or bandwidth.

The architect assesses the probability of the number of web-users exceed-
ing expectations p(F3) based on available knowledge of the uncertainty in the
projected numbers of users. The impact I(F3) of this scenario again consists
of damage and “repair” costs: “repair” perhaps being a strange term here, be-
cause the solution itself is not broken: it is just being overused, and needs to be
expanded.

The total risk exposure then consists of adding the individual scenario’s
exposures: p(Fy) x I(Fy) +p(F2) x I(Fy) + p(Fy) x I(F).

Once again, these calculations are not usually made in practice to any level
of detail: they should be considered a conceptual tool, and applied in a manner
commensurate with the objective of determining architectural significance. The
architect usually considers only one or two failure scenarios that dominate the
concern, and prioritizes based on rough order-of-magnitude impact assessments.

8.1.2. Decision risk

Apart from the risk of not addressing concerns, architects worry about an-
other type of risk: the risk of making wrong architectural decisions. When
generating a concern’s failure scenarios, we should include scenarios in which
the decisions addressing the concern turn out to be wrong. The two types of
risk are closely related, and one could argue that a failure to address a concern
is simply a failure to make the right decisions to address it. In [11] we presented
a simple formula based on this argument, but we will delve a bit deeper here.

What is a “wrong decision”? It is when we choose A when B would have
been better, or vice versa. “Better” meaning e.g.: costing less in terms of time
and money, or resulting in a solution that better fulfills requirements. A failure
scenario related to an architectural decision, expressed in its most generic terms,
is: it turns out we made the wrong decision. We denote this failure scenario F'
related to decision D by Fp_,yrong. It is important to understand that “wrong”
is not an attribute of a decision; “wrong decision” is simply a shorthand way
of expressing a scenario. In such a scenario, the failure can be due to all kinds
of internal and external factors, unforeseen events etc., which “it went wrong”
pertains to. Hence, the word “wrong” does not necessarily qualify the architect’s
work when making the decision.

Let’s look at an example concern from the software architecture world: keep-
ing java objects in an application server in sync with the corresponding records
in a relational database (RDB). This is known as the O/R mapping problem,
and several tools and techniques exist to address it: use of the Hibernate tool,
use of entity beans, hard-coded SQL, etc. We will base a small thought exper-
iment on this concern. For simplicity’s sake, let’s state that the O/R mapping
problem can be addressed by one architectural decision: the decision to choose
one of the available tools or techniques. The failure scenarios are those that
inhibit the solution’s quality attributes like maintainability, data integrity, per-
formance etc. Depending on the context and what happens in the future, a
decision to hard-code SQL statements to populate java objects could turn out
to be wrong. The resultant close coupling of the java code with the RDB data
model and technology could cause excessive effort to be needed for changes, vi-
olating a modifiability requirement. We cannot know this at design time; all we
can do is assess the probability p(Fp_wrong) and the impact I(Fp_swrong) of
this failure scenario. This is not trivial, since the impact depends on when the
failure is determined. If the situation goes undetected it will harm the stake-
holders by driving up the cost of changes. If it is detected before the “wrong”
solution can do any damage, the project team would still have to re-factor the
code, and the impact of the wrong decision ultimately translates to the total
cost of this re-factoring to the stakeholders, including the re-factoring effort and
any additional costs caused by the subsequent delay in delivery of the solution.
This is in effect the cost of reversing the architectural decision.

This thought experiment illustrates a general point: the impact of a wrong
decision usually involves both the cost of reversing the decision and the poten-
tial damage to the stakeholders if it is not reversed, or until it is reversed. In

any case, the cost of reversing an architectural decision is an important factor
in its architectural significance. When using cost and risk to determine ar-
chitectural significance, design decisions that are expensive to reverse tend to
be more architectural. This gives a theoretical basis to Fowler’s qualification of
architecture as “things that people perceive as hard to change.” [13]. It also res-
onates strongly with [20], who state that “the software architecture of deployed
software is determined by those aspects that are the hardest to change.”

3.2. Cost

Cost is the amount of money spent on something. The formula for estimating
the cost of addressing a concern is:

Cost(C) = Z Cost(D)

DeDA(C)

where DA(C) is the set of decisions addressing concern C, and Cost(D) is
the estimated cost of implementing decision D. There are many documented
ways to estimate cost in software engineering (e.g. [21]), which we will not dis-
cuss here. Risk factors must be excluded from this cost estimate, to prevent
double-counting risks into the architectural significance function AS(C') above.
Once again, we are not suggesting to use this formula to determine architec-
tural significance in practice; it is presented to clarify our view on architectural
significance.

It should be noted that concerns and design decisions have an n-to-m rela-
tionship: design decisions often address multiple concerns, so that adding costs
calculated this way for multiple concerns Cy and C5 will cause double-counting
for decisions that address both concerns in DA(C1) N DA(C3). Since we are
only interested in determining the cost-factor in architectural significance, we
are not planning to add costs of different concerns, so this is no problem here.

Just like with risk, the solution architect should always realize that stake-
holders have different interests in costs, related to the difference of the scope of
their stake in the solution. Hence, a project manager will be mostly interested
in project costs, while a business owner may be more interested in the Total
Cost of Ownership (TCO). Depending on the solution architect’s context, her
architectural decisions may effect TCO, project costs or both. So both the cost
and the risk element of architectural significance are shown to be stakeholder-
dependent.

4. Impact on architecting process

We will now examine the impact of the risk- and cost management view of
architecture on the architecting process. In the previous sections, we have dis-
cussed the importance of managing risk and cost in architecture, and presented
a method for ordering concerns by architectural significance. In this section, we
will show how this ordering can be used to optimize an architecting process so
that it becomes better at controlling risk and cost.

10

As a reference architecting process, we use the generic approach documented
n [22]. In this paper, Hofmeister et al. compare five industrial approaches to
architectural design, and extract from their commonalities a general software
architecture design approach.

The approach involves three activities, and a workflow that reflects the fact
that the three activities are not executed sequentially.

4.1. Architecting activities

The generalized architecting activities are:

1. Architectural analysis: define the problems the architecture must solve.
This activity examines architectural concerns and context in order to come
up with a set of Architecturally Significant Requirements (ASRs).

2. Architectural synthesis: the core of architecture design. This activity pro-
poses architecture solutions to a set of ASRs, thus it moves from the
problem to the solution space.

3. Architectural evaluation: ensures that the architectural design decisions
made are adequate. The candidate architectural solutions are measured
against the ASRs.

Of these three activities, the one that is most impacted by the risk- and
cost management view of architecture is architectural analysis. The basis of
this analysis are the solution’s context and architectural concerns. Viewing
architecting as a risk- and cost management discipline sheds light on which
concerns are architectural: those that have high impact in terms of risk and
cost. This addition necessarily implies that risk and cost assessment becomes
part of the architectural analysis activity. This applies not only to the concerns
to be addressed, since the impact in terms of risk and cost is transferred to the
Architecturally Significant Requirements (ASRs) resulting from the analysis.
In [22], the ASR definition is borrowed from [23]: “a requirement on a software
system which influences its architecture”. In risk- and cost driven architecting,
the ASRs are likely the most sensitive requirements in terms of risk and cost.

4.2. Architecting workflow

In [22], the authors describe an “apparently haphazard process” in which
architects maintain, implicitly or explicitly, a “backlog of smaller needs, issues,
problems they need to tackle and ideas they may want to use. The backlog drives
the workflow, helping the architect determine what to do next.” Hofmeister et
al. make clear that the backlog typically consists of architectural concerns but
also other types of items, and that it is constantly re-prioritized using various
prioritization tactics. They mention risk as one of the mostly external forces
driving priority; others are team or stakeholder pressure or perception of greater
difficulty.

When talking to architects, many of them indicate that this is where most
of the added value of the risk- and cost driven view on architecting is. It helps

11

them better organize this apparently haphazard backlog process by giving them
a clear measure of priority: prioritizing by risk and cost.

In section 3, we have only discussed determining the architectural signifi-
cance of Concerns. Backlog items typically take the form “We need to make a
decision about X.” or “We should look at Y in order to address Z.”[22]. The
fact that not all of the backlog items are formally architectural concerns is not
a problem in practice, as long as the team is not too religious about the defi-
nitions. As long as the backlog items can reasonably be expressed in terms of
risk and cost, the prioritization works.

One important thing to realize here is that A has higher priority than B
does not necessarily imply A must be addressed before B. The backlog is not a
strict picking order. Rather, it helps to identify the top n items to be addressed
at a particular point in time, where usually n = 5 + 2. This seems to be a
rather unsophisticated approach, but as we will see in the next section, the risk
management aspect of architectural decision making allows us to further analyze
the timing aspect.

We saw in the previous section that the architecting activity that is most
directly impacted by the risk- and cost management view of architecture is ar-
chitectural analysis. The architecting workflow, however, drives all architecting
activities, including some that are not mentioned in Hofmeister et al.’s general-
ized approach, such as architecture implementation and maintenance. Through
the architecting workflow, the risk- and cost management view of architecture
permeates into those activities as well. For example: in the architecture doc-
umentation activity, the views that should be documented first are those that
are associated with concerns that have high impact in terms of risk and cost.

4.8. Architectural decisions and the flow of time

When discussing risk and time, an important aspect is that the nature of
the risk of a wrong decision D changes at the moment that we commit to the
decision. Until that moment, the primary failure scenario is “the architect will
make a wrong decision”; after that moment, the failure scenario changes to “the
architect has made a wrong decision”. The difference seems trivial, but is not,
as we will see in this section.

The time at which to address architectural concerns is influenced by their
risk-related character. We have seen in section 3.1 that the risk related to an
architectural decision is the product of the probability of a wrong decision and
the impact of a wrong decision, and that an important component of the second
factor is often the cost of reversing the decision. Generally, the influence of
time on these factors depends on the moment of committing to a decision, as is
illustrated in Figure 2. In this figure, we see the probability that a decision D
turns out wrong represented by a line, the impact of D being wrong by another
line, and the moment ¢p of committing to decision D as a vertical line:

e after the moment of decision, the cost of reversing an architectural deci-
sion, and with it the impact of it being wrong, will increase over time as
it is being implemented

12

before committing = after committing
‘F:'ro
-ﬁ&bﬁ;}:ﬂ, o
3
W,
"0,;,9

-impact D 2wrong

to
Decision time

Figure 2: Decision risk factors over time.

e until the moment of decision, the probability of a wrong architectural
decision decreases over time as more information becomes available

e once we start implementing the decision, still more information will be-
come available, but because we are already committed to it, it will not
necessarily reduce the probability of D having been wrong. This is repre-
sented by the shaded triangular area.

The shaded triangle requires some explanation. It is caused by the emerging
information during the implementation of decision D, which can be either good
or bad news:

e If all goes well, the probability of the decision having been wrong P(D —
wrong) decreases, and the probability line will continue to go down. But
whatever happens, the impact of D having been wrong will increase. The
resulting risk may still either go up or down, depending on the rate of
increase of the impact. R(D) = P(D — wrong) x I(D — wrong) may
either decrease or increase.

e If the emerging information points more and more in the direction of D
having been wrong, both P(D — wrong) and I(D — wrong) will increase,
so R(D) will certainly increase.

Assuming that the cost estimate of implementing D remains stable, this
implies that the architectural significance of the concern C that D is designed
to address may increase after we have made the decision.

13

Looking at architecting as a risk- and cost management discipline, we have
to conclude that it is important for architects to continue to pay attention to
the concerns they have made decisions about, because their architectural signif-
icance may yet increase. An extreme example of this is that sometimes concerns
that did not seem architectural at the time of architecting, in running systems
turn out to be architectural after all. So, risk- and cost driven architecting leads
us to extend the list of architectural activities designed to control risks at the
beginning of 3.1 with another activity: monitoring architectural concerns after
committing to decisions to address them. The economic impact of monitoring
decisions and resolving uncertainty over time has been analyzed extensively by
several authors [24] using decision trees and real-option theory.

5. Stakeholder Communication

Many stakeholders, especially business managers, are not used to thinking
and talking in terms of levels of abstraction or components and connectors. Part
of the architect’s job is to translate architectural concerns and decisions into
terms that stakeholders understand [25]. One substantial advantage of express-
ing architectural significance in terms of risk and cost is that they are universal
terms that most stakeholders can relate to. These terms smooth communication
between architect and stakeholders, and give the architect a relatively objective
measure to explain priorities to stakeholders. In section 5.1, we will list some
examples from practice of architectural concerns and how they can be expressed
in terms of risk and cost to facilitate stakeholder communication.

Apart from the level of individual concerns, we are also experiencing that
viewing architecting as a risk- and cost management discipline is improving
business managers’ understanding of the overall value of architecture and ar-
chitects. Managers routinely understand the value of risk mitigation and cost
control. When these are presented as the primary business goals of architec-
ture, we find that this makes business managers more comfortable assigning
often highly-paid [26] architects to projects or product organizations.

5.1. Examples from practicing architects

In this section, we will present some examples from real projects', presented
to us by the architects trained in the Risk- and Cost Driven Architecture ap-
proach. These examples highlight the risk and cost aspects of typical real-life
architectural concerns:

e Application Server platform A large, business critical product applica-
tion with a substantial java-based web interface is extensively customized
and parameterized before being put in production. The development team
is using the Open Source JBoss application server platform to develop the

LAll examples are from real projects; due to company confidentiality constraints, the ex-
amples have been abstracted away from their specific project context.

14

customizations. The target production platform is a Commercial Off-The-
Shelf (COTS) application server. At a certain point in time, the develop-
ment platform will also have to start using the target COTS application
server. The architectural concern is the timing of this move. Moving
the development platform to the “heavier” COTS application server too
early will cause loss of efficiency and entail extra costs in the development
team. Moving too late carries the risk of finding application-server spe-
cific issues too late, maybe forcing some refactoring that could have been
avoided. The primary business stakeholder initially was not interested in
this concern: according to his knowledge, J2EE application servers were
standard and the move should be trivial. The architect had the important
challenge of making the business stakeholders aware of the risk and cost
aspects of the concern.

Role-based Interface A web site has been designed and presented to the
business stakeholders. In the design, the user only sees functionality that
she is authorized for. Architectural concern is that users can switch roles
during a session, which is not supported by the COTS portal platform in
use (roles are cached during the session). Time to solve this issue is very
limited. Several alternative solutions are considered: asking the portal
supplier for help is risky, because it will take a long time and there is no
guarantee for success. Alternatively, users can be required to log out and
back in when they switch roles; this is low-risk, but makes the system less
efficient, raising costs on the user side. In this example, making the risks
and costs explicit helps the stakeholder make the right trade-off.

Web and SOA access channels A large java-based application is being
developed. The system will have a broker-like role, connecting various
small and large companies, at widely varying levels of IT sophistication.
The system is required to offer much of its functionality both as a web-
based user interface (for small, low-IT companies) and as SOAP web-
services (for larger companies with more sophisticated IT). At the time of
designing the system, it is unclear what the distribution across these ac-
cess channels will be in the near future; it might even change substantially
during the time the system is being built. Key architectural decisions to
address this concern are whether or not to build a common abstraction
layer for both the web- and web-services interfaces on top of the business
layer, and what mechanism to use to expose the common functionality
to web-services. Costs are the development cost of the abstraction layer,
the license and configuration costs of COTS web service integration pack-
ages. The key risks are jeopardizing performance by the abstraction layer,
putting a lot of effort in access channels that might hardly be used by the
time of deployment, and inconsistencies in business rules across the access
channels.

15

6. Implementing the risk- and cost driven view of architecting

After elaborating the theoretical implications of viewing architecting as a
risk- and cost management discipline in the previous sections, we will now focus
on the practical implications for the architect’s activities. We will do this in
the form of a list of guiding principles that the architect can apply to their
way of working. This guidance is mostly independent of the particular flavor of
architecting process used.

In order to improve the effectiveness of their work in terms of risk and cost
control, architects should adhere to the following guidelines:

e Make risk- and cost assessment part of architectural analysis.
This is a prerequisite to the other guidelines in this list, and implies that
architect’s skill set should include risk management and cost estimation.

e Create and maintain a list of architectural concerns and order
them by risk and cost. The top 3-7 items on this list are the most
architecturally significant, the concerns that the architect should focus on
at any point in time. Apart from helping the architects in their projects,
this has the additional benefit of creating a stored history of architectural
concerns across multiple projects and architects, which can be analyzed
for lessons learned.

e Regularly monitor the key architectural concerns. Keep in mind
that the architectural significance of a concern may increase after the
concern has initially been addressed by architectural decisions.

e Communicate about architectural concerns and decisions with
business stakeholders in terms of risk and cost. Architects should
explicitly link their priorities to the business context of their stakeholders,
keeping in mind the purpose of doing architecture in the first place: to
manage risk and cost.

e Get involved in the program’s risk register. This is a special case of
the previous guideline, where the stakeholder is the project or programme
manager. The architectural concerns all imply risks and hence should be
represented in the risk register, and the activities to address the concerns
are the associated risk mitigation measures.

e Report progress in terms of risk and cost control. The extent to
which architectural concerns are under control is a good measure of the
progress made during the architectural design phase of a project. The
primary deliverables of an architect are the architectural decisions that
increase control, and the architect’s progress should be tracked on those
deliverables (rather than e.g. the chapters of the architectural blueprint).

e Stop architecting when the impact gets too low. Spending more re-
sources on addressing concerns than their impact in terms of risk and cost

16

warrants is a waste. Such concerns are clearly not architectural. Don’t
do more architecture than is strictly necessary [27]. Architects invari-
ably have a limited amount of time and they should spend it addressing
concerns with the most pressing risks [17] and cost.

7. The RCDA Approach

This section describes RCDA, the Risk and Cost Driven Architecture ap-
proach developed in Logica. The approach consists of a set of practices, har-
vested from Logica practitioners and enhanced by our research presented in
earlier sections of this paper. We present the structure of the approach and its
rationale.

Of the architects we have taught the approach so far, about half did not
call themselves Software Architects. Their area of interest was often wider
than software-intensive systems, covering business processes, IT infrastructure,
information architecture, etc. They were interested in the approach because
they had to architect solutions, and their architecting process involved all the
same key concepts: stakeholders, concerns, decision making, etc. All of the non-
software- architects indicated that the principles presented, based on viewing
architecture as a risk- and cost management discipline, was applicable to their
area of interest.

The name we use for this spectrum of architecting disciplines is Solution
Architecture, to indicate that the common denominator of these architecture
disciplines is to find a solution to a particular set of stakeholders needs. This
term is also used in the Enterprise Architecture domain: The Open Group
Architecture Framework (TOGAF) [33] defines a Solution Architecture as a
description of a discrete and focused business operation or activity and how
IS/IT supports that operation. A Solution Architecture typically applies to
a single project or project release, assisting in the translation of requirements
into a solution vision, high-level business and/or IT system specifications, and
a portfolio of implementation tasks. Although this definition is a little more
specific than our notion encompassing various architecture genres, the focus on
a single project and solution vision corresponds to our application of the term.

7.1. RCDA Practices

The basic building blocks of RCDA are practices. A practice is a way to sys-
tematically characterize a problem and address it [28]. Practices that address
closely related problems are clustered into practice sets. There are practice sets
for Requirements Analysis, Solution Shaping, Architecture Validation, Architec-
ture Fulfillment, Architectural Planning and Architectural Asset Management.

The practices of RCDA, ordered by practice set, are:

Requirements Analysis practices, where the requirements originating from
stakeholders are prepared for shaping a Solution:

17

Architectural Requirements Prioritization addresses the problem of
pinpointing and prioritizing architecturally significant requirements
and concerns, according to the principles laid out in section 3. Of all
RCDA practices, this practice most strongly represents the risk- and
cost driven view.

Dealing with Non-Functional Requirements gives guidance on iden-
tifying and addressing the risks associated with NFRs, which are of-
ten underexposed and can have major impact on the solution. Risk
assessment is key in this practice.

Stakeholder Workshop is a practice for obtaining architectural require-
ments from stakeholders, based on the SEI’'s Quality Attribute Work-
shop [29].

Solution Shaping practices to define a solution’s architecture:

Solution Selection addresses the problem how to identify and select the
best fitting strategy to fulfill architectural requirements on a Solution
in an objective manner, taking risk and cost into account.

Solution Shaping Workshop is a special case of a Stakeholder Work-
shop for a fixed price bid or project. All delivery stakeholders are
gathered to kick start the solution shaping process, led by the solu-
tion architect.

Cost-Benefit Analysis helps architects to consider the return on in-
vestment of any architectural decision and provides guidance on the
economic tradeoffs involved, based on the SEI’'s CBAM practice [10].

Applying Architectural Strategies describes how to implement ar-
chitectural strategies selected in previous steps, determining a solu-
tion’s structure according to the principles explained in e.g. [14, 30].

Architecture Documentation documents the current state of the so-
lutions architecture in a set of views [31, 12], focussed on effectively
communicating the architecture to the relevant stakeholders.

Documenting Architectural Decisions addresses the problem of track-
ing architectural concerns and decisions throughout their lifecycle,
based on e.g. [6, 5]. The risk/cost perspective adds tracking of risks
and cost associated with the concerns and decisions.

Solution Costing gives guidance on early costing of delivering a solu-
tion using a selected architecture. This core practice is introduced
through the risk/cost perspective.

Architecture Validation practices aimed at validating the architecture de-
veloped in previous steps:

Architecture Evaluation to create transparency and identify risks in
the architectural decisions made, and to verify that the architec-
ture meets its requirements; roughly based on [32], enhanced by the
risk/cost perspective.

18

Architectural Prototyping is performed when there is uncertainty about
the feasibility of (parts of) an architecture which can be resolved by
“trying it out”. A risk mitigation practice.

Supplier Evaluation helps architects identify potential risks when com-
mitting to delivering third party products as components of an ar-
chitected solution; another risk mitigation practice.

Architecture Fulfillment practices, related to the development and delivery
of the solution under architecture:

Architecture Implementation making sure that the architecture de-
veloped and validated in previous steps is actually implemented in
the solution.

Architecture Maintenance provides guidance on taking an existing so-
lution into operation, and on maintaining a solution’s architecture
once it is operational.

Blended Architecting gives guidance on solution shaping and fulfill-
ment in a geographically distributed solution delivery setting, iden-
tifying and handling the associated risk and cost.

Architectural Planning practices, giving guidance on how to plan architect-
ing activities:

Architecting Lifecycles addresses the problem of when to apply RCDA
practices, showing how the various RCDA practices map to certain
common scenarios.

Requirements Convergence Planning addresses the problem of find-
ing the best balance of affordability between risk, cost and benefit of
architectural requirements.

Architecture Contingency Planning helps mitigate the risk of having
to backtrack architectural decisions when it turns out an architecture
cannot fulfill the stakeholders’ needs.

Architectural Asset Management practices, aimed at re-using architectural
assets like knowledge, reference architectures and re-usable components
across solutions:

Architecture Knowledge Management addresses the problem of cod-
ifying and sharing architectural knowledge such as patterns and lessons
learned across the company, using techniques like those documented
in [9] and [33].

Software Product Line Management gives guidance on how to im-
plement and manage software product lines so that they serve as the
basis for multiple solutions, based on the SEI Software Product Line
materials [34].

19

Luswabeue)y 19ssY |LINI91IYdIY

AUBWILING S1N30931UdY

S22130eld jusLUuUuodIAUg

uonepleA 21n39931Yaly

Buiuue|q ain3os31ydly

Buideys uoianjos

sIsA|euy sjuswadinbay

seo130eld buluue|d

sa2130eld bunpioddng

S=21jokld =400

Figure 3: RCDA Practices organized by practice set and practice category.

20

Technology Monitoring helps architects keep abreast of new develop-
ments that can provide more fitting alternatives for solution selecting.

The practices, grouped in practice sets, are visualized in Figure 3. In a second
dimension, Figure 3 organizes the practices into the following four categories:

Core practices We chained the seven RCDA core practices together to form a
core architecting process that should be followed in every reasonably com-
plex project. The core process is one of the scenarios documented in the
Architecting Lifecycles practice. Core practices may refer to supporting
practices for (optional) additional guidance. The core practices embody
the principles of RCDA.

Supporting practices Supporting practices provide additional guidance on
good architecture in a project, product or bid context. This category
contains all non-core practices in the solution domain, except planning
practices.

Planning practices Planning practices help the architect and project / bid
manager to plan architecture activities. They are all the practices in the
Architecture Planning practice set.

Environment practices Environment practices are architecture practices in a
bid, project or product’s environment that provide and consume artifacts
of the solution domain, and in general impact the solution architecting,
but are not solely directed at one solution. Thus, environment practices
are about architecting across multiple individual solutions. At the mo-
ment the only environment practice set in RCDA is Architectural Asset
Management; in the future, additional environment practice sets may be
added, related to e.g. architectural quality monitoring.

Figure 3 shows 22 practices: 14 that are part of the current version of RCDA,
and 8 that have been identified for future versions. The 8 future practices are
marked with an asterisk. In the figure, the 7 core practices are chained together
by arrows to symbolize the core architecting process that they form.

7.2. RCDA Principles

Risk- and Cost Driven Architecture is based on the following key principles:

Cost and Risks drive architecture

Architecture should be minimal

Architecture as both Blueprint and Design Decisions
Solution Architect as Design Authority

These principles are based on our experiences, enhanced by literature. So-
lution architects are encouraged to always keep these principles in mind when
applying RCDA practices. The principles are applied through the individual
RCDA practices as explained below.

21

The first principle, Cost and risks drive architecture, is explained extensively
in the preceeding sections. It is applied throughout RCDA, but most explicit in
the Architectural Requirements Prioritization practice.

Architecture should be minimal is based on recent insights such as expressed
in [27] and [17]. In order to keep overview of the whole system, the solution
architect’s decisions should be limited to those that have critical impact on the
system and its delivery - leaving a maximum of design space for filling in details
within the constraints set by that architecture. This should of course be done
with due consideration for the capabilities of those designers and developers,
and should not detract from the clarity with which the architecture is com-
municated. Kazman, Bass and Klein formulate this principle as: “A software
architecture should be defined in terms of elements that are coarse enough for
human intellectual control and specific enough for meaningful reasoning.” [35]
It is applied through the Architectural Requirements Prioritization practice.

Architecture as both blueprint and design decisions is based on papers such
as [5, 6]. The architecture of a system is more than just a blueprint of its high-
level structure - the design decisions leading to that structure and the underlying
rationale are equally essential. No architectural description is complete without
a well-documented set of design decisions. By thinking about architecture as a
set of design decisions, we abstract away from the modeling details inherent to
a particular technology or view, and are able to give generic guidance on how
architects make trade-offs and document decisions. It also helps to focus on the
rationale behind the decisions, which is important to future architects and those
implementing or reviewing the architecture. This principle is applied through
the practices Architectural Requirements Prioritization, Solution Selection and
Documenting Architectural Decisions.

Solution architect as design authority is based on views like those docu-
mented in [13] and [25]. The complexity of today’s IT solutions requires that
the most critical design decisions are made by one person with an overview of
the whole system. This person should have the authority and the subject mat-
ter skills and knowledge to make such decisions. This role is distinct from the
project manager’s role, and is called the Solution Architect in RCDA. Of course,
architecture is often team work, and architects should surround themselves with
experts to help them make critical decisions - but in the end, no matter how big
the design team, one person is responsible for making all the trade-offs and the
final decision. This principle is applied through the RCDA Solution Architect
role.

8. Impact Survey

In October 2011, all Logica architects that were trained in RCDA were
surveyed. The objective of the survey was to assess the impact of RCDA and
its training on the work of the architects. In addition to the survey itself, we
organized an expert workshop; a guided discussion with a select group of RCDA
trained architecture experts. The workshop was held after the survey, and its

22

purpose was to enhance the initial quantitative analysis results with qualitative
knowledge from practicing architects.

8.1. Survey Description

At the time of the survey, 159 people were registered as having received
RCDA training. All of these registered trainees received an invitation by e-mail
to participate in the survey. After two weeks, 32 (20%) had completed the
survey, and the survey was closed.

The survey consisted of three sections:

Section A General questions about the trainees’ activities after the training

Section B Specific questions asking the respondents about the impact and
frequency of use of the guidance in RCDA

Section C Questions asking respondents whether they agreed with statements
on the overall effectiveness of RCDA

In order to measure at the level of individual pieces of guidance in RCDA,
we codified the most important guidance: Table 1 lists the practices in RCDA.
We have distilled one or more key guidance elements from each practice. Ev-
ery guidance element has been given a code tag, which is used to identify the
guidance element in the survey.

In Section B, respondents were asked to indicate on a Likert scale how of-
ten they had applied each guidance element in Table 1 both before and after
receiving the training:

never
once or twice

regularly (whenever an applicable situation occurs)
every day (part of my daily work routine)

Respondents were also asked to indicate the impact of the guidance by choos-
ing between:

e n/a (never applied the guidance)

e counter-productive (I tried applying the guidance, but it made matters
worse)

e neutral / mixed results

e noticeable improvement (compared to acting without this guidance)

e critical improvement (without applying this guidance, project would have
failed or bid would have been lost)

8.2. Survey Results
Some general statistics to start with:

e Elapsed time from the training to the survey was between 3 and 23 months,
with an average of 9 months, meaning all respondents had time to inter-
nalize and apply the material.

23

Table 1: RCDA practices and key guidance elements.

Architectural Requirements Prioritization

ARP.rc Identify architectural requirements by risk and cost impact
ARP.sc Express architectural requirements in scenarios
ARP.wf The architect’s daily workflow is addressing architectural concerns, prioritized by

risk and cost impact

Dealing with Non-Functional Requirements

NFR.hd Look for hidden NFRs, since they are often crucial for acceptability, even when not
documented

NFR.vf Verify as early as possible that the architectural design will fulfill the NFRs

NFR.cm Don’t commit to quantified NFRs until you have proof of feasibility

NFR.dc Document how NFRs are dealt with as proof of professional behavior

Stakeholder Workshop

SW.ws Gather stakeholders in a workshop to elicit architectural requirements as early as
possible

Solution Selection

SS.ev Decide after evaluating multiple alternative solutions against objective criteria

Solution Shaping Workshop
SSW.ws At the start of a bid or project, gather all delivery stakeholders in a solution shaping
workshop to agree on a candidate solution

Cost-Benefit Analysis
CBA.qf Quantify the impact of architectural strategies on a solution’s quality attributes in
terms of stakeholder value

Applying Architectural Strategies

AAS.dc Document the impact of selected architectural strategies in terms of elements, in-
terfaces and refined requirements

AAS.rp After applying strategies, re-prioritize architectural concerns

Architecture Documentation

AD.sa Use a stakeholder analysis to determine to whom the documentation is communi-
cating

AD.vp Use viewpoints to show stakeholders how their concerns are addressed

Documenting Architectural Decisions

DAD.rd Use a formal Record of Decision to document key architectural decisions

DAD.rg Use an architectural concern and decision register to prioritize and order the archi-
tecture work

DAD.pr Communicate progress and status of architecture work in terms of architectural

concerns and decisions

Architecture Evaluation
AE.ev At key points in an architecture’s lifecycle, perform an objective evaluation and
analysis of how the architecture fulfills its stakeholders’ needs

Architectural Prototyping

AP.pr When necessary, build a prototype or proof-of-concept to verify that architectural
strategies fulfill the requirements
AP.oc Prepare to deal with any outcome of the PoC, including a contingency plan in case

of a negative result

Supplier Evaluation

SE.ev When third parties provide critical components of our architectural solution, evalu-
ate the supplier to identify potential commercial, technical, PR, quality and service
related risks

Requirements Convergence Planning

RCP.pl In case of unfeasible or unclear NFRs, agree a plan with the client that describes how
to converge on acceptance criteria, representing a balance of affordability between
cost and benefits

Architecture Lifecycles

AL.cp RCDA Core Process
AL.rf Respond to RFP
AL.ru RUP software development

24

100%

90% —
80% —
70% —
Strongly agree
60% —
Agree
50% —
M Neutral
40%
W Disagree
30%)
W Strongly disagree
20%
10%
0%

imp_gen imp_com_stkh imp_prio

Figure 4: Three statements on effectiveness of RCDA

e Average time spent in architect roles was 45%. 6 respondents spent less
than 10% in architect roles, of which 5 indicated they had not been in
any architect role. 12 respondents spent 75% or more of their time in
architecting roles.

e 13 respondents (40%) were the lead architect on the majority of their
assignments, meaning they were responsible for architectural decisions.

Figure 4 shows the responses to the three general statements about the
effectiveness of RCDA (Section C):

imp_gen In general, my effectiveness as an architect has improved after being
trained in RCDA.

imp_com_stkh RCDA helps me to communicate with stakeholders more effec-
tively.

imp_prio RCDA helps me to better focus and prioritize my work as an archi-
tect.

Overall, the majority of the responding architects agree that their effec-
tiveness has increased, and about half agree that RCDA has brought them
the benefits of the risk- and cost driven approach described in section 1. Less
then 15% disagree with any of the statements, but a significant portion of the
trainees answered “neutral”, implying they could not decide whether or not the
training had made them more effective. Adding the “disagree” to the “neu-
tral” responses, we get 40% of respondents not agreeing that the training had
made them more effective. Figures 5a and 5b shed some light on this significant
number by breaking down the respondents.

25

o
ha -
o Application Development
pi B — Software
[Architects

e
o Application Maintenance
o
o — I —
e
el Enterprise Architecture
! | —
prar
e
o Infrastructure Management
o — 1 11—
o] oOth
o : er
o Package Implementation | N
— — Architects
frer
-
o Systems Integration
o —1 —1
h Technical Systems
o (embedded, drivers,
-] space,...) .
© T T T T T

Strongly Disagree Neutral Agree Strongly

disagree agree

(a) By architecture genre

50,0%

40,0%
-
S 300%
H Others
Q. 200%-
10,0% lj
50:0*—
40,0%
€
g Lead
& Architects

200%

10,0%

]

Strongly Disagree Neutral Agree Strongly
disagree agree

(b) Lead architects vs others

Figure 5: Agreement with “In general, my effectiveness as an architect has
improved after being trained in RCDA.”

26

In Figure 5a, we see how the responses to imp_gen are divided over the
various architecture “genres”. The figure confirms that the effectiveness of the
risk- and cost driven view extends beyond software architecture into the wider
domain of solution architecture. In fact, the only disagreement comes from the
software architects in the application development domain. The fact that only
software architects disagree with the effectiveness of RCDA seems remarkable,
since RCDA is mostly based on ideas from the software architecture community.
We discussed this paradox in the expert workshop; the most likely explanation
seems to be that some software architects may have found RCDA less value-
adding than other architects, because it is partly based on ideas that were
already familiar to them before receiving the training.

Figure 5b shows that those who have been active in lead architect roles have
stronger opinions, and in general are more positive about RCDA effectiveness
than those who have not been in lead architect roles. This visual impression is
confirmed by statistical analysis, which shows that the “lead architect” responses
are significantly correlated to the “general effectiveness” agreement responses
(Spearman’s p correlation coefficient of 0.34, 1-tailed significance at the 0.05
level).

8.2.1. RCDA Principles

We asked the architects about the frequency with which they applied the
general RCDA principles explained in section 7.2, and the impact. Table 2
shows the results. Column “Applied before” and “Applied after” shows the
percentage of respondents who applied the principle before and after receiving
RCDA training; “Impact” shows the percentage of respondents who reported
significant impact. Standard errors in the percentages are indicated in the
table. The table shows that the number of architects applying the principles has
increased considerably after the training, and that all four of the principles have
significant impact when applied. A paired-sample T-test between the “frequency
applied before training” and “frequency applied after training” shows that three
out of the four principles have been applied significantly more after receiving the
training: the increase in application of the “architecture as both blueprint and
design decisions” principle is not significant at the 0.05 level, the other three
are significant and are indicated with an asterisk.

8.2.2. RCDA Practices

Figure 6 shows the percentage of respondents indicating they have applied
the key guidance elements of the RCDA practices listed in Table 1, both be-
fore and after receiving the training. All guidance elements show an increased
number of respondents applying it after the training, with the exception of
Architectural Prototyping. The guidance elements for which the increase is sig-
nificant as calculated by a paired-sample T-test are indicated with an asterisk.
The Architectural Prototyping practice was already applied before the training
by 25% of respondents.

The percentage of trainees who applied the guidance after training is below
60% for all guidance. This may seem low; additional light is shed on this if we

27

0% 10% 20% 30% 40% 50% 60%

*aas.dc
aas.rp
*ad.sa
*ad.vp

ae.ev
ap.oc
ap.pr
*arp.rc
arp.sc

*arp.wf

*cha.gf

W after

dad.pr m before

*dad.rd

*dad.rg

nfr.cm
*nfr.dc
*nfr.hd
*nfr.vf
rep.pl
se.ev
ss.ev
*SSW.WS

*SW.WS

* Increase in application frequency significant at 0.05 level

Figure 6: RCDA practices: respondents applying guidance before and after
training (abbreviations on p.24)

28

Table 2: RCDA Principles: frequency applied and impact

Principle Applied Applied Significant
before after impact
Cost and risks drive architecture* 16%+6% | 34% 86%+7%
+8%
Architecture should be minimal* 34%+£8% | 53%+8% | 88%+£6%

Architecture as both blueprint and | 34%48% | 53%48% | 100%
design decisions
Solution architect as design author- | 25%=+£7% | 44%+8% | 86%+7%
ity*

* Increase in application frequency significant at 0.05 level

compare the percentages for lead architects versus other respondents, as visual-
ized in Figure 7. We see that more lead architects than others are applying the
guidance, and almost half of the guidance elements are applied by the majority
of the lead architects. Analysis shows that the “lead architect” responses are
significantly correlated to the “frequency applied after training” responses for
all guidance elements except ap.pr and nfr.cm (positive correlation coefficient
of 0.3 or more, 1-tailed significance at the 0.05 level, using Spearman’s p). Just
like in the case of “general effectiveness” above, we see a correlation between
the solution architect’s position of authority and responsibility (lead architect)
and the frequency of applying RCDA guidance.

Figure 8 shows the key guidance elements of the RCDA practices. The figure
visualizes the impact of the practices and their training. The horizontal axis
represents the percentage of respondents reporting an increased frequency of
applying the guidance after the training. The vertical axis represents the per-
centage of respondents reporting that the guidance has had significant positive
impact in their projects. The first observation is that none of the practices is
reported to have increased application by more than 50% of respondents (which
is in line with Figure 6). On the other hand, all practices are reported to have
significant impact by over 50%.

We have clustered the guidance elements and separated the clusters by gray
lines.

e In the center, we see 8 guidance elements that all have around average
characteristics: increased application by about 25%, and significant im-
pact reported by about 75% of respondents. This cluster includes Archi-
tecture Evaluation, Cost-Benefit Analysis, Applying Architectural Strate-
gies, Stakeholder Workshop and guidance elements from three other prac-
tices.

e In the top left cluster, we see both the Architectural Prototyping and
the Requirements Convergence Plan practices. Apparently, the use of
these practices has not increased very much, even though their impact is
relatively high. Part of the explanation for this could be that both of these

29

0% 20% 40% 60% 80% 100%

*aas.dc
*aas.rp
*ad.sa
*ad.vp
*ae.ev
*ap.oc
ap.pr
*arp.rc
*arp.sc
*arp.wf

*cba.qgf B Lead Architects
*dad.pr 1 Others

*dad.rd
*dad.rg
nfr.cm
*nfr.dc
*nfr.hd
*nfr.vf
*rep.pl

*se.ev

*s5.ev
*SSW.WS

*SW.WS

* Correlation with lead architect response significant at 0.05 level

Figure 7: RCDA practices: lead architects vs others applying guidance after
training (abbreviations on p.24)

30

Aduanbauy uoneaidde paseasour Suiliodad syuspuodsay
%05 %St %01 %SE %0€ %ST %07 %ST

%01

%S

%0

jwdie (O)

oJdie O

Jd-de O

%05

%SS

%09

%S9

%0L

%SL

%08

%58

%06

%56

%00T

1oeduwijuediyiudis Sunuodal syuspuodsay

increased application after training

impact vs.

Figure 8: RCDA practices:
(abbreviations on p.24)

31

practices require considerable resources and time to implement.

e In the top right cluster are the “stars” of the training: the guidance el-
ements that have the highest impact in terms of both usage and effec-
tiveness. This cluster contains the Solution Shaping Workshop, most of
the guidance from Dealing with NFRs and Documenting Architectural
Decisions, and the use of viewpoints in Architectural Documentation.

e The bottom left cluster has Supplier Evaluation and Solution Selection,
two practices that require relatively formal evaluations to be performed.
These are perceived as relatively low-impact practices by the architects.

e The bottom right cluster contains all guidance in the Architectural Re-
quirements Prioritization practice. The training appears to be relatively
successful in making architects consciously prioritize their requirements;
on the other hand, “only” around 70% of the architects report that this
has significant impact. A possible explanation came out of the post survey
expert workshop: because requirements prioritization happens relatively
early in the chain of architecting activities, its impact is perceived as more
indirect than that of other practices.

Due to the limited size of the population sample, the standard error in the
placement of the guidance elements is in the same order of magnitude as the
separation between the clusters: it ranges between 6% and 8% on the x-axis
and between 5% and 11% on the y-axis. This means that the clustering should
be considered tentative at this point.

Because we found significant differences between the responses of lead ar-
chitects versus other architects for the frequency and effectiveness questions,
we also looked for such differences in the impact responses for the individual
guidance elements (the Y-axis in Figure 8). We found only one: all 10 lead
architects (100%) who applied architectural prototyping (ap.pr) reported sig-
nificant impact, while of the 11 other architects who applied ap.pr, only 8 (73%)
reported significant impact. Analysis shows that the “lead architect” response is
significantly correlated to the “impact” response for ap.pr (positive correlation
coefficient of 0.435, 2-tailed significance at the 0.05 level, using Spearman’s p).

8.3. Discussion

The sparse application and relatively low appreciation of formal evaluation
practices like se.ev and ss.ev (Figure 8) is in line with findings by e.g. [36],
which reports that “methods and techniques to validate the architecture ...
are not embedded within the mindset of architects.” Another finding from the
[36] survey is that “the architects mindset lacks focus on reflections on those
decisions as building blocks for software architectures”; the success of the RCDA
Documenting Architectural Decision practice in terms of both frequency of use
and perceived impact indicates that this lack of focus can be remedied by e.g.
the RCDA training.

32

In the after-survey expert workshop, we discussed some of the more remark-
able results of the survey with a selected group of senior architects who were
familiar with RCDA and its training. The results of this workshop are discussed
below.

8.8.1. Architectural Prototyping

The prototyping guidance element “When necessary, build a prototype or
proof-of-concept to verify that architectural strategies fulfill the requirements”
(ap.pr) jumps out in a number of results:

O1 ap.pr is the only guidance element less frequently applied after training
than before training

O2 ap.pr is one of only two guidance elements whose application frequency
after training is not significantly correlated with the lead architect role

O3 ap.pr is the only guidance element whose impact response is significantly
correlated with the lead architect role

The workshop participants produced two possible explanations for the de-
crease in application after training (O1):

E1 RCDA focuses architects’ attention on other activities, making prototyping
a relatively lower priority

E2 the time passed after the training is less than before the training, the ar-
chitects simply didn’t have enough time after the training to apply ap.pr,
which require considerable resources and time to implement

Taking all three observations together, the workshop agreed that E2 is the
more likely explanation, since E2 helps explain O2, and E1 does not match with
03. E2 also is a good explanation for the fact that in Figure 8, ap.pr is in the
top left cluster with requirements convergence planning, another practice that
requires significant planning and use of resources.

8.8.2. Lead Architect

The trainees that were in lead architect roles after the training have given
significantly more positive responses to most of the questions related to appli-
cation frequency and overall effectiveness. The post survey expert workshop
generated a number of explanations for this phenomenon:

L1 Those in the lead determine which practices will be followed, so they can
choose to apply RCDA practices, while those not in the lead have to follow
practices dictated by others.

L2 The use of a common approach like RCDA is much more important for
those in the lead, since it smooths communication with stakeholders like
reviewers and managers — with whom those not in leading roles have less
dealings.

33

L3 RCDA promotes a position of authority for architects (the fourth principle in
section 7.2), so that those who apply RCDA tend to take more ownership
and responsibility, which puts them in leadership positions.

Another effect may be that the lead architects have to deal more with the
consequences of cost and risk, and hence are more sensitive to these factors. The
data set did not provide any means to confirm or reject any of the explanations:
they may well all be valid, and reinforce each other’s impact.

The relatively small impact on perceived effectiveness of non-lead architects
suggests that the efficiency of the course may be increased by tighter selection
of students, particularly their expected leading roles. Non-lead architects may
be helped more by guidance on understanding architectural decisions than by
guidance on prioritizing and making these decisions.

8.4. Threats to validity

In a survey like this, there is a potential selection bias due to possible in-
creased interest in the survey by those who have had positive experiences with
the subject of the survey. In order to assess the magnitude of this bias, we
picked 10 trainees at random from those who had not responded to the survey.
We called these 10 trainees and asked for their reasons for not responding. The
10 gave the following answers:

e 1 indicated that he had not been able to apply the material

e 1 indicated that he had not followed the training and was on the list of
trainees by mistake

e 8 indicated that they had been too busy to respond to such an extensive
survey

This seems to indicate that the proportion of trainees who had not been able to
apply any of the material is roughly the same for those who responded to the
survey as those who did not respond, implying there is no significant selection
bias.

Another threat is in the survey population: all results are subject to the
perception of the architects. A good example is the architects’ subjective eval-
uation of the impact of the practices. The post survey expert workshop noticed
that practices that reenforce the importance of the architects and their skills
tend to get higher impact ratings. Examples of this phenomenon are:

e The highest rated impact is for the Solution Shaping Workshop, which
puts the solution architect in a key position right at the beginning of the
solution shaping process.

e Formal evaluation practices like se.ev and ss.ev are sometimes seen as
reducing the architect’s importance, since they require the architect to
justify their decisions; they get a relatively low impact rating.

34

e Architectural Requirements Prioritization directs the architect in his pri-
orities - and gets a much lower impact rating than the related Documenting
Architectural Decisions, which positions the architect as an (“important”)
decision maker.

The only way to assess the seriousness of this bias is to measure the impact
of the practices in ways that exclude the architect’s opinion.

Like with the other surveys in this thesis, the results are influenced by cul-
tural aspects of both the Logica company and the Netherlands location, and
should be used with care when applied outside of these boundaries.

9. Related work

9.1. Risk in software architecture

Attention to risk is fairly ubiquitous in software development. A state of the
art overview of risk management in software development is given in [37]. The
importance of risk analysis in software development is aptly phrased by Tom
Gilb [38]: “If you don’t actively attack the risks, they will actively attack you”.
Most of this literature does not specifically focus on software architecture. One
class of papers and books discusses a variety of risks associated with software
development, from requirements volatility to staff turnover. Often, checklists are
proposed to systematically investigate a large number of such risks [18]. Some of
the questions posed may relate to the software architecture, such as “Does any
of the design depend on unrealistic or optimistic assumptions?” or “Are you
reusing or re-engineering software not developed on the project?” [39]. Another
class of papers discusses sophisticated techniques for computationally handling
risks, using Bayesian networks, fuzzy set theory, and the like; [40] is an example
hereof. A third type of articles focuses on conceptual models for handling risk in
software development. Process models, such as the spiral model [41], explicitly
pay attention to risk analysis as one of the early process steps, to identify
areas of uncertainty that are likely to incur risks and next identify strategies to
resolve those risks at an early stage. Elsewhere, risk analysis is used to select
an appropriate process model; for instance, [42] uses risk analysis to choose
between agile and plan-driven development models.

Attention to risks in software architecture is most prominent in software
architecture evaluation. For instance, one of the outputs of the Architecture
Tradeoff Analysis Method (ATAM) [14] is a list of risks and non-risks. By
studying the output of a series of such ATAM evaluations, [43] were able to
reveal and analyze risk themes specifically geared towards software architecture.
[44] provide results of a survey amongst software architects to identify risk and
risk management issues in software architecture evaluations. One of the lessons
they draw is that lack of software architecture evaluation is itself a potential
risk.

35

9.2. Risk and cost in decision making

Viewing risk and cost as drivers in architecture decision making has led to
approaches like the Cost Benefit Analysis Method (CBAM) [10] and the Archi-
tecture Rationalization Method (ARM) [45] that relate architectural decisions
to the benefits they bring to an organization, studies that emphasize business
implications of architectural decisions [25], and approaches that consider archi-
tectural decisions as investment decisions [24, 46].

Feather et al. [47] use risk and cost as a driver in requirements decision mak-
ing. In their defect detection and prevention (DPP) approach, they introduce
risk as the primary driver for deciding which requirements to fulfill. Architec-
tural strategies to address the requirements are represented as risk mitigation
measures in the model; this may look a bit convoluted, but is fully in line with
our view of architecture as a risk management discipline. The cost of (partly)
fulfilling a requirement is obtained by adding the cost of all selected mitigation
measures for the associated risks.

Fairbanks [17] introduces the Risk-Driven Model, whose aim is to do just
enough architecture, based on the risks identified. The method is directed at
the overall planning of architectural activities, rather than individual decisions
taken during architecting. It also does not treat cost as an explicit factor in
prioritizing architectural activities.

Decisions in software development, architecture, buying stock, and many
other fields, are made by humans. These decisions often are not purely rational;
human decisions are influenced by prior knowledge, time pressure, short term
memory, and so on. Simon [48] coined the term bounded rationality to denote
our limited capabilities for making rational decisions. Sometimes, a third type
of rationality is distinguished next to pure rationality and bounded rationality:
social/cultural rationalism. There, it is recognized that decision making often
is a group process, and the interaction between the decision makers affects the
outcome. The different perspectives of the participants may bring new insights
and solutions.

When people take decisions, they attach gains and losses to the possible
outcomes. If the outcomes are not certain, we may distinguish between four
prospects:

1. a high probability of a gain, as in a 95% chance to win $ 1000 (and a 5%
chance to win nothing), against 100% chance to win $ 950

2. a high probability of a loss, as in a 95% chance to lose $ 1000, against
100% chance to lose $ 950

3. a low probability of a gain, as in a 5% chance to win $ 1000, against a
100% chance to win $ 50

4. a low probability of a loss, as in a 5% chance to lose $ 1000, against a
100% chance to lose $ 50

Seminal research by Kahneman and Tversky on this type of decision making
has led to what is known as prospect theory, and the fourfold pattern described
above [49, 50]. It turns out that people behave in a risk averse manner in

36

situations 1) and 4). In situation 1, one prefers a sure gain and does not gamble.
In situation 4, one accepts a small loss and does not risk the chance of a large
loss. In situations 2) and 3), people behave in a risk seeking way. In situation
2), one tends to gamble and hope for the 5% chance that no loss is incurred. In
a similar vein, the hope for a large gain makes people opt for the 5% chance to
do so in situation 3). Note that in all four cases, the standard Bernouilli theory
results in the same utility for both options ($ 950 in cases 1) and 2), $ 50 in
cases 3) and 4)).

The same risk averse/risk seeking behavior is to be expected in decision mak-
ing in software development projects. One typical example is the continuation
of projects that only have a very small chance to ever succeed (situation 2) in
the above scheme.

9.3. Requirements prioritization

There is a strong resonance between the approach presented here and the
extensive literature on requirements prioritization methods (RPMs). The main
differences between our approach and RPMs are in the object and the goal of
prioritization:

e RPMs prioritize requirements on the solution, whereas we prioritize stake-
holder concerns. These two concepts are related, but they are not the
same: concerns are addressed by architectural decisions, requirements are
implemented in the solution. One stakeholder concern usually leads to
multiple solution requirements, and one requirement can address multiple
stakeholder concerns.

e RPMs determine the delivery order of requirements, whereas we help the
architect determine the order in which she pays attention to concerns.

A well-known requirements prioritization principle comes from the Agile
Manifesto [51]: “Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software”. Thus, many RPMs use business value
as the main prioritizing factor [52], but often other factors are also taken into
account, such as return on investment (RolI) [10, 53] and risk (mainly in security-
oriented requirements engineering [54]). Our failure scenarios in section 3.1
are strongly related to the Misuse Cases found in MOQARE [55]. Based on
priority, RPMs allocate requirements to deliver iterations in software projects,
or releases in product roadmaps. Herrmann et al. [56] examine 15 RPMs, and
analyzes their use of benefit and cost as prioritizing factors. Racheva et al. [57]
derive a conceptual model for requirements prioritization in an agile context
based on 19 RPMs. The model identifies five requirements prioritizing aspects
for stakeholders: Business Value, Risk, Effort Estimation/ Size Measurement,
Learning Experience, and External Change. We recognize the two main themes
of this paper: Risk and Cost. For a discussion on Business Value in architecting,
please refer to the next section. For architects, the other two factors are an
integral part of their architecting process: External Change is usually handled

37

as a modifiability concern and a risk factor, while Learning Experience is the
means by which architects address uncertainty in the solution domain, using
practices like architectural prototyping.

Architects should be aware of both the differences and the similarities be-
tween RPMs and risk- and cost based architecting. The similarities mean that
the RPM prioritization techniques can help architects prioritize their concerns.
The differences are equally important: an architect should not focus exclusively
on high priority requirements in terms of delivery order, since requirements
scheduled for later delivery may have high impact on the architecture, and
prove very risky if ignored. As stated in [58], “certain classes of systems that
ignore architectural issues for too long hit a wall and collapse due to a lack of
an architectural focus.”

10. Frequently Asked Questions

In this section we discuss a number of questions that were frequently raised
when teaching the approach to practicing architects. Since they led to interest-
ing discussions, we are presenting them here.

10.1. What about existing systems?

What does our view on architecture mean for existing systems, i.e. systems
after their initial delivery? Since we already know how the architectural deci-
sions made during the design phase turned out, does it still make sense to talk
about the risk of making wrong decisions? It does: just like during the de-
sign phase, the architectural activities related to existing systems have risk and
cost management as their prime business objective. Typical activities at this
stage are architecture recovery, evaluation and architectural modifications to
the system. The reason an architect gets involved is to identify architecturally
significant concerns related to something that the stakeholders want to do with
this system; most likely, modify it in some way. And once again, what is archi-
tecturally significant is determined by risk and cost impact, and decisions need
to be made to address these concerns, e.g: do we refactor a component that
is hard to change? Do we port the system to another platform? Klusener et
al. [20], in their extensive paper on modifying existing systems, come to a very
similar notion of architectural significance in those systems, as we have seen in
3.1. Slyngstad et al. [44] have surveyed risks in software architecture evolution,
and present the most common risks for architectures of existing systems and
their associated mitigation activities.

10.2. What about Value?

One might argue that a solution’s value to its stakeholders should play at
least as important a role as the risk and cost of delivering it. In practice,
we find that solution architects are less concerned with stakeholder value, es-
pecially when they operate in a project context. This is because most value
considerations have already been taken into account in the solution’s goals and

38

business requirements, which serve as input to the project. This process of pre-
determining the value of a solution by fixing its high-level requirements is usually
considered part of the requirements analysis rather than the architecting phase
of a solution’s lifecycle, and is often largely completed even before the solution
architect gets involved. A frequently occurring example of this situation is when
a supplier architects a solution in response to a Request for Proposal (RfP): the
RfP documentation contains requirements that encapsulate the requested solu-
tion’s business value. As long as the architected solution fulfills these business
requirements, the value objective is considered to be fulfilled, and it is the ar-
chitect’s job to fulfill the RfP requirements at the lowest possible cost. We even
see that solutions that add stakeholder value beyond the previously captured
requirements are often regarded with suspicion. The management jargon for
this situation is “gold-plating”, and it has strong negative connotations.

In practice, there are two types of situations where solution architects are
involved in stakeholder value discussions:

1. When the solution architect is involved in the analysis work. A good
example of this is the Cost Benefit Analysis Method [10], a method for
performing economic modeling of software systems, centered on an anal-
ysis of their architecture.

2. Creating value for “internal” stakeholders in the delivery project, such as
the developers and the project manager. Examples are architectural deci-
sions that create re-usable components or make the solution’s construction
more efficient. In this situation, the value actually consists of cost savings,
reinforcing the point that the architect’s work is cost-driven.

In short, when architectural features or requirements are prioritized in order
to determine what to build in a solution, value plays an important role. The fo-
cus of solution architecting in this paper, however, is on how to build a solution,
and then risk and cost trump value.

As explained above, Kahneman [50] finds that people are prepared to take
high risks if there is a chance for a high gain, even if such a choice is not
rational. Our approach raises the profile of risks and costs in the trade-off
against value, and one would expect that this would help to prevent irrational
architectural decisions in high-risk situations. It would be interesting to validate
this expectation by presenting architects with high-risk, high-gain architectural
decision scenarios and analyzing differences in responses depending on their
training and their knowledge of expected short-term gains.

10.3. Does this mean architects always have to minimize risks?

Risk and cost are used to assess the architectural significance of concerns,
and should play a role in trade-offs between decisions addressing these concerns.
This does not automatically mean that architects or stakeholders should always
select the architectural alternative with the lowest risk: that is up to them
entirely, and depends on other factors such as the risk-averseness of the culture
in their organization. What it does mean is that these risks should be made
explicit and considered in the trade-off.

39

11. Conclusion

We have presented and elaborated a view of solution architecting as a risk-
and cost management discipline. Although this view is an extension of pre-
existing views on software architecture, it goes beyond software architecture
alone: it includes other architecture genres, captured under the name Solution
Architecture.

The risk- and cost driven view on architecture is the basis for RCDA, the
Risk- and Cost Driven Architecture Approach. It is part of a solution archi-
tecture training programme that has so far been taught to 159 architects. The
results of a survey amongst these architects indicate that for the majority of
trainees, RCDA has significant positive impact on their solution architecting
work. This is true for RCDA as a whole, for its principles, and for its individ-
ual practices. The RCDA training is effective in increasing the application of
the principles and practices, but its effectiveness may be improved by selecting
students that are expected to fulfill lead architect roles shortly after the training.

In conclusion, viewing architecture as a risk- and cost management discipline
helps lead architects and stakeholders in focusing their activities on high-impact
concerns, and in doing so raises the value of architecture to organizations.

References

[1] R. Farenhorst, R. de Boer, Architectural Knowledge Management - Sup-
porting Architects and Auditors, Ph.D. thesis, VU University Amsterdam
(2009).

[2] M. Shaw, Toward higher-level abstractions for software systems, Data &
Knowledge Engineering 5 (2) (1990) 119 — 128.

[3] D. E. Perry, A. L. Wolf, Foundations for the study of software architecture,
SIGSOFT Softw. Eng. Notes 17 (1992) 40-52.

[4] P. Kruchten, The Rational Unified Process: An Introduction, Addison-
Wesley, Boston, 1998.

[6] A. Jansen, J. Bosch, Software Architecture as a Set of Architectural Design
Decisions, in: 5th Working IEEE/IFIP Conference on Software Architec-
ture, IEEE Computer Society, Washington, DC, USA, 2005, pp. 109-120.

[6] J. Tyree, A. Akerman, Architecture decisions: Demystifying architecture,
IEEE Software 22 (2) (2005) 19-27.

[7] A.Ivanovié, P. America, Information needed for architecture decision mak-
ing, in: 2010 ICSE Workshop on Product Line Approaches in Software
Engineering, PLEASE ’10, ACM, New York, NY, USA, 2010, pp. 54-57.

[8] SHARK, 4th Workshop on SHAring and Reusing architectural Knowledge,
IEEE Computer Society (2009).

40

[9]

[19]

[20]

[21]
[22]

O. Zimmermann, T. Gschwind, J. Kiister, F. Leymann, N. Schuster,
Reusable Architectural Decision Models for Enterprise Application Devel-
opment, in: Third International Conference on the Quality of Software
Architectures (QoSA), no. 4880/2008 in LNCS, Springer, 2007, pp. 157
166.

R. Kazman, J. Asundi, M. Klein, Making Architecture Design Decisions:
An Economic Approach, Tech. Rep. CMU/SEI-2002-TR-035, SEI (2002).

E. R. Poort, hans van Vliet, Architecting as a Risk- and Cost Manage-
ment Discipline, in: Proceedings 9th Working IEEE/IFIP Conference on
Software Architecture (WICSA), IEEE Computer Society, 2011, pp. 2-11.

ISO 42010, Systems and software engineering Architecture description,
iSO 42010:2011 (2011).

M. Fowler, Who needs an Architect?, IEEE Software 20 (5) (2003) 11-13.

L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 2nd.
ed., Addison Wesley, 2003.

R. de Boer, R. Farenhorst, P. Lago, H. van Vliet, V. Clerc, A. Jansen, Ar-
chitectural Knowledge: Getting to the Core, in: S. Overhage, C. Szyperski,
R. Reussner, J. Stafford (Eds.), Software Architectures, Components, and
Applications, Vol. 4880 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2007, pp. 197-214.

M. Glinz, A Risk-Based, Value-Oriented Approach to Quality Require-
ments, IEEE Software 25 (2008) 34-41.

G. Fairbanks, Just Enough Architecture: The Risk-Driven Model,
Crosstalk.

B. W. Boehm, Software Risk Management: Principles and Practices, IEEE
Software 8 (1991) 32-41.

AACE, Risk Analysis and Contingency Determination using Range Esti-
mating, AACE International Recommended Practice No. 41R-08 (2000).

A. Klusener, R. Lammel, C. Verhoef, Architectural modifications to de-
ployed software, Science of Computer Programming 54 (2005) 143-211.

B. Boehm, Software Engineering Economics, Prentice Hall, 1981.

C. Hofmeister, P. Kruchten, R. L. Nord, J. H. Obbink, A. Ran, P. America,
A general model of software architecture design derived from five industrial
approaches, Journal of Systems and Software 80 (1) (2007) 106-126.

41

[23] H. Obbink, P. Kruchten, W. Kozaczynski, R. Hilliard, A. Ran, H. Postema,
L. Dominick, R. Kazman, W. Tracz, E. Kahane, Report on Software Archi-
tecture Review and Assessment (SARA), Tech. rep., SARA Working group,
retrieved 11 January 2012 (2002).

URL http://kruchten.com/philippe/architecture/SARAv1.pdf

[24] S. Biffl, A. Aybuke, B. Boehm, H. Erdogmus, P. Gruenbacher (Eds.), Value-
Based Software Engineering, Springer, 2006, Ch. Valuation of Software
Initiatives Under Uncertainty: Concepts, Issues, and Techniques, pp. 39—
66.

[25] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, P. Verma, The
Duties, Skills, and Knowledge of Software Architects, in: 6th Working
IFIP/IEEE Conference on Software Architecture (WICSA), IEEE Com-
puter Society, 2007.

[26] Money Magazine, Best Jobs in America 2010, Top 100, CNN on-line, rank
1: Software Architect (November 2010).
URL http://money.cnn.com/magazines/moneymag/bestjobs/2010/snapshots/1.html

[27] R. Malan, D. Bredemeyer, Less is more with minimalist architecture, IT
Pro (2002) 46-48.

[28] 1. Jacobson, P. W. Ng, I. Spence, Enough process - let’s do practices,
Journal of Object Technology 6 (6) (2007) 41-66.

[29] M. R. Barbacci, R. Ellison, A. J. Lattanze, J. A. Stafford, C. B. Weinstock,
W. G. Wood, Quality Attribute Workshops (QAWSs), Third Edition, Tech.
Rep. CMY /SEI-2003-TR-016, SEI (2003).

[30] E. Gamma, R. Helm, R. E. Johnson, J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software, Addison-Wesley, Reading,
MA, 1995.

[31] P. Kruchten, The 4+1 view model of architecture, IEEE Software 12 (6)
(1995) 45-50.

[32] G. Abowd, L. Bass, P. Clements, R. Kazman, L. Northrop, A. Zaremski,
Recommended Best Industrial Practice for Software Architecture Evalua-
tion, Tech. Rep. CMU/SEI-96-TR-025, SEI (1997).

[33] R. Farenhorst, H. van Vliet, Experiences with a wiki to support architec-
tural knowledge sharing.

[34] P. Clements, L. Northrop, Software Product Lines, Addison Wesley, 2002.

[35] R. Kazman, L. Bass, M. Klein, The essential components of software archi-
tecture design and analysis, Journal of Systems and Software 79 (8) (2006)
1207-1216.

42

[36]

[45]

[47]

[48]
[49]

[50]

V. Clerc, P. Lago, H. van Vliet, The architect’s mindset, in: Quality of soft-
ware architectures 3rd international conference on Software architectures,
components, and applications, QoSA’07, Springer-Verlag, Berlin, Heidel-
berg, 2007, pp. 231-249.

P. Bannerman, Risk and risk management in software projects: A reassess-
ment, Journal of Systems and Software 81 (2008) 2118-2133.

T. Gilb, Principles of Software Engineering Management, Addison Wesley,
1988.

H. R. Costa, M. de O. Barros, G. H. Travassos, Evaluating software project
portfolio risks, Journal of Systems and Software 80 (1) (2007) 16-31.

H. Lee, Applying fuzzy set theory to evaluate the rate of aggregate risk in
software development, Fuzzy Sets and Systems 80 (3) (1996) 261-271.

B. Boehm, A Spiral Model of Software Development and Enhancement,
IEEE Computer 21 (5) (1988) 61-72.

B. Boehm, R. Turner, Balancing Agility and Discipline, Addison Wesley,
2004.

L. Bass, R. Nord, W. Wood, D. Zubrow, Risk Themes Discovered Through
Architecture Evaluations, in: 6th Working IFIP /TEEE Conference on Soft-
ware Architecture (WICSA), IEEE Computer Society, 2007, pp. 1-10.

O. P. N. Slyngstad, R. Conradi, M. A. Babar, V. Clerc, H. van Vliet, Risks
and Risk Management in Software Architecture Evolution: An Industrial
Survey, in: 15th Asia-Pacific Software Engineering Conference (APSEC),
2008, pp. 101-108.

A. Tang, J. Han, Architecture rationalization: A methodology for archi-
tecture verifiability, traceability and completeness, in: 12th Annual IEEE
International Conference on the Engineering of Computer-Based Systems
(ECBS), 2005, pp. 135-144.

A. Tvanovié¢, P. America, Strategy-focused Architecture Decision Making,
in: P. van de Laar, T. Punter (Eds.), Views on Evolvability of Embedded
Systems, Springer, 2010, pp. 245-260.

M. S. Feather, S. L. Cornford, K. A. Hicks, J. D. Kiper, T. Menzies, A
broad, quantitative model for making early requirements decisions, IEEE
Software 25 (2008) 49-56.

H. Simon, The Sciences of the Artificial, MIT Press, 1969.

D. Kahneman, A. Tversky, Prospect Theory: An analysis of Decision and
Risk, Econometrica 47 (1979) 263-291.

D. Kahneman, Thinking, Fast and Slow, Farrar, Straus and Giroux, 2011.

43

[51]

[52]

[53]

[54]

Agile Alliance, Manifesto for Agile Software Development,
http://agilemanifesto.org (2001).

T. Gilb, Competitive Engineering: A Handbook For Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage,
Butterworth-Heinemann, Newton, MA, USA, 2005.

B. Regnell, R. Berntsson Svensson, T. Olsson, Supporting roadmapping of
quality requirements, IEEE Software 25 (2008) 42-47.

A. Herrmann, A. Morali, S. Etalle, Riskrep: Risk-based security require-
ments elicitation and prioritization (extended version), Technical Report
TR-CTIT-10-28, Centre for Telematics and Information Technology Uni-
versity of Twente, Enschede (August 2010).

A. Herrmann, B. Paech, Mogare: misuse-oriented quality requirements en-
gineering, Requir. Eng. 13 (2008) 73-86. doi:10.1007/s00766-007-0058-9.

A. Herrmann, M. Daneva, Requirements prioritization based on benefit and
cost prediction: An agenda for future research, in: 2008 16th IEEE Inter-
national Requirements Engineering Conference, IEEE Computer Society,
Washington, DC, USA, 2008, pp. 125-134.

Z. Racheva, M. Daneva, A. Herrmann, A conceptual model of client-driven
agile requirements prioritization: results of a case study, in: 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’10, ACM, New York, NY, USA, 2010, pp. 39:1-39:4.

P. Abrahamsson, M. A. Babar, P. Kruchten, Agility and architecture: Can
they coexist?, IEEE Software 27 (2010) 16-22.

44

