Anneau principal non commutatif

Un article de Wikipédia, l'encyclopédie libre.

Par anneau principal non commutatif on entend ici un anneau qui généralise la notion classique d'anneau principal au cas non commutatif. Ce qui suit est donc valide dans le cas commutatif également. Les exemples d'anneaux principaux non commutatifs abondent, et l'on peut citer notamment l'anneau des opérateurs différentiels à coefficients dans est un corps commutatif[1].

Définitions et propriétés[modifier | modifier le code]

Anneau principal[modifier | modifier le code]

Un anneau sans diviseur de zéro est appelé un anneau principal à gauche si tout idéal à gauche de est principal, i.e. de la forme . On définit de même un anneau principal à droite, et un anneau principal est un anneau principal à gauche qui est un anneau principal à droite.

Il est clair qu'un anneau principal à gauche est noethérien à gauche, donc est un anneau d'Ore à gauche. Il admet donc un corps de fractions à gauche.

Élément invariant[modifier | modifier le code]

Soit un anneau sans diviseur de zéro. Un élément de est dit invariant si . On alors . L'idéal des multiples à gauche de coïncide donc avec l'idéal de ses multiples à droite, et on montre aisément que, de même, l'ensemble des diviseurs à gauche de coïncide avec l'ensemble de ses diviseurs à droite. Soit . On dit que est un diviseur total de , et on écrit , s'il existe un élément invariant tel que [2]. Si l'anneau est simple, ses seuls éléments invariants sont les unités (i.e. les éléments inversibles) dont les seuls diviseurs sont de nouveau les unités.

Élément borné et élément totalement non borné[modifier | modifier le code]

Soit un anneau sans diviseur de zéro. Un élément de est dit borné à gauche si le -module à gauche n'est pas fidèle[3]. On définit de même un élément borné à droite, et un élément borné est un élément qui est borné à gauche et à droite. Un élément de est dit totalement non borné s'il n'a pas d'autres diviseurs bornés que les unités (i.e. les éléments inversibles) de [4]. Si l'anneau est simple, tout élément de qui n'est pas une unité est totalement non borné[5].

Atome et anneau atomique[modifier | modifier le code]

Dans un anneau sans diviseur de zéro, un atome est un élément qui ne peut pas s'écrire sous forme de produit de deux éléments qui ne seraient pas des unités. Un élément de est dit atomique s'il est un produit fini d'atomes. L'anneau est atomique si tout élément de qui n'est pas une unité est atomique.

Un anneau (éventuellement non commutatif) est principal si, et seulement s'il est bézoutien et atomique[6].

Éléments semblables[modifier | modifier le code]

Soit un anneau sans diviseur de zéro et deux éléments non nuls de . Alors il existe un isomorphisme si, et seulement s'il existe un isomorphisme . Dans ce cas, et sont dits semblables[7].

Exemples[modifier | modifier le code]

Soit l'anneau des opérateurs différentiels de la forme

.

où les sont des fractions rationnelles en à coefficients dans le corps ou . Cet anneau est un anneau principal simple.


Plus généralement, soit un corps, un automorphisme de et une -dérivation, et considérons l'anneau des polynômes tordus d'indéterminée à coefficients dans (voir l'article anneau de Dedekind non commutatif). Cet anneau est principal (il est même euclidien). De plus, en supposant commutatif, il est simple si est une dérivation extérieure, la réciproque étant exacte si est de caractéristique 0[8].


Soit de nouveau un corps, un automorphisme de et considérons l'anneau des polynômes de Laurent tordus (voir l'article anneau de Dedekind non commutatif). Cet anneau est principal (car obtenu par localisation d'un anneau principal) et, en supposant commutatif, est simple si, et seulement si aucune puissance de n'est un automorphisme intérieur de [9].


Rappelons (voir l'article anneau de Dedekind non commutatif) que, ci-dessus, la loi de commutation s'écrit pour tout . En posant on obtient pour loi de commutation . On peut alors former l'anneau des séries formelles tordues, noté . Cet anneau est principal et local (avec pour unique idéal maximal ). Notons que tous les idéaux de sont bilatères, de la forme [10].

Forme de Jacobson-Teichmüller[modifier | modifier le code]

Par une démonstration semblable à celle du théorème des facteurs invariants (mais en prenant en compte la non commutativité éventuelle de l'anneau principal ), on montre ce qui suit[2]:

Soit une matrice à éléments dans . Il existe des matrices inversibles et telles que

, ,

est le rang de et où chaque est déterminé de manière unique à une similitude près. Notons que la matrice ci-dessus n'est pas nécessairement carrée.

L'existence de cette forme a été démontrée par Jacobson dans le cas où est un anneau euclidien non commutatif[11], résultat qui a été généralisé par Teichmüller au cas où est un anneau principal non commutatif[12]. L'unicité des à une similitude près a été démontrée par Nakayama[13].

Modules sur les anneaux principaux non commutatifs[modifier | modifier le code]

Soit un anneau principal non nécessairement commutatif et un -module à gauche de type fini. On a la décomposition

est le sous-module de torsion de (qui est bien défini car, étant Noethérien, c'est un anneau d'Ore) et où est un sous-module libre.

Traduisons en termes de module le résultat sur la forme normale de Jacobson-Teichmüller[14]: est une somme directe de sous-modules cycliques, i.e. il existe des éléments tels que

, et les sous-modules cycliques sont déterminés de manière unique à un isomorphisme près.

Voyons maintenant comment se généralise la théorie classique des diviseurs élémentaires[15]: soit un -module de torsion à gauche de type fini. Alors

où chaque est un produit d'atomes bornés semblables deux à deux et où est totalement non borné[16]. Si l'anneau est simple, la somme directe ci-dessus se réduit au dernier terme.

Notes et références[modifier | modifier le code]

Notes[modifier | modifier le code]

  1. McConnell et Robson 2001, 1.3.9
  2. a et b Cohn 1985, Sect. 8.1
  3. Bourlès et Marinescu 2011, Def. 535
  4. Cohn 1985, Sect. 6.4
  5. Bourlès et Marinescu 2011, Lem. 540
  6. Cohn 1985, Sect. 3.3, exerc. 14
  7. Cohn 1985, Sect. 0.6
  8. McConnell et Robson 2001, 1.8.4
  9. Cohn 1985, Chap. 8, Prop. 3.1, et McConnell et Robson 2001, 1.8.5
  10. Bourlès et Marinescu 2011, Cor. 384 et Thm. 464
  11. Jacobson 1937
  12. Teichmüller 1937
  13. Nakayama 1938
  14. Cohn 1985, Chap. 8, Thm. 2.4
  15. Bourbaki 2006, VII.4.8
  16. Cohn 1985, Chap. 8, Prop. 2.6

Références[modifier | modifier le code]

Voir aussi[modifier | modifier le code]