+++ to secure your transactions use the Bitcoin Mixer Service +++

 

Aller au contenu

Turbine à vapeur

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Turbines à vapeur)
Le rotor d'une turbine à vapeur moderne utilisée dans une centrale électrique.

Une turbine à vapeur est une machine qui extrait l'énergie thermique de la vapeur sous pression et l'utilise pour produire un travail mécanique de rotation de l'arbre de sortie. La version moderne fut inventée par Sir Charles Parsons en 1884[1],[2].

Parce que la turbine génère un mouvement de rotation, elle est particulièrement bien adaptée pour entraîner un générateur électrique ;– environ 90 % de la production d'électricité aux États-Unis (1996) était faite en utilisant des turbines à vapeur[3]. La turbine à vapeur est une forme de machine thermique qui doit une grande partie de l'amélioration de son efficacité thermodynamique à l'utilisation de plusieurs étages dans l'expansion de la vapeur, ce qui se traduit par un résultat proche du processus de détente réversible idéale.

Histoire[modifier | modifier le code]

Une turbine à vapeur industrielle de 1910 (à droite) directement reliée à une génératrice (à gauche).

Le premier appareil qui peut être classé comme turbine à vapeur n'était guère plus qu'un jouet, le classique Éolipyle, décrit au Ier siècle par le mathématicien grec Héron d'Alexandrie en Égypte romaine[4],[5]. En 1551, Taqi al-Din en Égypte ottomane décrit une turbine à vapeur dont l'application pratique est la rotation d'une broche.[réf. nécessaire] Les turbines à vapeur ont également été décrites par l'italien Giovanni Branca (1629)[6] et par John Wilkins en Angleterre (1648)[7]. Les dispositifs décrits par Taqi al-Din et Wilkins sont aujourd'hui connus comme des tournebroches à vapeur. En 1672, une voiture à turbine à impulsion fut conçue par Ferdinand Verbiest. Une version plus moderne de cette voiture a été produite peu de temps après, à la fin du XVIIIe siècle par un mécanicien inconnu allemand.

La théorie des turbines voit le jour avec les travaux de Segner et d'Euler, qui y consacre deux communications[8]. À la vapeur utilisée dans l'éolipyle, Segner substitue de l'eau, réalisant ainsi le prototype de la turbine hydraulique[9].

La turbine à vapeur moderne fut inventée en 1884 par Sir Charles Parsons, dont le premier modèle était relié à une dynamo qui générait 7,5 kW (10 ch) d'électricité[10]. L'invention de Parsons rend possible l'électricité bon marché et abondante, et a révolutionné le transport maritime et la marine de guerre[11]. Le modèle de Parsons est du type à réaction. Sa licence est brevetée et sa turbine est améliorée peu de temps après par un Américain, George Westinghouse. La puissance des turbines Parsons s'est également avérée être extensible à grande échelle. Parsons a eu la satisfaction de voir son invention adoptée par toutes les grandes centrales de ce monde, et la taille des génératrices a augmenté depuis la première de 7,5 kW jusqu'à des unités de 50 000 kW de capacité. Pendant la vie de Parson, la capacité de production d'une unité a été multipliée par environ 10 000[12], et la puissance totale des génératrices construites par son cabinet C. A. Parsons and Company et par leurs titulaires, à des fins terrestres uniquement, avait dépassé les trente millions de chevaux-vapeur.

Un certain nombre d'autres variantes de turbines ont été développées pour travailler efficacement avec la vapeur. La turbine de Laval (inventée par Gustaf de Laval) accélérait la vapeur d'eau à pleine vitesse avant de l'envoyer vers des aubes de turbine. La turbine à impulsion de Laval est plus simple, moins coûteuse et n'a pas besoin d'être aussi résistante à la pression. Elle peut fonctionner avec de la vapeur sous pression, mais est nettement moins efficace. Auguste Rateau développa une turbine à pression à impulsion sur la base du principe de Laval dès 1896[13], obtint un brevet américain en 1903, et appliqua la turbine à un torpilleur français en 1904. Il enseigna à l'École nationale supérieure des mines de Saint-Étienne pendant une décennie jusqu'en 1897, et fonda ensuite une entreprise à succès qui fut incorporée dans Alstom après sa mort. L'un des fondateurs de la théorie moderne de la vapeur et des turbines à gaz fut Aurel Stodola, un ingénieur-physicien slovaque, professeur à l’école Polytechnique (aujourd'hui Institut ETH) de Zurich. Son travail Die Dampfturbinen und ihre Aussichten als Wärmekraftmaschinen (en français : La Turbine à Vapeur et de son utilisation future comme Moteur Thermique) fut publié à Berlin en 1903. Un livre ultérieur, Dampf und Gaz-Turbinen (en français : Turbines à Gaz et à Vapeur), fut publié en 1922.

La turbine Brown-Curtis, de type à impulsion, qui avait été à l'origine développée et brevetée par la société américaine International Curtis Marine Turbine Company, fut développée dans les années 1900, en collaboration avec John Brown & Company. Elle fut utilisée dans des moteurs John Brown de navires marchands et de guerre, y compris des paquebots et navires de guerre de la Royal Navy.

Fabrication[modifier | modifier le code]

L'industrie actuelle de fabrication de turbines à vapeur est dominée par les fabricants Chinois d'équipements électriques. Harbin Electric, Shanghai Electric et Dongfang Electric, les trois principaux fabricants d'équipements électriques en Chine, détenant collectivement une part majoritaire dans le marché mondial des turbines à vapeur en 2009-10, suivant Platts[14]. D'autres fabricants, avec des parts de marché minoritaires, sont Bhel, Siemens, Alstom, GE, Doosan Škoda Power, Mitsubishi Heavy Industries, et Toshiba. Le cabinet de conseil Frost & Sullivan projette que la fabrication des turbines à vapeur sera consolidée d'ici à 2020, les fabricants Chinois emportant de plus en plus de marchés à l'extérieur de la Chine[15].

Types[modifier | modifier le code]

Les turbines à vapeur sont produites dans une grande variété de tailles, allant de petites unités < 0,75 kW (<1 ch) (rares, adaptées à certains milieux) utilisées comme entraînement mécanique de pompes, de compresseurs et d'autres équipements à arbre entraîné, jusqu'à 1,5 GW (2 000 000 ch) pour les turbines utilisées pour produire de l'électricité. Il existe plusieurs classifications modernes pour les turbines à vapeur.

Conception à lames et étages[modifier | modifier le code]

Schéma décrivant la différence entre une turbine à action et une turbine à réaction.

Les pales de turbines sont de deux types, des lames et des tuyères. Les lames se déplacent entièrement sous l'impact de la vapeur et leurs profils ne convergent pas. Il en résulte une diminution de la vitesse de la vapeur et pratiquement pas de chute de pression de la vapeur au cours de son déplacement à travers les lames. Une turbine composée de lames en alternance avec des tuyères fixes est appelée turbine à action (ou impulsion), turbine Curtis, turbine Rateau ou turbine Brown-Curtis. Les tuyères paraissent semblables à des lames, mais leurs profils convergent près de la sortie. Il en résulte une chute de pression de la vapeur et un gain de vitesse lorsque la vapeur se déplace dans les tuyères. Les tuyères se déplacent en raison de l'impact de la vapeur et de la réaction due à la haute vitesse de la vapeur à la sortie. Une turbine composée de tuyères en déplacement alternées avec des tuyères fixes est appelée une turbine à réaction, ou turbine Parsons.

Sauf pour des applications basse puissance, les pales de la turbine sont disposées en plusieurs étapes en série, appelé[Quoi ?] le compoundage (en), ce qui améliore grandement l'efficacité à basse vitesse[16]. Un étage de réaction est une rangée de tuyères fixes suivie par une rangée de tuyères mobiles. Plusieurs étages de réaction divisent la chute de pression de la vapeur entre l'admission et l'échappement en de nombreuses petites chutes, ce qui produit une turbine à pression composée. Les étages d'impulsion peuvent être soit à pression composée, soit à vitesse composée, soit à pression et vitesse composées. Un étage à impulsion à pression composée est une rangée de tuyères fixes, suivie par une rangée de lames mobiles, avec plusieurs étages pour la composition. Elle est également connue comme turbine de Rateau, d'après son inventeur. Un étage à impulsion à vitesse composée (inventée par Curtis et également appelée « roue Curtis ») est une rangée de tuyères fixes, suivie par deux ou plusieurs rangées de lames mobiles en alternance avec des rangées de lames fixes. Cela divise la chute de vitesse à travers l'étage en plusieurs petites chutes[17]. Une série d'étages à impulsion à vitesse composée est appelée turbine à pression-vitesse composée.

Schéma d'une turbine à vapeur marine AEG vers 1905.

En 1905, lorsque les turbines à vapeur ont été utilisées sur les navires rapides (comme le HMS Dreadnought) et pour des applications de puissance terrestres, il fut déterminé qu'il était souhaitable d'utiliser une ou plusieurs roues Curtis au début d'une turbine multi-étages (où la pression de la vapeur est la plus élevée), suivie par des étages de réaction. Ce fut plus efficace avec de la vapeur sous haute pression en raison de la réduction des fuites entre le rotor de la turbine et le carter[18]. Ceci est illustré dans le dessin de la turbine à vapeur allemande AEG marine de 1905. La vapeur provenant de chaudières entre par la droite à haute pression à travers un boîtier papillon contrôlé manuellement par un opérateur (dans ce cas, un marin appelé throttleman). Elle passe à travers cinq roues Curtis et de nombreux étages de réaction (les petites lames sur les bords des deux grands rotors du milieu) avant de sortir à basse pression, généralement vers un condenseur. Le condenseur produit un vide qui maximise l'énergie extraite de la vapeur, et condense la vapeur en eau d'alimentation qui retourne à la chaudière. Sur la gauche il y a plusieurs autres étages de réaction (sur deux grands rotors) pour faire tourner la turbine dans le sens inverse pour la marche arrière, avec la vapeur admise par un autre boîtier. Étant donné que les navires sont rarement utilisés en marche arrière et que cette vitesse est forcément limitée, l'efficacité n'est pas une priorité, de sorte que seuls quelques étages sont placés par mesure d'économie.

Les défis de la conception des aubes[modifier | modifier le code]

Un grand défi de la conception des turbines est de réduire le fluage subi par les aubes. En raison des températures élevées et des fortes contraintes de fonctionnement, les matériaux des turbines à vapeur sont endommagés par ces mécanismes. Comme les températures sont augmentées pour améliorer l'efficacité de la turbine, le fluage devient de plus en plus important. Pour limiter le fluage des aubes, on utilise des revêtements thermiques et des superalliages à renforcement par solution solide et par joints de grains.

Les revêtements de protection sont utilisés pour réduire les dommages thermiques et limiter l'oxydation. Ces revêtements sont souvent des céramiques à base de dioxyde de zirconium stabilisé. Utiliser un revêtement de protection thermique limite la température d'exposition du superalliage de nickel. Cela réduit les mécanismes de fluage dans l'aube. Les revêtements limitant l'oxydation freinent les pertes de rendement causées par une accumulation à l'extérieur des aubes, ce qui est particulièrement important dans un environnement à température élevée[19].

Les aubes en alliage base nickel contiennent de l'aluminium et du titane pour améliorer la rigidité et la résistance au fluage. La microstructure de ces alliages est faite de différentes régions de composition. Une dispersion uniforme de la phase gamma-prime – une combinaison de nickel, d'aluminium et de titane - favorise la rigidité et la résistance au fluage de l'aube grâce à sa microstructure[20].

Des métaux réfractaires tels que le rhénium et le ruthénium peuvent être ajoutés à l'alliage pour encore améliorer la résistance au fluage. L'ajout de ces éléments réduit la diffusion de la phase gamma prime, préservant ainsi la résistance à la fatigue, la solidité et la résistance au fluage[21].

Alimentation en vapeur et conditions d'échappement[modifier | modifier le code]

Une turbine à vapeur basse pression dans une centrale nucléaire. Ces turbines rejettent de la vapeur à une pression inférieure à la pression atmosphérique.

Ces types comprennent les turbines à condensation, sans condensation, à réchauffage, à extraction et à induction.

Les turbines à condensation sont le plus souvent présentes dans les centrales électriques. Ces turbines reçoivent de la vapeur d'une chaudière qui s'échappe dans un condenseur. La vapeur sortante est bien en dessous de la pression atmosphérique, et est dans un état partiellement condensé, généralement d'une qualité proche de 90 %.

Les turbines sans condensation ou turbines à contre-pression sont les plus largement utilisées pour les processus d'applications de la vapeur. La pression à l'échappement est contrôlée par une vanne de régulation en fonction des besoins du processus. Elles sont généralement trouvées dans les raffineries, les unités de chauffage de quartier, les usines de pâtes et papiers, et les usines de dessalement où de grandes quantités de vapeur à  faible pression sont nécessaires.

Les turbines à réchauffage sont également utilisées presque exclusivement dans des centrales électriques. Dans une telle turbine, la vapeur sortant de la section à haute pression de la turbine est retournée à la chaudière où une surchauffe supplémentaire lui est ajoutée. La vapeur revient ensuite dans une section à pression intermédiaire de la turbine et continue son expansion. Utiliser le réchauffage dans un cycle augmente le travail de sortie de la turbine et l'expansion se termine avant que la vapeur ne se condense, ce qui permet de minimiser l'érosion des aubes dans les derniers étages. Dans la plupart des cas, le nombre maximum de réchauffes employé dans un cycle est de 2 car le coût de la surchauffe de la vapeur contrarie l'augmentation du travail obtenu à la sortie de la turbine.

Les turbines à extraction sont communes pour toutes les applications. Dans une turbine à extraction, la vapeur est libérée à différents stades de la turbine, et utilisée pour les besoins du processus industriel ou renvoyée aux réchauffeurs d'eau d'alimentation de la chaudière afin d'améliorer l'efficacité du cycle global. Le flux d'extraction peut être contrôlé par une valve, ou laissé incontrôlé.

Les turbines à induction introduisent de la vapeur à basse pression à un stade intermédiaire pour produire de l'énergie supplémentaire.

Disposition des corps ou des arbres[modifier | modifier le code]

Arrangement tribord des turbines à vapeur des croiseurs Japonais de classes Furutaka et Aoba.

Ces arrangements comprennent la turbine à un seul corps, la turbine composée en tandem et la turbine composée en croix. Les unités à corps unique sont les plus élémentaires, avec un seul corps et l'arbre directement couplé à un générateur. Les tandem composés sont utilisés lorsque deux ou plusieurs corps sont directement couplés sur un seul générateur. Un arrangement de turbines composées en croix dispose de deux ou plusieurs arbres non alignés entraînant deux ou plusieurs générateurs qui fonctionnent souvent à des vitesses différentes. Une turbine composée en croix est utilisée dans de nombreuses applications de grande taille. Une installation navale typique des années 1930 à 1960 est illustrée ci-contre ; le schéma montre des turbines haute (HP) et basse pression (LP) entraînant un réducteur commun (MG), ou avec une turbine de croisière (CT) couplée à la turbine haute pression.

Rotors à double flux[modifier | modifier le code]

Un rotor de turbine à double flux. La vapeur pénètre au milieu de l'arbre, et sort à chaque extrémité, équilibrant la force axiale.

La détente de la vapeur donne à la fois une poussée tangentielle et axiale sur l'arbre de la turbine, mais la poussée axiale dans une turbine simple est sans opposition. Pour maintenir la bonne position du rotor et de l'équilibrage, cette force doit être contrecarrée par une force d'opposition. Des paliers de butée (en) peuvent être utilisés pour les roulements de l'arbre, le rotor peut utiliser des faux pistons, il peut être à double flux, la vapeur pénétrant au milieu de l'arbre et s'échappant à ses deux extrémités, ou une combinaison de ces techniques. Dans un rotor à double flux, les aubes dans chaque moitié sont face à face, de sorte que les forces axiales se compensent et que les forces tangentielles agissent ensemble. Cette conception de rotor est également appelée à deux flux, double flux axial, ou double-échappement. Cette disposition est commune dans les corps basse pression des turbines composées[22].

Principe de fonctionnement et conception[modifier | modifier le code]

Une turbine à vapeur idéale est considérée comme un processus isentropique, ou processus à entropie constante, dans lequel l'entropie de la vapeur entrant dans la turbine est égale à l'entropie de la vapeur quittant la turbine. Cependant, en pratique, aucune turbine à vapeur n'est vraiment isentropique, avec une efficacité isentropique se situant entre 20 % et 90 %, suivant l'application de la turbine. L'intérieur d'une turbine comprend plusieurs ensembles d'aubes, ou godets. Un ensemble d'aubes fixes est connecté à l'enveloppe et un ensemble d'aubes en rotation est relié à l'arbre. Les 2 ensembles s'engrènent avec un jeu minimal, la taille et la configuration des ensembles variant afin d'exploiter efficacement l'expansion de la vapeur d'eau à chaque étage.

Efficacité théorique des turbines[modifier | modifier le code]

Pour maximiser l'efficacité de la turbine, la vapeur est détendue, produisant du travail, en un certain nombre d'étages. Ces étages sont caractérisées par la façon dont l'énergie est extraite et les turbines sont à action ou à réaction. La plupart des turbines à vapeur utilisent un mélange de réaction et d'action, chaque étage se comportant de l'une ou de l'autre façon, mais l'ensemble de la turbine les utilise en même temps. Généralement, les étages basse pression sont de type à réaction et les étages à plus haute pression sont du type à action.

La turbine à action[modifier | modifier le code]

Une sélection d'aubes de turbine à action.

La turbine à action a des tuyères fixes qui orientent le débit de vapeur en jets à haute vitesse. Ces jets contiennent une importante énergie cinétique, qui est convertie en rotation de l'arbre par la forme des aubes du rotor, lorsque les jets de vapeur changent de direction. Une chute de pression se produit uniquement sur les aubes fixes, avec une augmentation nette de la vitesse de la vapeur à travers l'étage. Pendant que le flux de vapeur traverse la tuyère, la pression d'entrée chute jusqu'à la pression de sortie (donc la pression atmosphérique, ou plus généralement, le vide du condenseur). En raison du taux élevé d'expansion de la vapeur, la vapeur sort de la tuyère à une très grande vitesse. La vapeur qui quitte les aubes mobiles conserve une grande partie de la vitesse maximale qu'avait la vapeur au moment de quitter la tuyère. La perte d'énergie due à cette vitesse de sortie relativement élevée est communément appelée le report de vitesse ou la perte en sortie.

La loi du moment de l'impulsion stipule que la somme des moments des forces extérieures agissant sur un fluide qui occupe temporairement le volume de contrôle est égal au changement net du moment angulaire des flux à travers le volume de contrôle.

Le fluide tourbillonnant pénètre dans le volume de contrôle au rayon à la vitesse tangentielle et le quitte au rayon à la vitesse tangentielle . Les rayons et sont mesurés à partir de l'axe du rotor, peuvent être différents et sont plus ou moins perpendiculaires à la section ci-dessous.

Triangle des vitesses

Un triangle des vitesses permet une meilleure compréhension de la relation entre les différentes vitesses. Dans la figure ci-dessus, nous avons :

et sont les vitesses absolues à l'entrée et à la sortie respectivement.
et sont les vitesses d'écoulement respectivement à l'entrée et à la sortie.
et sont les vitesses de tourbillonnement à l'entrée et à la sortie respectivement.
et sont les vitesses relatives à l'entrée et à la sortie respectivement.
et (représentés par U) sont les vitesses tangentielles de l'aube à l'entrée et à la sortie respectivement, différentes si les rayons et sont différents.
Est l'angle de l'aube de guidage et Est l'angle de l'aube mobile.

Puis, par la loi du moment de l'impulsion, le couple sur le fluide est donné par :

Pour une turbine à vapeur à action : . Par conséquent, la force tangentielle sur les aubes est . Le travail effectué par unité de temps ou la puissance développée : .

Si ω est la vitesse angulaire de rotation de la turbine, alors la vitesse de l'aube est . La puissance développée est alors .

Efficacité de l'aube
L'efficacité de l'aube () peut être définie comme le rapport entre le travail effectué sur les aubes et l'énergie cinétique fournie au fluide, et est donnée par

Efficacité de l'étage

Tuyère Convergente-divergente
Graphique illustrant l'efficacité de la turbine à Impulsion.

Un étage de turbine à action (ou impulsion) se compose d'un jeu de tuyères et d'une roue mobile. L'efficacité de l'étage est définie par le rapport entre la baisse de l'enthalpie de la tuyère et le travail effectué dans l'étage.